Title: | Stochastic Blockmodels |
Version: | 0.4.7 |
Description: | A collection of tools and functions to adjust a variety of stochastic blockmodels (SBM). Supports at the moment Simple, Bipartite, 'Multipartite' and Multiplex SBM (undirected or directed with Bernoulli, Poisson or Gaussian emission laws on the edges, and possibly covariate for Simple and Bipartite SBM). See Léger (2016) <doi:10.48550/arXiv.1602.07587>, 'Barbillon et al.' (2020) <doi:10.1111/rssa.12193> and 'Bar-Hen et al.' (2020) <doi:10.48550/arXiv.1807.10138>. |
URL: | https://grosssbm.github.io/sbm/ |
BugReports: | https://github.com/GrossSBM/sbm/issues |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.3.2 |
Suggests: | testthat, spelling, knitr, rmarkdown, aricode, covr |
Language: | en-US |
Imports: | alluvial, magrittr, dplyr, purrr, blockmodels, R6, Rcpp, igraph, ggplot2, GREMLINS, stringr, rlang, reshape2, prodlim |
Collate: | 'R6Class-SBM.R' 'R6Class-BipartiteSBM.R' 'R6Class-BipartiteSBM_fit.R' 'R6Class-MultipartiteSBM.R' 'R6Class-MultipartiteSBM_fit.R' 'R6Class-MultiplexSBM_fit.R' 'R6Class-SimpleSBM.R' 'R6Class-SimpleSBM_fit.R' 'RcppExports.R' 'defineSBM.R' 'estimate.R' 'fungusTreeNetwork.R' 'multipartiteEcologicalNetwork.R' 'plotAlluvial.R' 'plotMyMatrix.R' 'plotMyMultipartiteMatrix.R' 'plotMyMultiplexMatrix.R' 'sample.R' 'sbm-package.R' 'utils-pipe.R' 'utils.R' 'utils_plot.R' 'war.R' |
LinkingTo: | Rcpp, RcppArmadillo |
VignetteBuilder: | knitr |
Depends: | R (≥ 3.5.0) |
NeedsCompilation: | yes |
Packaged: | 2024-09-16 15:34:55 UTC; jchiquet |
Author: | Julien Chiquet |
Maintainer: | Julien Chiquet <julien.chiquet@inrae.fr> |
Repository: | CRAN |
Date/Publication: | 2024-09-16 18:40:09 UTC |
sbm: Stochastic Blockmodels
Description
A collection of tools and functions to adjust a variety of stochastic blockmodels (SBM). Supports at the moment Simple, Bipartite, 'Multipartite' and Multiplex SBM (undirected or directed with Bernoulli, Poisson or Gaussian emission laws on the edges, and possibly covariate for Simple and Bipartite SBM). See Léger (2016) doi:10.48550/arXiv.1602.07587, 'Barbillon et al.' (2020) doi:10.1111/rssa.12193 and 'Bar-Hen et al.' (2020) doi:10.48550/arXiv.1807.10138.
Author(s)
Maintainer: Julien Chiquet julien.chiquet@inrae.fr (ORCID)
Authors:
Sophie Donnet sophie.donnet@inrae.fr (ORCID)
Pierre Barbillon pierre.barbillon@agroparistech.fr (ORCID)
Other contributors:
großBM team [contributor]
See Also
Useful links:
Pipe operator
Description
See magrittr::%>%
for details.
Usage
lhs %>% rhs
R6 class for Bipartite SBM
Description
R6 class for Bipartite SBM
R6 class for Bipartite SBM
Super class
sbm::SBM
-> BipartiteSBM
Active bindings
dimLabels
vector of two characters giving the label of each connected dimension (row, col)
blockProp
list of two vectors of block proportions (aka prior probabilities of each block)
connectParam
parameters associated to the connectivity of the SBM, e.g. matrix of inter/inter block probabilities when model is Bernoulli
probMemberships
matrix of estimated probabilities for block memberships for all nodes
nbBlocks
vector of size 2: number of blocks (rows, columns)
nbDyads
number of dyads (potential edges in the network)
nbConnectParam
number of parameter used for the connectivity
memberships
list of size 2: vector of memberships in row, in column.
indMemberships
matrix for clustering memberships
Methods
Public methods
Inherited methods
Method new()
constructor for SBM
Usage
BipartiteSBM$new( model, nbNodes, blockProp, connectParam, dimLabels = c(row = "row", col = "col"), covarParam = numeric(length(covarList)), covarList = list() )
Arguments
model
character describing the type of model
nbNodes
number of nodes in each dimension of the network
blockProp
parameters for block proportions (vector of list of vectors)
connectParam
list of parameters for connectivity with a matrix of means 'mean' and an optional scalar for the variance 'var'. The dimensions of mu must match
blockProp
lengthsdimLabels
optional labels of each dimension (in row, in column)
covarParam
optional vector of covariates effect
covarList
optional list of covariates data
Method rMemberships()
a method to sample new block memberships for the current SBM
Usage
BipartiteSBM$rMemberships(store = FALSE)
Arguments
store
should the sampled blocks be stored (and overwrite the existing data)? Default to FALSE
Returns
the sampled blocks
Method rEdges()
a method to sample a network data (edges) for the current SBM
Usage
BipartiteSBM$rEdges(store = FALSE)
Arguments
store
should the sampled edges be stored (and overwrite the existing data)? Default to FALSE
Returns
the sampled network
Method predict()
prediction under the current parameters
Usage
BipartiteSBM$predict(covarList = self$covarList, theta_p0 = 0)
Arguments
covarList
a list of covariates. By default, we use the covariates with which the model was estimated.
theta_p0
double for thresholding...
Method show()
show method
Usage
BipartiteSBM$show(type = "Bipartite Stochastic Block Model")
Arguments
type
character used to specify the type of SBM
Method plot()
basic matrix plot method for BipartiteSBM object or mesoscopic plot
Usage
BipartiteSBM$plot( type = c("data", "expected", "meso"), ordered = TRUE, plotOptions = list() )
Arguments
type
character for the type of plot: either 'data' (true connection), 'expected' (fitted connection) or 'meso' (mesoscopic view). Default to 'data'.
ordered
logical: should the rows and columns be reordered according to the clustering? Default to
TRUE
.plotOptions
list with the parameters for the plot. See help of the corresponding S3 method for details.
Returns
a ggplot2 object for the 'data'
and 'expected'
, a list with the igraph object g
, the layout
and the plotOptions
for the 'meso'
Method clone()
The objects of this class are cloneable with this method.
Usage
BipartiteSBM$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
R6 Class definition of an Bipartite SBM fit
Description
R6 Class definition of an Bipartite SBM fit
R6 Class definition of an Bipartite SBM fit
Details
This class is designed to give a representation and adjust an LBM fitted with blockmodels.
Super classes
sbm::SBM
-> sbm::BipartiteSBM
-> BipartiteSBM_fit
Active bindings
loglik
double: approximation of the log-likelihood (variational lower bound) reached
ICL
double: value of the integrated classification log-likelihood
penalty
double, value of the penalty term in ICL
entropy
double, value of the entropy due to the clustering distribution
storedModels
data.frame of all models fitted (and stored) during the optimization
Methods
Public methods
Inherited methods
Method new()
constructor for a Bipartite SBM fit
Usage
BipartiteSBM_fit$new( incidenceMatrix, model, dimLabels = c(row = "row", col = "col"), covarList = list() )
Arguments
incidenceMatrix
rectangular (weighted) matrix
model
character (
'bernoulli'
,'poisson'
,'gaussian'
)dimLabels
labels of each dimension (in row, in columns)
covarList
and optional list of covariates, each of whom must have the same dimension as
incidenceMatrix
Method optimize()
function to perform optimization
Usage
BipartiteSBM_fit$optimize(estimOptions = list())
Arguments
estimOptions
a list of parameters controlling the inference algorithm and model selection. See details.
Method setModel()
method to select a specific model among the ones fitted during the optimization. Fields of the current SBM_fit will be updated accordingly.
