
Package ‘workflowsets’
July 22, 2025

Title Create a Collection of 'tidymodels' Workflows

Version 1.1.1

Description A workflow is a combination of a model and preprocessors
(e.g, a formula, recipe, etc.) (Kuhn and Silge (2021)
<https://www.tmwr.org/>). In order to try different combinations of
these, an object can be created that contains many workflows. There
are functions to create workflows en masse as well as training them
and visualizing the results.

License MIT + file LICENSE

URL https://github.com/tidymodels/workflowsets,

https://workflowsets.tidymodels.org

BugReports https://github.com/tidymodels/workflowsets/issues

Depends R (>= 4.1)

Imports cli, dplyr (>= 1.0.0), generics (>= 0.1.2), ggplot2, hardhat
(>= 1.2.0), lifecycle (>= 1.0.0), parsnip (>= 1.2.1), pillar
(>= 1.7.0), prettyunits, purrr, rlang (>= 1.1.0), rsample (>=
0.0.9), stats, tibble (>= 3.1.0), tidyr, tune (>= 1.2.0),
vctrs, withr, workflows (>= 1.1.4)

Suggests covr, dials (>= 0.1.0), finetune, kknn, knitr, modeldata,
recipes (>= 1.1.0), rmarkdown, spelling, testthat (>= 3.0.0),
tidyclust, yardstick (>= 1.3.0)

VignetteBuilder knitr

Config/Needs/website discrim, rpart, mda, klaR, earth, tidymodels,
tidyverse/tidytemplate

Config/testthat/edition 3

Config/usethis/last-upkeep 2025-04-25

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.2

1

https://www.tmwr.org/
https://github.com/tidymodels/workflowsets
https://workflowsets.tidymodels.org
https://github.com/tidymodels/workflowsets/issues

2 as_workflow_set

NeedsCompilation no

Author Hannah Frick [aut, cre] (ORCID:
<https://orcid.org/0000-0002-6049-5258>),

Max Kuhn [aut] (ORCID: <https://orcid.org/0000-0003-2402-136X>),
Simon Couch [aut] (ORCID: <https://orcid.org/0000-0001-5676-5107>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Hannah Frick <hannah@posit.co>

Repository CRAN

Date/Publication 2025-05-27 23:20:01 UTC

Contents

as_workflow_set . 2
autoplot.workflow_set . 4
chi_features_set . 6
collect_metrics.workflow_set . 8
comment_add . 11
extract_workflow_set_result . 12
fit_best.workflow_set . 14
leave_var_out_formulas . 16
option_add . 17
option_list . 18
pull_workflow_set_result . 19
rank_results . 20
two_class_set . 21
update_workflow_model . 23
workflow_map . 24
workflow_set . 28

Index 31

as_workflow_set Convert existing objects to a workflow set

Description

Use existing objects to create a workflow set. A list of objects that are either simple workflows or
objects that have class "tune_results" can be converted into a workflow set.

Usage

as_workflow_set(...)

https://orcid.org/0000-0002-6049-5258
https://orcid.org/0000-0003-2402-136X
https://orcid.org/0000-0001-5676-5107
https://ror.org/03wc8by49

as_workflow_set 3

Arguments

... One or more named objects. Names should be unique and the objects should
have at least one of the following classes: workflow, iteration_results,
tune_results, resample_results, or tune_race. Each tune_results ele-
ment should also contain the original workflow (accomplished using the save_workflow
option in the control function).

Value

A workflow set. Note that the option column will not reflect the options that were used to create
each object.

Note

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

Examples

--
Existing results

Use the already worked example to show how to add tuned
objects to a workflow set
two_class_res

results <- two_class_res |> purrr::pluck("result")
names(results) <- two_class_res$wflow_id

These are all objects that have been resampled or tuned:
purrr::map_chr(results, \(x) class(x)[1])

Use rlang's !!! operator to splice in the elements of the list
new_set <- as_workflow_set(!!!results)

--
Make a set from unfit workflows

library(parsnip)
library(workflows)

4 autoplot.workflow_set

lr_spec <- logistic_reg()

main_effects <-
workflow() |>
add_model(lr_spec) |>
add_formula(Class ~ .)

interactions <-
workflow() |>
add_model(lr_spec) |>
add_formula(Class ~ (.)^2)

as_workflow_set(main = main_effects, int = interactions)

autoplot.workflow_set Plot the results of a workflow set

Description

This autoplot() method plots performance metrics that have been ranked using a metric. It can
also run autoplot() on the individual results (per wflow_id).