Usage
BipartiteSBM_fit$setModel(index)
Arguments
index
integer, the index of the model to be selected (row number in storedModels)
Method reorder()
permute group labels by order of decreasing probability
Usage
BipartiteSBM_fit$reorder()
Method show()
show method
Usage
BipartiteSBM_fit$show(type = "Fit of a Bipartite Stochastic Block Model")
Arguments
type
character used to specify the type of SBM
Method clone()
The objects of this class are cloneable with this method.
Usage
BipartiteSBM_fit$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
R6 Class definition of a Multipartite SBM
Description
R6 Class definition of a Multipartite SBM
R6 Class definition of a Multipartite SBM
Super class
sbm::SBM
-> MultipartiteSBM
Active bindings
dimLabels
vector of characters giving the label of each connected dimension
blockProp
list of two vectors of block proportions (aka prior probabilities of each block)
connectParam
parameters associated to the connectivity of the SBM, e.g. matrix of inter/inter block probabilities when model is Bernoulli
probMemberships
matrix of estimated probabilities for block memberships for all nodes
nbBlocks
: vector with the number of blocks in each FG
nbConnectParam
number of parameter used for the connectivity
architecture
organization of the multipartite network
nbNetworks
number of networks in the multipartite network
memberships
list of size 2: vector of memberships in all parts of the network
indMemberships
matrix for clustering memberships
Methods
Public methods
Inherited methods
Method new()
constructor for Multipartite SBM
Usage
MultipartiteSBM$new( model = character(0), architecture = matrix(NA, 0, 2), directed = logical(0), nbNodes = numeric(0), dimLabels = character(0), blockProp = list(), connectParam = list() )
Arguments
model
character describing the type of model
architecture
a 2-column matrix describing interactions between the networks
directed
vector of logical: are the network directed or not?
nbNodes
number of nodes in each dimension/part of the network
dimLabels
labels of each par of the network
blockProp
parameters for block proportions (vector of list of vectors)
connectParam
parameters of connectivity (vector of list of vectors)
Method show()
print method
Usage
MultipartiteSBM$show(type = "Multipartite Stochastic Block Model")
Arguments
type
character to tune the displayed name
Method print()
print method
Usage
MultipartiteSBM$print()
Method plot()
plot Multipartite Network
Usage
MultipartiteSBM$plot( type = c("data", "expected", "meso"), ordered = TRUE, plotOptions = list() )
Arguments
type
character for the type of plot: either 'data' (true connection), 'expected' (fitted connection) or 'meso' (mesoscopic view). Default to 'data'.
ordered
TRUE is the matrices are plotted after reorganization with the blocks. Default value = TRUE
plotOptions
list of plot options for the mesoscopic view or matrix view
Method clone()
The objects of this class are cloneable with this method.
Usage
MultipartiteSBM$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
R6 Class definition of a Multipartite SBM fit
Description
R6 Class definition of a Multipartite SBM fit
R6 Class definition of a Multipartite SBM fit
Details
This class is designed to give a representation and adjust a Multipartite SBM fitted with GREMLIN.
Super classes
sbm::SBM
-> sbm::MultipartiteSBM
-> MultipartiteSBM_fit
Active bindings
loglik
double: approximation of the log-likelihood (variational lower bound) reached
ICL
double: value of the integrated classification log-likelihood
storedModels
data.frame of all models fitted (and stored) during the optimization
Methods
Public methods
Inherited methods
Method new()
constructor for Multipartite SBM
Usage
MultipartiteSBM_fit$new(netList)
Arguments
netList
list of SBM objects
Method optimize()
estimation of multipartiteSBM via GREMLINS
Usage
MultipartiteSBM_fit$optimize(estimOptions)
Arguments
estimOptions
options for MultipartiteBM
Method predict()
prediction under the currently estimated model
Usage
MultipartiteSBM_fit$predict()
Returns
a list of matrices matrix of expected values for each dyad
Method setModel()
method to select a specific model among the ones fitted during the optimization. Fields of the current MultipartiteSBM_fit will be updated accordingly.
Usage
MultipartiteSBM_fit$setModel(index)
Arguments
index
integer, the index of the model to be selected (row number in storedModels)
Method show()
show method
Usage
MultipartiteSBM_fit$show(type = "Fit of a Multipartite Stochastic Block Model")
Arguments
type
character used to specify the type of SBM
Method clone()
The objects of this class are cloneable with this method.
Usage
MultipartiteSBM_fit$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
R6 Class definition of a Multiplex SBM fit
Description
R6 Class definition of a Multiplex SBM fit
R6 Class definition of a Multiplex SBM fit
Details
This class is designed to give a representation and adjust a Multiplex SBM fitted with GREMLIN.
The list of parameters estimOptions
essentially tunes the optimization process and the variational EM algorithm, with the following parameters
"nbCores" integer for number of cores used. Default is 2
"verbosity" integer for verbosity (0, 1). Default is 1
"nbBlocksRange" List of length the number of functional groups, each element supplying the minimal and maximal number of blocks to be explored. The names of the list must be the names of the functional groups. Default value is from 1 to 10)
"initBM" Boolean. True if using simple and bipartite SBM as initialisations. Default value = TRUE
"maxiterVEM" Number of max. number of iterations in the VEM. Default value = 100
"maxiterVE" Number of max. number of iterations in the VE. Default value = 100
Super classes
sbm::SBM
-> sbm::MultipartiteSBM
-> sbm::MultipartiteSBM_fit
-> MultiplexSBM_fit
Active bindings
nbBlocks
vector of size 2: number of blocks (rows, columns)
dependentNetwork
: connection parameters in each network
storedModels
data.frame of all models fitted (and stored) during the optimization
namesLayers
: names of the various Networks
Methods
Public methods
Inherited methods
Method new()
constructor for Multiplex SBM
Usage
MultiplexSBM_fit$new(netList, dependentNet = FALSE)
Arguments
netList
list of SBM object with
dependentNet
boolean indicating whether dependence is assumed between networks beyond the common dependence on the latent variables
Method optimize()
estimation of multipartiteSBM via GREMLINS
Usage
MultiplexSBM_fit$optimize(estimOptions)
Arguments
estimOptions
options for MultipartiteBM
Method plot()
plot Multiplex Network
Usage
MultiplexSBM_fit$plot( type = c("data", "expected"), ordered = TRUE, plotOptions = list() )
Arguments
type
character for the type of plot: either 'data' (true connection), 'expected' (fitted connection). Default to 'data'.
ordered
TRUE is the matrices are plotted after reorganization with the blocks. Default value = TRUE
plotOptions
list of plot options for the matrix view
Method show()
show method
Usage
MultiplexSBM_fit$show(type = "Fit of a Multiplex Stochastic Block Model")
Arguments
type
character used to specify the type of SBM
Method predict()
prediction under the currently estimated model
Usage
MultiplexSBM_fit$predict()
Returns
a list of matrices matrix of expected values for each dyad
Method clone()
The objects of this class are cloneable with this method.
Usage
MultiplexSBM_fit$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
R6 virtual class for SBM representation (mother class of SimpleSBM, BipartiteSBM, MultipartiteSBM)
Description
R6 virtual class for SBM representation (mother class of SimpleSBM, BipartiteSBM, MultipartiteSBM)
R6 virtual class for SBM representation (mother class of SimpleSBM, BipartiteSBM, MultipartiteSBM)
Active bindings
modelName
character, the family of model for the distribution of the edges
directed
mode of the network data (directed or not or not applicable)
dimLabels
vector or list of characters, the label of each dimension
nbNodes
vector describing the number of the successive elements connecting the network
nbCovariates
integer, the number of covariates
blockProp
block proportions (aka prior probabilities of each block)
connectParam
parameters associated to the connectivity of the SBM, e.g. matrix of inter/inter block probabilities when model is Bernoulli
covarParam
vector of regression parameters associated with the covariates.
covarList
list of matrices of covariates
covarArray
the array of covariates
covarEffect
effect of covariates
networkData
the network data (adjacency or incidence matrix or list of such object)
expectation
expected values of connection under the current model
Methods
Public methods
Method new()
constructor for SBM
Usage
SBM$new( model = vector("character", 0), directed = vector("logical", 0), dimension = vector("numeric", 0), dimLabels = vector("character", 0), blockProp = vector("numeric", 0), connectParam = vector("list", 0), covarParam = numeric(length(covarList)), covarList = list() )
Arguments
model
character describing the type of model
directed
logical describing if the network data is directed or not
dimension
dimension of the network data
dimLabels
labels of each dimension
blockProp
parameters for block proportions (vector or list of vectors)
connectParam
list of parameters for connectivity
covarParam
optional vector of covariates effect
covarList
optional list of covariates data
Method rNetwork()
a method to sample a network data for the current SBM (blocks and edges)
Usage
SBM$rNetwork(store = FALSE)
Arguments
store
should the sampled network be stored (and overwrite the existing data)? Default to FALSE
Returns
a list with the sampled block and network
Method show()
print method
Usage
SBM$show(type = "Stochastic Block Model")
Arguments
type
character to tune the displayed name
Method print()
print method
Usage
SBM$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
SBM$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
R6 class for Simple SBM
Description
R6 class for Simple SBM
R6 class for Simple SBM
Super class
sbm::SBM
-> SimpleSBM
Active bindings
dimLabels
a single character giving the label of the nodes
blockProp
vector of block proportions (aka prior probabilities of each block)
connectParam
parameters associated to the connectivity of the SBM, e.g. matrix of inter/inter block probabilities when model is Bernoulli
probMemberships
matrix of estimated probabilities for block memberships for all nodes
nbBlocks
number of blocks
nbDyads
number of dyads (potential edges in the network)
nbConnectParam
number of parameter used for the connectivity
memberships
vector of clustering
indMemberships
matrix for clustering memberships
Methods
Public methods
Inherited methods
Method new()
constructor for SBM
Usage
SimpleSBM$new( model, nbNodes, directed, blockProp, connectParam, dimLabels = c("node"), covarParam = numeric(length(covarList)), covarList = list() )
Arguments
model
character describing the type of model
nbNodes
number of nodes in the network
directed
logical, directed network or not.
blockProp
parameters for block proportions (vector of list of vectors)
connectParam
list of parameters for connectivity with a matrix of means 'mean' and an optional scalar for the variance 'var'. The size of mu must match
blockProp
lengthdimLabels
optional label for the node (default is "nodeName")
covarParam
optional vector of covariates effect
covarList
optional list of covariates data
Method rMemberships()
a method to sample new block memberships for the current SBM
Usage
SimpleSBM$rMemberships(store = FALSE)
Arguments
store
should the sampled blocks be stored (and overwrite the existing data)? Default to FALSE
Returns
the sampled blocks
Method rEdges()
a method to sample a network data (edges) for the current SBM
Usage
SimpleSBM$rEdges(store = FALSE)
Arguments
store
should the sampled edges be stored (and overwrite the existing data)? Default to FALSE
Returns
the sampled network
Method predict()
prediction under the currently parameters
Usage
SimpleSBM$predict(covarList = self$covarList, theta_p0 = 0)
Arguments
covarList
a list of covariates. By default, we use the covariates with which the model was estimated
theta_p0
a threshold...
Returns
a matrix of expected values for each dyad
Method show()
show method
Usage
SimpleSBM$show(type = "Simple Stochastic Block Model")
Arguments
type
character used to specify the type of SBM
Method plot()
basic matrix plot method for SimpleSBM object or mesoscopic plot
Usage
SimpleSBM$plot( type = c("data", "expected", "meso"), ordered = TRUE, plotOptions = list() )
Arguments
type
character for the type of plot: either 'data' (true connection), 'expected' (fitted connection) or 'meso' (mesoscopic view). Default to 'data'.
ordered
logical: should the rows and columns be reordered according to the clustering? Default to
TRUE
.plotOptions
list with the parameters for the plot. See help of the corresponding S3 method for details.
Returns
a ggplot2 object for the 'data'
and 'expected'
, a list with the igraph object g
, the layout
and the plotOptions
for the 'meso'
Method clone()
The objects of this class are cloneable with this method.
Usage
SimpleSBM$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
R6 Class definition of a Simple SBM fit
Description
R6 Class definition of a Simple SBM fit
R6 Class definition of a Simple SBM fit
Details
This class is designed to give a representation and adjust an SBM fitted with blockmodels.
Super classes
sbm::SBM
-> sbm::SimpleSBM
-> SimpleSBM_fit
Active bindings
loglik
double: approximation of the log-likelihood (variational lower bound) reached
ICL
double: value of the integrated classification log-likelihood
penalty
double, value of the penalty term in ICL
entropy
double, value of the entropy due to the clustering distribution
storedModels
data.frame of all models fitted (and stored) during the optimization
Methods
Public methods
Inherited methods
Method new()
constructor for a Simple SBM fit
Usage
SimpleSBM_fit$new( adjacencyMatrix, model, directed, dimLabels = c(node = "nodeName"), covarList = list() )
Arguments
adjacencyMatrix
square (weighted) matrix
model
character (
'bernoulli'
,'poisson'
,'gaussian'
)directed
logical, directed network or not. In not,
adjacencyMatrix
must be symmetric.dimLabels
list of labels of each dimension (in row, in columns)
covarList
and optional list of covariates, each of whom must have the same dimension as
adjacencyMatrix
Method optimize()
function to perform optimization
Usage
SimpleSBM_fit$optimize(estimOptions = list())
Arguments
estimOptions
a list of parameters controlling the inference algorithm and model selection. See details.
Method setModel()
method to select a specific model among the ones fitted during the optimization. Fields of the current SBM_fit will be updated accordingly.
Usage
SimpleSBM_fit$setModel(index)
Arguments
index
integer, the index of the model to be selected (row number in storedModels)
Method reorder()
permute group labels by order of decreasing probability
Usage
SimpleSBM_fit$reorder()
Method show()
show method
Usage
SimpleSBM_fit$show(type = "Fit of a Simple Stochastic Block Model")
Arguments
type
character used to specify the type of SBM
Method clone()
The objects of this class are cloneable with this method.
Usage
SimpleSBM_fit$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Extract model coefficients
Description
Extracts model coefficients from objects with class SBM
and children (SimpleSBM_fit
,
BipartiteSBM_fit
)
Usage
## S3 method for class 'SBM'
coef(object, type = c("connectivity", "block", "covariates"), ...)
Arguments
object |
an R6 object inheriting from class SBM_fit (like SimpleSBM_fit or BipartiteSBM_fit) |
type |
type of parameter that should be extracted. Either 'block' for
, 'connectivity' for
, or "covariates" for
. Default is 'connectivity'. |
... |
additional parameters for S3 compatibility. Not used |
Value
vector or list of parameters.
Define a network
Description
Define a network
Usage
defineSBM(
netMat,
model = "bernoulli",
type = ifelse(ncol(netMat) == nrow(netMat), "simple", "bipartite"),
directed = !isSymmetric(netMat),
dimLabels = c(row = "row", col = "col"),
covariates = list()
)
Arguments
netMat |
a matrix describing the network: either an adjacency (square) or incidence matrix with possibly weighted entries. |
model |
character describing the model for the relation between nodes ( |
type |
Type of the matrix, choice between 'simple' and 'bipartite' |
directed |
logical: is the network directed or not? Only relevant when |
dimLabels |
an optional vector of labels for each dimension (in row, in column). Default value = c('row' = row,'col'= col) |
covariates |
a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default. |
Value
an object SimpleSBM or BipartiteSBM with the informations required to define a future multipartite network
Examples
A <- matrix(rbinom(100,1,.2), 10, 10)
myNet <- defineSBM(A, "poisson", "simple", TRUE, "Actor")
Estimation of Bipartite SBMs
Description
This function performs variational inference of bipartite Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models.