Usage

S3 method for class 'workflow_set'
autoplot(
object,
rank_metric = NULL,
metric = NULL,
id = "workflow_set",
select_best = FALSE,
std_errs = qnorm(0.95),
type = "class",
...

)

Arguments

object A workflow_set whose elements have results.

rank_metric A character string for which metric should be used to rank the results. If none
is given, the first metric in the metric set is used (after filtering by the metric
option).

metric A character vector for which metrics (apart from rank_metric) to be included
in the visualization.

id A character string for what to plot. If a value of "workflow_set" is used, the
results of each model (and sub-model) are ordered and plotted. Alternatively, a
value of the workflow set’s wflow_id can be given and the autoplot() method
is executed on that workflow’s results.

autoplot.workflow_set 5

select_best A logical; should the results only contain the numerically best submodel per
workflow?

std_errs The number of standard errors to plot (if the standard error exists).

type The aesthetics with which to differentiate workflows. The default "class" maps
color to the model type and shape to the preprocessor type. The "workflow"
option maps a color to each "wflow_id". This argument is ignored for values
of id other than "workflow_set".

... Other options to pass to autoplot().

Details

This function is intended to produce a default plot to visualize helpful information across all possible
applications of a workflow set. A more appropriate plot for your specific analysis can be created by
calling rank_results() and using standard ggplot2 code for plotting.

The x-axis is the workflow rank in the set (a value of one being the best) versus the performance
metric(s) on the y-axis. With multiple metrics, there will be facets for each metric.

If multiple resamples are used, confidence bounds are shown for each result (90% confidence, by
default).

Value

A ggplot object.

Note

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

Examples

autoplot(two_class_res)
autoplot(two_class_res, select_best = TRUE)
autoplot(two_class_res, id = "yj_trans_cart", metric = "roc_auc")

6 chi_features_set

chi_features_set Chicago Features Example Data

Description

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

Details

See below for the source code to generate the Chicago Features example workflow sets:

library(workflowsets)
library(workflows)
library(modeldata)
library(recipes)
library(parsnip)
library(dplyr)
library(rsample)
library(tune)
library(yardstick)
library(dials)

--
Slightly smaller data size
data(Chicago)
Chicago <- Chicago[1:1195,]

time_val_split <-
sliding_period(

Chicago,
date,
"month",
lookback = 38,
assess_stop = 1

)

chi_features_set 7

--

base_recipe <-
recipe(ridership ~ ., data = Chicago) |>
create date features
step_date(date) |>
step_holiday(date) |>
remove date from the list of predictors
update_role(date, new_role = "id") |>
create dummy variables from factor columns
step_dummy(all_nominal()) |>
remove any columns with a single unique value
step_zv(all_predictors()) |>
step_normalize(all_predictors())

date_only <-
recipe(ridership ~ ., data = Chicago) |>
create date features
step_date(date) |>
update_role(date, new_role = "id") |>
create dummy variables from factor columns
step_dummy(all_nominal()) |>
remove any columns with a single unique value
step_zv(all_predictors())

date_and_holidays <-
recipe(ridership ~ ., data = Chicago) |>
create date features
step_date(date) |>
step_holiday(date) |>
remove date from the list of predictors
update_role(date, new_role = "id") |>
create dummy variables from factor columns
step_dummy(all_nominal()) |>
remove any columns with a single unique value
step_zv(all_predictors())

date_and_holidays_and_pca <-
recipe(ridership ~ ., data = Chicago) |>
create date features
step_date(date) |>
step_holiday(date) |>
remove date from the list of predictors
update_role(date, new_role = "id") |>
create dummy variables from factor columns
step_dummy(all_nominal()) |>
remove any columns with a single unique value
step_zv(all_predictors()) |>