Usage
estimateBipartiteSBM(
netMat,
model = "bernoulli",
dimLabels = c(row = "row", col = "col"),
covariates = list(),
estimOptions = list()
)
Arguments
netMat |
a matrix describing the network: either an adjacency (square) or incidence matrix with possibly weighted entries. |
model |
character describing the model for the relation between nodes ( |
dimLabels |
an optional vector of labels for each dimension (in row, in column) |
covariates |
a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default. |
estimOptions |
a list of parameters controlling the inference algorithm and model selection. See details. |
Details
The list of parameters estimOptions
essentially tunes the optimization process and the variational EM algorithm, with the following parameters
"nbCores integer for number of cores used. Default is 2
"verbosity" integer for verbosity (0, 1). Default is 1
"plot" boolean, should the ICL by dynamically plotted or not. Default is TRUE
"exploreFactor" control the exploration of the number of groups
"exploreMin" explore at least until exploreMin even if the exploration factor rule is achieved. Default 4. See the package blockmodels for details.
"exploreMax" Stop exploration at exploreMax even if the exploration factor rule is not achieved. Default Inf. See the package blockmodels for details.
"nbBlocksRange" minimal and maximal number or blocks explored
"fast" logical: should approximation be used for Bernoulli model with covariates. Default to
TRUE
Value
a list with the estimated parameters. See details...
Examples
### =======================================
### BIPARTITE BINARY SBM (Bernoulli model)
## Graph parameters and Sampling
nbNodes <- c(60, 80)
blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions
means <- matrix(runif(6), 2, 3) # connectivity matrix
# In Bernoulli SBM, parameters is a list with a
# matrix of means 'mean' which are probabilities of connection
connectParam <- list(mean = means)
mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'bernoulli')
## Estimation
myBipartiteSBM <- estimateBipartiteSBM(mySampler$networkData, estimOptions = list(plot = FALSE))
plot(myBipartiteSBM, 'expected')
### =======================================
### BIPARTITE POISSON SBM
## Graph parameters & Sampling
nbNodes <- c(60, 80)
blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions
means <- matrix(rbinom(6, 30, 0.25), 2, 3) # connectivity matrix
connectParam <- list(mean = means)
mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'poisson')
## Estimation
myBipartiteSBM <-
estimateBipartiteSBM(mySampler$networkData, 'poisson', estimOptions = list(plot = FALSE))
plot(myBipartiteSBM, 'expected')
### =======================================
### BIPARTITE GAUSSIAN SBM
## Graph parameters & sampling
nbNodes <- c(60, 80)
blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions
means <- 20 * matrix(runif(6), 2, 3) # connectivity matrix
connectParam <- list(mean = means, var = 1)
mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'gaussian')
## Estimation
myBipartiteSBM <-
estimateBipartiteSBM(mySampler$networkData, 'gaussian', estimOptions = list(plot = FALSE))
plot(myBipartiteSBM, 'expected')
Estimation for multipartite SBM
Description
Estimation for multipartite SBM
Usage
estimateMultipartiteSBM(listSBM, estimOptions = list())
Arguments
listSBM |
list of networks that were defined by the |
estimOptions |
options for the inference procedure |
Details
The list of parameters estimOptions
essentially tunes the optimization process and the variational EM algorithm, with the following parameters
"nbCores" integer for number of cores used. Default is 2
"verbosity" integer for verbosity (0, 1). Default is 1
"nbBlocksRange" List of length the number of functional groups, each element supplying the minimal and maximal number of blocks to be explored. The names of the list must be the names of the functional groups. Default value is from 1 to 10)
"initBM" Boolean. True if using simple and bipartite SBM as initialisations. Default value = TRUE
"maxiterVEM" Number of max. number of iterations in the VEM. Default value = 100
"maxiterVE" Number of max. number of iterations in the VE. Default value = 100
Value
a MultipartiteSBM_fit object with the estimated parameters and the blocks in each Functional Group
Examples
## Not run:
## About the Parts/Functional Groups (FG)
blockProp <- list(c(0.16 ,0.40 ,0.44),c(0.3,0.7)) # prop of blocks in each FG
archiMultipartite <- rbind(c(1,2),c(2,2),c(1,1)) # architecture of the multipartite net.
nbNodes <- c(60,50)
## About the connection matrices
directed <- c(NA, TRUE, FALSE) # type of each network
model <- c('gaussian','bernoulli','poisson')
C1 <-
list(mean = matrix(c(6.1, 8.9, 6.6, 9.8, 2.6, 1.0), 3, 2),
var = matrix(c(1.6, 1.6, 1.8, 1.7 ,2.3, 1.5),3, 2))
C2 <- list(mean = matrix(c(0.7,1.0, 0.4, 0.6),2, 2))
m3 <- matrix(c(2.5, 2.6 ,2.2 ,2.2, 2.7 ,3.0 ,3.6, 3.5, 3.3),3,3 )
C3 <- list(mean = .5 * (m3 + t(m3)))
connectParam <- list(C1, C2, C3)
## Graph Sampling
mySampleMSBM <- sampleMultipartiteSBM(nbNodes, blockProp,
archiMultipartite, connectParam, model,
directed, dimLabels = c('A','B'), seed = 2)
listSBM <- mySampleMSBM$listSBM
estimOptions <- list(initBM = FALSE, nbCores = 2)
myMSBM <- estimateMultipartiteSBM(listSBM, estimOptions)
plot(myMSBM, type = "data")
plot(myMSBM, type = "expected")
plot(myMSBM, type = "meso")
## End(Not run)
Estimation for Multiplex SBM
Description
Estimation for Multiplex SBM
Usage
estimateMultiplexSBM(listSBM, dependent = FALSE, estimOptions = list())
Arguments
listSBM |
list of networks that were defined by the |
dependent |
logical parameter indicating whether the networks in the multiplex structure are dependent beyond the latent variables, |
estimOptions |
options for the inference procedure |
Details
The list of parameters estimOptions
essentially tunes the optimization process and the variational EM algorithm, with the following parameters
"nbCores" integer for number of cores used. Default is 2
"verbosity" integer for verbosity (0, 1). Default is 1
"nbBlocksRange" List of length the number of functional groups, each element supplying the minimal and maximal number of blocks to be explored. The names of the list must be the names of the functional groups. Default value is from 1 to 10)
"initBM" Boolean. True if using simple and bipartite SBM as initialisations. Default value = TRUE
"maxiterVEM" Number of max. number of iterations in the VEM. Default value = 100
"maxiterVE" Number of max. number of iterations in the VE. Default value = 100
"plot" boolean, should the ICL by dynamically plotted or not. Default is TRUE. For dependent networks
"exploreFactor" control the exploration of the number of groups. For dependent networks
"exploreMin" explore at least until exploreMin even if the exploration factor rule is achieved. Default 4. See the package blockmodels for details. For dependent networks
"exploreMax" Stop exploration at exploreMax even if the exploration factor rule is not achieved. Default Inf. See the package blockmodels for details. For dependent networks
"nbBlocksRange" minimal and maximal number or blocks explored. For dependent networks
"fast" logical: should approximation be used for Bernoulli model with covariates. Default to
TRUE
. For dependent networks
Value
a MultiplexSBM_fit object with the estimated parameters and the blocks
Examples
## Not run:
### =======================================
### MULTIPLEX SBM without dependence between layers
##
Nnodes <- 40
blockProp <- c(.4,.6)
nbLayers <- 2
connectParam <- list(list(mean=matrix(rbeta(4,.5,.5),2,2)),list(mean=matrix(rexp(4,.5),2,2)))
model <- c("bernoulli","poisson")
type <- "directed"
mySampleMultiplexSBM <-
sampleMultiplexSBM(
nbNodes = Nnodes,
blockProp = blockProp,
nbLayers = nbLayers,
connectParam = connectParam,
model=model,
type=type)
listSBM <- mySampleMultiplexSBM$listSBM
estimOptions <- list(initBM = FALSE, nbCores = 2)
myMultiplexSBM <- estimateMultiplexSBM(listSBM,estimOptions,dependent=FALSE)
### =======================================
### MULTIPLEX SBM Gaussian with dependence
##
Q <- 3
nbLayers <- 2
connectParam <- list()
connectParam$mu <- vector("list",nbLayers)
connectParam$mu[[1]] <- matrix(.1,Q,Q) + diag(1:Q)
connectParam$mu[[2]] <- matrix(-2,Q,Q) + diag(rev(Q:1))
connectParam$Sigma <- matrix(c(2,1,1,4),nbLayers,nbLayers)
model <- rep("gaussian",2)
type <- "directed"
Nnodes <- 80
blockProp <- c(.3,.3,.4)
mySampleMultiplexSBM <-
sampleMultiplexSBM(
nbNodes = Nnodes,
blockProp = blockProp,
nbLayers = nbLayers,
connectParam = connectParam,
model=model,
type="undirected",
dependent=TRUE)
listSBM <- mySampleMultiplexSBM$listSBM
myMultiplexSBM <- estimateMultiplexSBM(listSBM,estimOptions,dependent=TRUE)
## MultiplexSBM Bernoulli with dependence
Q <- 2
P00<-matrix(runif(Q*Q),Q,Q)
P10<-matrix(runif(Q*Q),Q,Q)
P01<-matrix(runif(Q*Q),Q,Q)
P11<-matrix(runif(Q*Q),Q,Q)
SumP<-P00+P10+P01+P11
P00<-P00/SumP
P01<-P01/SumP
P10<-P10/SumP
P11<-P11/SumP
connectParam <- list()
connectParam$prob00 <- P00
connectParam$prob01 <- P01
connectParam$prob10 <- P10
connectParam$prob11 <- P11
model <- rep("bernoulli",2)
type <- "directed"
nbLayers <- 2
Nnodes <- 40
blockProp <- c(.6,.4)
mySampleMultiplexSBM <-
sampleMultiplexSBM(
nbNodes = Nnodes,
blockProp = blockProp,
nbLayers = nbLayers,
connectParam = connectParam,
model=model,
type=type,
dependent=TRUE)
listSBM <- mySampleMultiplexSBM$listSBM
myMultiplexSBM <- estimateMultiplexSBM(listSBM,estimOptions,dependent=TRUE)
## End(Not run)
Estimation of Simple SBMs
Description
This function performs variational inference of simple Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models.
Usage
estimateSimpleSBM(
netMat,
model = "bernoulli",
directed = !isSymmetric(netMat),
dimLabels = c("node"),
covariates = list(),
estimOptions = list()
)
Arguments
netMat |
a matrix describing the network: either an adjacency (square) or incidence matrix with possibly weighted entries. |
model |
character describing the model for the relation between nodes ( |
directed |
logical: is the network directed or not? Only relevant when |
dimLabels |
an optional label for referring to the nodes |
covariates |
a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default. |
estimOptions |
a list of parameters controlling the inference algorithm and model selection. See details. |
Details
The list of parameters estimOptions
essentially tunes the optimization process and the variational EM algorithm, with the following parameters
"nbCores integer for number of cores used. Default is 2
"verbosity" integer for verbosity (0, 1). Default is 1
"plot" boolean, should the ICL by dynamically plotted or not. Default is TRUE
"exploreFactor" control the exploration of the number of groups
"exploreMin" explore at least until exploreMin even if the exploration factor rule is achieved. Default 4. See the package blockmodels for details.
"exploreMax" Stop exploration at exploreMax even if the exploration factor rule is not achieved. Default Inf. See the package blockmodels for details.
"nbBlocksRange" minimal and maximal number or blocks explored
"fast" logical: should approximation be used for Bernoulli model with covariates. Default to
TRUE
Value
a list with the estimated parameters. See details...
Examples
### =======================================
### SIMPLE BINARY SBM (Bernoulli model)
## Graph parameters & Sampling
nbNodes <- 60
blockProp <- c(.5, .25, .25) # group proportions
means <- diag(.4, 3) + 0.05 # connectivity matrix: affiliation network
connectParam <- list(mean = means)
mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam)
adjacencyMatrix <- mySampler$networkData
## Estimation
mySimpleSBM <-
estimateSimpleSBM(adjacencyMatrix, 'bernoulli', estimOptions = list(plot = FALSE))
plot(mySimpleSBM, 'data', ordered = FALSE)
plot(mySimpleSBM, 'data')
plot(mySimpleSBM, 'expected', ordered = FALSE)
plot(mySimpleSBM, 'expected')
plot(mySimpleSBM, 'meso')
### =======================================
### SIMPLE POISSON SBM
## Graph parameters & Sampling
nbNodes <- 60
blockProp <- c(.5, .25, .25) # group proportions
means <- diag(15., 3) + 5 # connectivity matrix: affiliation network
connectParam <- list(mean = means)
mySampler <- sampleSimpleSBM(nbNodes, blockProp, list(mean = means), model = "poisson")
adjacencyMatrix <- mySampler$networkData
## Estimation
mySimpleSBM <- estimateSimpleSBM(adjacencyMatrix, 'poisson',
estimOptions = list(plot = FALSE))
plot(mySimpleSBM, 'data', ordered = FALSE)
plot(mySimpleSBM, 'data')
plot(mySimpleSBM, 'expected', ordered = FALSE)
plot(mySimpleSBM, 'expected')
### =======================================
### SIMPLE GAUSSIAN SBM
## Graph parameters & Sampling
nbNodes <- 60
blockProp <- c(.5, .25, .25) # group proportions
means <- diag(15., 3) + 5 # connectivity matrix: affiliation network
connectParam <- list(mean = means, var = 2)
mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam, model = "gaussian")
## Estimation
mySimpleSBM <-
estimateSimpleSBM(mySampler$networkData, 'gaussian', estimOptions = list(plot = FALSE))
plot(mySimpleSBM, 'data', ordered = FALSE)
plot(mySimpleSBM, 'data')
plot(mySimpleSBM, 'expected', ordered = FALSE)
plot(mySimpleSBM, 'expected')
Extract model fitted values
Description
Extracts fitted values for object with class (SimpleSBM_fit
,
BipartiteSBM_fit
) or multipartitepartiteSBM_fit
)
Usage
## S3 method for class 'SBM'
fitted(object, ...)
Arguments
object |
an R6 object inheriting from SimpleSBM_fit, BipartiteSBM_fit or MultipartiteSBM_fit |
... |
additional parameters for S3 compatibility. Not used |
Value
a matrix of expected fitted values for each dyad
fungus-tree interaction network
Description
This data set provides information about $154$ fungi sampled on $51$ tree species.
Usage
fungusTreeNetwork
Format
A list with the following entries:
fungi_list list of the fungus species names
tree_list list of the tree species names
fungus_tree binary fungus-tree interactions
tree_tree weighted tree-tree interactions (number of common fungal species two tree species host)
covar_tree covariates associated to pairs of trees (namely genetic, taxonomic and geographic distances)
Source
Vacher, Corinne, Dominique Piou, and Marie-Laure Desprez-Loustau. "Architecture of an antagonistic tree/fungus network: the asymmetric influence of past evolutionary history." PloS one 3.3 (2008): e1740.
Auxiliary function to check the given class of an object
Description
Auxiliary function to check the given class of an object
Usage
is_SBM(Robject)
Arguments
Robject |
an R6 object inheriting from class SBM |
Value
TRUE or FALSE
Ecological multipartite interaction network
Description
Multipartite network of mutualistic interactions between plants and pollinators, plants and birds and plants and ants.
Usage
multipartiteEcologicalNetwork
Format
A list a 3 binary incidence matrices
Inc_plant_ant Interactions between plants (rows) and ants (cols). Matrix with 141 rows and 30 columns
Inc_plant_bird Interactions between plants (rows) and birds (cols). Matrix with141 rows and 46 columns
Inc_plant_flovis Interactions between plants (rows) and pollinators (cols). Matrix with 141 rows and 173 columns
Source
Dataset compiled and conducted at Centro de Investigaciones Costeras La Mancha (CICOLMA), located on the central coast of the Gulf of Mexico, Veracruz, Mexico. see doi:10.1098/rspb.2016.1564 and https://github.com/lucaspdmedeiros/multi-network_core_removal/tree/master/data
SBM Plot
Description
Basic matrix plot method for SBM object or mesoscopic view
Usage
## S3 method for class 'SBM'
plot(
x,
type = c("data", "expected", "meso"),
ordered = TRUE,
plotOptions = list(),
...
)
Arguments
x |
an object inheriting from class SBM |
type |
character for the type of plot: either 'data' (true connection), 'expected' (fitted connection) or 'meso' (mesoscopic). Default to 'data'. |
ordered |
logical: should the rows and columns be ordered according to the clustering? Default to |
plotOptions |
list with parameters for 'meso' type plot and data type plot. Details are given below |
... |
additional parameters for S3 compatibility. Not used |
Details
The list of parameters plotOptions
for the mesoscopic plot is:
- "seed":
seed to control the layout
- "title":
character string for the title. Default value is NULL
- "layout":
Default value = NULL
- "vertex.color":
Default value is "salmon2"
- "vertex.frame.color":
Node border color.Default value is "black"
- "vertex.shape":
One of "none", "circle", "square", "csquare", "rectangle" "crectangle", "vrectangle", "pie", "raster", or "sphere". Default value = "circle"
- "vertex.size":
Size of the node (default is 2)
- "vertex.size2":
The second size of the node (e.g. for a rectangle)
- "vertex.label.name":
Names of the vertices. Default value is the label of the nodes
- "vertex.label.color":
Default value is "black"
- "vertex.label.font":
Default value is 2. Font: 1 plain, 2 bold, 3, italic, 4 bold italic, 5 symbol
- "vertex.label.cex":
Font size (multiplication factor, device-dependent).Default value is 0.9.
- "vertex.label.dist":
Distance between the label and the vertex. Default value is 0
- "vertex.label.degree":
The position of the label in relation to the vertex. default value is 0
- "edge.threshold":
Threshold under which the edge is not plotted. Default value is = -Inf
- "edge.color":
Default value is "gray"
- "edge.width":
Factor parameter. Default value is 10
- "edge.arrow.size":
Default value is 1
- "edge.arrow.width":
Default value is 2
- "edge.lty":
Line type, could be 0 or "blank", 1 or "solid", 2 or "dashed", 3 or "dotted", 4 or "dotdash", 5 or "longdash", 6 or "twodash". Default value is "solid"
- "edge.curved":
Default value is = 0.3.
For type = 'data' or 'expected plot', the list of parameters plotOptions
is
- "legend":
Boolean. Set TRUE if you want to see the legend. Default value is FALSE
- "legend.title":
Boolean. Set TRUE if you want to print the title of the legend. Default value is FALSE
- "legend.position":
Position of the legend. Possible values are 'bottom', 'top','left,'right'. Default value is 'bottom'
- "rowNames":
Set true if the rownames must be plotted. Default value is FALSE
- "colNames":
Set true if the colNames must be plotted. Default value is FALSE
- "line.color":
Chain of character. The color of the lines to separate groups if a clustering is provided. Default value is red
- "line.width":
Numeric. Width of the lines to separate groups. Default value is NULL, automatically chosen
- "title":
Chain of character. Title of the plot. Default value is NULL
Value
a ggplot2 object for the 'data'
and 'expected'
, a list with the igraph object g
and the layout
for the 'meso'
Plot an alluvial plot between clusterings
Description
Plot an alluvial plot between clusterings
Usage
plotAlluvial(listMemberships, plotOptions = list())
Arguments
listMemberships |
: a list vectors containing the memberships |
plotOptions |
: a list containing the options for Alluvial plots |
Details
The list of parameters plotOptions
provides the following options
"curvy" numeric, controls the curvature of the alluvial. Default value = 0.3
"alpha numeric, vector of transparency of the stripes. Default value = 0.8
"gap.width" numeric, relative width of inter-category gaps. Default value = 0.1
"col" vector of colors of the stripes. Default value = "darkolivegreen3"
"border" vector of border colors for the stripes. Default is white
Value
display the alluvial plot, returns the plotOptions as a list
Examples
listMemberships <- list(C1 = rep(c('A','B','C'),each=10),C2 = rep(c(1,2,4),10))
plotAlluvial(listMemberships)
Plot an adjacency or incidence Matrix
Description
Plot an adjacency or incidence Matrix
Usage
plotMyMatrix(
Mat,
dimLabels = c(row = "row", col = "col"),
clustering = NULL,
plotOptions = NULL
)
Arguments
Mat |
: a matrix representing the network |
dimLabels |
: a vector of length 1 or 2 specifying the types of nodes in row and col (functional group) (Default is |
clustering |
: a list of length 2 specifying a clustering on row and col |
plotOptions |
: a list providing options. See details below. |
Details
The list of parameters plotOptions
for the matrix plot is
"legend": Boolean. Set TRUE if you want to see the legend. Default value is FALSE
"legend.title": Boolean. Set TRUE if you want to print the title of the legend. Default value is FALSE
"legend.position": Position of the legend. Possible values are 'bottom', 'top','left,'right'. Default value is 'bottom'
"rowNames": Set true if the rownames must be plotted. Default value is FALSE
"colNames": Set true if the colNames must be plotted. Default value is FALSE
"line.color": Chain of character. The color of the lines to separate groups if a clustering is provided. Default value is red
"line.width": Numeric. Width of the lines to separate groups. Default value is NULL, automatically chosen
"title": Chain of character. Title of the plot. Default value is NULL
Value
a ggplot object corresponding to the plot
Examples
M <- matrix(sample(c(0,1),900,replace=TRUE),30,30)
plotMyMatrix(M, dimLabels = c('individulals'), plotOptions= list(legend = FALSE))
M2 <- matrix( rpois(800,10),40,20)
plotMyMatrix(M2, dimLabels = c(row = 'reader',col = 'book'), plotOptions = list(legend = TRUE))
Plot the matrices corresponding to a Multipartite Network
Description
Plot the matrices corresponding to a Multipartite Network
Usage
plotMyMultipartiteMatrix(listSBM, memberships = NULL, plotOptions = list())
Arguments
listSBM |
: a list of objects representing the multipartite network (see) |
memberships |
: a list of length equal to the number of Functional Groups providing the clusterings inside each group. |
plotOptions |
: a list containing the options. See details. |
Details
plotOptions is a list containing the following items
"normalized": Boolean. TRUE if the various matrices are presented in the same scale (between O and 1). FALSE otherwise. Default value FALSE
"compact": Boolean. Default value is TRUE if you ask for the matrices to be transposed to have a more compact view
"legend": Boolean. Set TRUE if you want to see the legend. Default value is FALSE
"legend.title": Boolean. Set TRUE if you want to print the title of the legend. Default value is FALSE
"legend.position": Position of the legend. Possible values are 'bottom', 'top','left,'right'. Default value is 'bottom'
"nodeNames": Set true if the node Names must be plotted. Default value is FALSE
"line.color": The color of the lines to separate groups. Default value is red
"line.width": Width of the lines to separate groups. Default value is NULL, automatically chosen
"title": Title of the plot. Default value is NULL
Value
a ggplot object corresponding to the plot
Examples
data("multipartiteEcologicalNetwork")
Net <- multipartiteEcologicalNetwork
type='bipartite'
model = 'bernoulli'
directed = FALSE
listNet <- list()
listNet[[1]] = defineSBM(Net$Inc_plant_ant,
model,type,directed,
dimLabels = c(row = "Plants", col = "Ants"))
listNet[[2]] = defineSBM(Net$Inc_plant_bird,model,type,directed,
dimLabels =c(row = "Plants",col = "Birds"))
plotMyMultipartiteMatrix(listNet,plotOptions=list(legend = TRUE,title='Ecology'))
listNet <- list()
listNet[[1]] <- defineSBM(matrix(rbinom(1000,1,0.5),20,50),
model = 'bernoulli',
type ='bipartite', directed = NA,
dimLabels = c(row="Questions",col="Students"))
listNet[[2]] <- defineSBM(matrix(rpois(20*30,8),30,20),
model = 'poisson',
type ='bipartite',directed = NA,
dimLabels = c(row="Competences",col="Questions"))
plotMyMultipartiteMatrix(listNet,plotOptions=list(legend = TRUE,compact = FALSE))
plotMyMultipartiteMatrix(listNet,plotOptions=list(legend = TRUE,normalized = TRUE))
Plot the matrices corresponding to a Multiplex Network
Description
Plot the matrices corresponding to a Multiplex Network
Usage
plotMyMultiplexMatrix(listSBM, memberships = NULL, plotOptions = list())
Arguments
listSBM |
: a list of objects representing the multiplex network (see) |
memberships |
: a list of length equal to the number of Functional Groups providing the clusterings inside each group. |
plotOptions |
: a list containing the options. See details. |
Details
plotOptions is a list containing the following items
"normalized": Boolean. TRUE if the various matrices are presented in the same scale (between O and 1). FALSE otherwise. Default value FALSE
"compact": Boolean. Default value is TRUE if you ask for the matrices to be transposed to have a more compact view
"legend": Boolean. Set TRUE if you want to see the legend. Default value is FALSE
"legend.title": Boolean. Set TRUE if you want to print the title of the legend. Default value is FALSE
"legend.position": Position of the legend. Possible values are 'bottom', 'top','left,'right'. Default value is 'bottom'
"nodeNames": Set true if the node Names must be plotted. Default value is FALSE
"line.color": The color of the lines to separate groups. Default value is red
"line.width": Width of the lines to separate groups. Default value is NULL, automatically chosen
"title": Title of the plot. Default value is NULL
Value
a ggplot object corresponding to the plot
Examples
Nnodes <- c(40,30)
blockProp <- list(c(.4,.6),c(0.5,0.5))
nbLayers <- 2
connectParam <- list(list(mean=matrix(rbeta(4,.5,.5),2,2)),list(mean=matrix(rexp(4,.5),2,2)))
names(connectParam) <- c('Read','Score')
model <- c("bernoulli","poisson")
type <- "bipartite"
mySampleMultiplexSBM <-
sampleMultiplexSBM(
nbNodes = Nnodes,
blockProp = blockProp,
nbLayers = nbLayers,
connectParam = connectParam,
model=model,
dimLabels = c('readers','books'),
type=type)
listNet <- mySampleMultiplexSBM$listSBM
names(listNet) <- c("Read","Affinity")
plotMyMultiplexMatrix(listNet,plotOptions=list(legend = TRUE))
Model Predictions
Description
Make predictions from an SBM.
Usage
## S3 method for class 'SBM'
predict(object, covarList = object$covarList, theta_p0 = 0, ...)
Arguments
object |
an R6 object inheriting from class SBM_fit (like SimpleSBM_fit or BipartiteSBM_fit) |
covarList |
a list of covariates. By default, we use the covariates associated with the model. |
theta_p0 |
a threshold... |
... |
additional parameters for S3 compatibility. Not used |
Value
a matrix of expected values for each dyad
Sampling of Bipartite SBMs
Description
This function samples a simple Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models, and possibly with covariates
Usage
sampleBipartiteSBM(
nbNodes,
blockProp,
connectParam,
model = "bernoulli",
dimLabels = c(row = "row", col = "col"),
covariates = list(),
covariatesParam = numeric(0)
)
Arguments
nbNodes |
number of nodes in the network |
blockProp |
parameters for block proportions: list of size two with row and column block proportions |
connectParam |
list of parameters for connectivity with a matrix of means 'mean' and an optional matrix of variances 'var', the sizes of which must match |
model |
character describing the model for the relation between nodes ( |
dimLabels |
an optional list of labels for each dimension (in row, in column) |
covariates |
a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default. |
covariatesParam |
optional vector of covariates effect. A zero length numeric vector by default. |
Value
an object with class BipartiteSBM
Examples
### =======================================
### BIPARTITE BERNOULLI SBM
## Graph parameters
nbNodes <- c(100, 120)
blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions
means <- matrix(runif(6), 2, 3) # connectivity matrix
# In Bernoulli SBM, parameters is a list with
# a matrix of means 'mean' which are probabilities of connection
connectParam <- list(mean = means)
## Graph Sampling
dimLabels = c(row='Reader',col='Book')
mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'bernoulli',dimLabels)
plot(mySampler)
plot(mySampler,type='meso',plotOptions = list(vertex.label.name=list(row='Reader',col='Book')))
plot(mySampler,type='meso',plotOptions = list(vertex.label.name=c('A','B'),vertex.size = 1.4))
mySampler$rMemberships() # sample new memberships
mySampler$rEdges() # sample new edges
mySampler$rNetwork() # sample a new networrk (blocks and edges)
### =======================================
### BIPARTITE POISSON SBM
## Graph parameters
nbNodes <- c(100, 120)
blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions
means <- matrix(rbinom(6, 30, 0.25), 2, 3) # connectivity matrix
# In Poisson SBM, parameters is a list with a matrix of
# means 'mean' which are a mean integer value taken by edges
connectParam <- list(mean = means)
## Graph Sampling
dimLabels = c(row = 'Ind', col = 'Service')
mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'poisson', dimLabels)
plot(mySampler,type='expected')
plotOptions = list(vertex.label.name=c('U','V'),vertex.size = c(1.4,1.3))
plot(mySampler, type='meso', plotOptions = plotOptions)
hist(mySampler$networkData)
### =======================================
### BIPARTITE GAUSSIAN SBM
## Graph parameters
nbNodes <- c(100, 120)
blockProp <- list(c(.5, .5), c(1/3, 1/3, 1/3)) # group proportions
means <- 20 * matrix(runif(6), 2, 3) # connectivity matrix
# In Gaussian SBM, parameters is a list with a matrix
# of means 'mean' and a matrix of variances 'var'
connectParam <- list(mean = means, var = 1)
## Graph Sampling
mySampler <- sampleBipartiteSBM(nbNodes, blockProp, connectParam, model = 'gaussian')
plot(mySampler)
hist(mySampler$networkData)
Sampling of Multipartite SBMs
Description
This function samples a Multipartite Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models
Usage
sampleMultipartiteSBM(
nbNodes,
blockProp,
archiMultipartite,
connectParam,
model,
directed,
dimLabels = NULL,
seed = NULL
)
Arguments
nbNodes |
number of nodes in each functional group involved in the multipartite network |
blockProp |
a list of parameters for block proportions in each functional group |
archiMultipartite |
a matrix with two columns and nbNetworks lines, each line specifying the index of the functional groups in interaction. |
connectParam |
list of parameters for connectivity (of length nbNetworks). Each element is a list of one or two elements: a matrix of means 'mean' and an optional matrix of variances 'var', the sizes of which must match |
model |
a vector of characters describing the model for each network of the Multipartite relation between nodes ( |
directed |
a vector of logical, directed network or not for each network. Default is |
dimLabels |
an optional list of labels for functional group involved in the network |
seed |
numeric to set the seed. |
Value
a list of two elements : simulatedMemberships
are the clustering of each node in each Functional Group,
multipartiteNetwork
is the list of the simulated networks (each one being a simple or bipartite network)
Examples
### =======================================
### MULTIPARTITE SBM : 4 networks between 3 Functional Groups
## Graph parameters
# About the Functional Groups (FG)
nbNodes <- c(100,50,40)
blockProp <- vector("list", 3) # parameters of clustering in each functional group
blockProp[[1]] <- c(0.4,0.3,0.3) # in Functional Group 1
blockProp[[2]] <- c(0.6,0.4) # in Functional Group 2
blockProp[[3]] <- c(0.6,0.4) # in Functional Group 3
# About the interactions between the FG
archiMultipartite <- rbind(c(1,2),c(2,3),c(2,2),c(1,3)) #
model <- c('bernoulli','poisson','gaussian','gaussian') # type of distribution in each network
# for each network : directed or not (not required for an interaction between two different FG)
directed <- c( NA, NA , FALSE , NA)
connectParam <- list()
connectParam[[1]] <- list(mean = matrix(c(0.3, 0.3, 0.5, 0.2, 0.6, 0.6),3,2))
connectParam[[2]] <- list(mean = matrix(c(1000 , 500, 400 , 950),2,2))
connectParam[[3]] <- list(mean = matrix(c(10, 0, -10, 20), 2,2), var = matrix(1,2,2))
connectParam[[4]] <- list(mean = matrix(c(3, 23 ,11 ,16 , 2 ,25), 3,2))
connectParam[[4]]$var <- matrix(c(10,20,1,5,0.1,10), 3,2)
dimLabels <- c('A','B','C')
## Graph Sampling
mySampleMBM <- sampleMultipartiteSBM(nbNodes, blockProp,
archiMultipartite,
connectParam, model, directed,
dimLabels,seed = 3)
listSBM <- mySampleMBM$listSBM
memberships <- mySampleMBM$memberships
plotMyMultipartiteMatrix(listSBM)
plotMyMultipartiteMatrix(listSBM,plotOptions = list(normalized = TRUE))
plotMyMultipartiteMatrix(listSBM,memberships = memberships,plotOptions = list(normalized = TRUE))
Sampling of Multiplex SBMs
Description
This function samples a Multiplex Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models
Usage
sampleMultiplexSBM(
nbNodes,
blockProp,
nbLayers,
connectParam,
model,
type = c("directed", "undirected", "bipartite"),
dependent = FALSE,
dimLabels = NULL,
seed = NULL
)
Arguments
nbNodes |
number of nodes in each functional group involved in the Multiplex network |
blockProp |
a vector for block proportion if the networks are simple, a list of parameters for block proportions for both functional groups if the networks are bipartite |
nbLayers |
a matrix with two columns and nbNetworks lines, each line specifying the index of the functional groups in interaction. |
connectParam |
list of parameters for connectivity (of length nbNetworks). Each element is a list of one or two elements: a matrix of means 'mean' and an optional matrix of variances 'var', the sizes of which must match |
model |
a vector of characters describing the model for each network of the Multiplex relation between nodes ( |
type |
a string of character indicating whether the networks are directed, undirected or bipartite |
dependent |
connection parameters in each network |
dimLabels |
an optional list of labels for functional group involved in the network |
seed |
numeric to set the seed. |
Value
a list of two elements : simulatedMemberships
are the clustering of each node in each Functional Group, MultiplexNetwork
is the list of the simulated networks (each one being a simple or bipartite network)
Examples
nbLayers <- 2
## MultiplexSBM without dependence between layers
Nnodes <- 40
blockProp <- c(.4,.6)
connectParam <- list(list(mean=matrix(rbeta(4,.5,.5),2,2)),list(mean=matrix(rexp(4,.5),2,2)))
model <- c("bernoulli","poisson")
type <- "directed"
mySampleMultiplexSBM <-
sampleMultiplexSBM(
nbNodes = Nnodes,
blockProp = blockProp,
nbLayers = nbLayers,
connectParam = connectParam,
model=model,
type=type)
listSBM <- mySampleMultiplexSBM$listSBM
## MultiplexSBM Gaussian with dependence
Q <- 3
nbLayers <- 2
connectParam <- list()
connectParam$mu <- vector("list",nbLayers)
connectParam$mu[[1]] <- matrix(.1,Q,Q) + diag(1:Q)
connectParam$mu[[2]] <- matrix(-2,Q,Q) + diag(rev(Q:1))
connectParam$Sigma <- matrix(c(2,1,1,4),nbLayers,nbLayers)
model <- rep("gaussian",2)
type <- "directed"
Nnodes <- 80
blockProp <- c(.3,.3,.4)
mySampleMultiplexSBM <-
sampleMultiplexSBM(
nbNodes = Nnodes,
blockProp = blockProp,
nbLayers = nbLayers,
connectParam = connectParam,
model=model,
type="undirected",
dependent=TRUE)
listSBM <- mySampleMultiplexSBM$listSBM
## MultiplexSBM Bernoulli with dependence
Q <- 2
P00<-matrix(runif(Q*Q),Q,Q)
P10<-matrix(runif(Q*Q),Q,Q)
P01<-matrix(runif(Q*Q),Q,Q)
P11<-matrix(runif(Q*Q),Q,Q)
SumP<-P00+P10+P01+P11
P00<-P00/SumP
P01<-P01/SumP
P10<-P10/SumP
P11<-P11/SumP
connectParam <- list()
connectParam$prob00 <- P00
connectParam$prob01 <- P01
connectParam$prob10 <- P10
connectParam$prob11 <- P11
model <- rep("bernoulli",2)
type <- "directed"
nbLayers <- 2
Nnodes <- 40
blockProp <- c(.6,.4)
mySampleMultiplexSBM <-
sampleMultiplexSBM(
nbNodes = Nnodes,
blockProp = blockProp,
nbLayers = nbLayers,
connectParam = connectParam,
model=model,
type=type,
dependent=TRUE)
listSBM_BB <- mySampleMultiplexSBM$listSBM
Sampling of Simple SBMs
Description
This function samples a simple Stochastic Block Models, with various model for the distribution of the edges: Bernoulli, Poisson, or Gaussian models, and possibly with covariates
Usage
sampleSimpleSBM(
nbNodes,
blockProp,
connectParam,
model = "bernoulli",
directed = FALSE,
dimLabels = c("node"),
covariates = list(),
covariatesParam = numeric(0)
)
Arguments
nbNodes |
number of nodes in the network |
blockProp |
parameters for block proportions |
connectParam |
list of parameters for connectivity with a matrix of means 'mean' and an optional matrix of variances 'var', the sizes of which must match |
model |
character describing the model for the relation between nodes ( |
directed |
logical, directed network or not. Default is |
dimLabels |
an optional list of labels for each dimension (in row, in column) |
covariates |
a list of matrices with same dimension as mat describing covariates at the edge level. No covariate per Default. |
covariatesParam |
optional vector of covariates effect. A zero length numeric vector by default. |
Value
an object with class SimpleSBM
Examples
### =======================================
### SIMPLE BINARY SBM (Bernoulli model)
## Graph parameters
nbNodes <- 90
blockProp <- c(.5, .25, .25) # group proportions
means <- diag(.4, 3) + 0.05 # connectivity matrix: affiliation network
# In Bernoulli SBM, parameters is a list with a
# matrix of means 'mean' which are probabilities of connection
connectParam <- list(mean = means)
## Graph Sampling
mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam, model = 'bernoulli')
plot(mySampler)
plot(mySampler)
plot(mySampler,type='meso')
hist(mySampler$networkData)
### =======================================
### SIMPLE POISSON SBM
## Graph parameters
nbNodes <- 90
blockProp <- c(.5, .25, .25) # group proportions
means <- diag(15., 3) + 5 # connectivity matrix: affiliation network
# In Poisson SBM, parameters is a list with
# a matrix of means 'mean' which are a mean integer value taken by edges
connectParam <- list(mean = means)
## Graph Sampling
mySampler <- sampleSimpleSBM(nbNodes, blockProp, list(mean = means), model = "poisson")
plot(mySampler)
plot(mySampler,type='meso')
hist(mySampler$networkData)
### =======================================
### SIMPLE GAUSSIAN SBM
## Graph parameters
nbNodes <- 90
blockProp <- c(.5, .25, .25) # group proportions
means <- diag(15., 3) + 5 # connectivity matrix: affiliation network
# In Gaussian SBM, parameters is a list with
# a matrix of means 'mean' and a matrix of variances 'var'
connectParam <- list(mean = means, var = 2)
## Graph Sampling
mySampler <- sampleSimpleSBM(nbNodes, blockProp, connectParam, model = "gaussian",dimLabels='Tree')
plot(mySampler)
plot(mySampler,type='meso')
hist(mySampler$networkData)
War data set
Description
This dataset contains two networks where the nodes are countries and an
edge in network "belligerent" means that the two countries have been at
least once at war between years 1816 to 2007 while an edge in network "alliance"
means that the two countries have had a formal alliance between years 1816 to 2012.
The network belligerent
have less nodes since countries which have not been at
war are not considered.
Usage
war
Format
A list with 2 two igraph objects, alliance
and belligerent
.
Each graph have three attributes: 'name' (the country name), 'power' (a score related to military power: the higher, the better) and
'trade' (a score related to the trade effort between pairs of countries).
Source
networks were extracted from https://correlatesofwar.org/
References
Sarkees, Meredith Reid and Frank Wayman (2010). Resort to War: 1816 - 2007. Washington DC: CQ Press.
Gibler, Douglas M. 2009. International military alliances, 1648-2008. CQ Press
Examples
data(war)
class(war$belligerent)
igraph::gorder(war$alliance)
igraph::gorder(war$belligerent)
igraph::edges(war$alliance)
igraph::get.graph.attribute(war$alliance)