8 collect_metrics.workflow_set

step_pca(!!stations, num_comp = tune())

--

lm_spec <- linear_reg() |> set_engine("lm")

--

pca_param <-
parameters(num_comp()) |>
update(num_comp = num_comp(c(0, 20)))

--

chi_features_set <-
workflow_set(

preproc = list(date = date_only,
plus_holidays = date_and_holidays,
plus_pca = date_and_holidays_and_pca),

models = list(lm = lm_spec),
cross = TRUE

)

--

chi_features_res <-
chi_features_set |>
option_add(param_info = pca_param, id = "plus_pca_lm") |>
workflow_map(resamples = time_val_split, grid = 21, seed = 1, verbose = TRUE)

References

Max Kuhn and Kjell Johnson (2019) Feature Engineering and Selection, https://bookdown.org/
max/FES/a-more-complex-example.html

Examples

data(chi_features_set)

chi_features_set

collect_metrics.workflow_set

Obtain and format results produced by tuning functions for workflow
sets

https://bookdown.org/max/FES/a-more-complex-example.html
https://bookdown.org/max/FES/a-more-complex-example.html

collect_metrics.workflow_set 9

Description

Return a tibble of performance metrics for all models or submodels.

Usage

S3 method for class 'workflow_set'
collect_metrics(x, ..., summarize = TRUE)

S3 method for class 'workflow_set'
collect_predictions(
x,
...,
summarize = TRUE,
parameters = NULL,
select_best = FALSE,
metric = NULL

)

S3 method for class 'workflow_set'
collect_notes(x, ...)

S3 method for class 'workflow_set'
collect_extracts(x, ...)

Arguments

x A workflow_set object that has been evaluated with workflow_map().
... Not currently used.
summarize A logical for whether the performance estimates should be summarized via the

mean (over resamples) or the raw performance values (per resample) should
be returned along with the resampling identifiers. When collecting predictions,
these are averaged if multiple assessment sets contain the same row.

parameters An optional tibble of tuning parameter values that can be used to filter the pre-
dicted values before processing. This tibble should only have columns for each
tuning parameter identifier (e.g. "my_param" if tune("my_param") was used).

select_best A single logical for whether the numerically best results are retained. If TRUE,
the parameters argument is ignored.

metric A character string for the metric that is used for select_best.

Details

When applied to a workflow set, the metrics and predictions that are returned do not contain the
actual tuning parameter columns and values (unlike when these collect functions are run on other
objects). The reason is that workflow sets can contain different types of models or models with
different tuning parameters.

If the columns are needed, there are two options. First, the .config column can be used to merge
the tuning parameter columns into an appropriate object. Alternatively, the map() function can be
used to get the metrics from the original objects (see the example below).

10 collect_metrics.workflow_set

Value

A tibble.

Note

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

See Also

tune::collect_metrics(), rank_results()

Examples

library(dplyr)
library(purrr)
library(tidyr)

two_class_res

--

collect_metrics(two_class_res)

Alternatively, if the tuning parameter values are needed:
two_class_res |>

dplyr::filter(grepl("cart", wflow_id)) |>
mutate(metrics = map(result, collect_metrics)) |>
dplyr::select(wflow_id, metrics) |>
tidyr::unnest(cols = metrics)

collect_metrics(two_class_res, summarize = FALSE)

comment_add 11

comment_add Add annotations and comments for workflows

Description

comment_add() can be used to log important information about the workflow or its results as you
work. Comments can be appended or removed.

Usage

comment_add(x, id, ..., append = TRUE, collapse = "\n")

comment_get(x, id)

comment_reset(x, id)

comment_print(x, id = NULL, ...)

Arguments

x A workflow set outputted by workflow_set() or workflow_map().

id A single character string for a value in the wflow_id column. For comment_print(),
id can be a vector or NULL (and this indicates that all comments are printed).

... One or more character strings.

append A logical value to determine if the new comment should be added to the existing
values.

collapse A character string that separates the comments.

Value

comment_add() and comment_reset() return an updated workflow set. comment_get() returns a
character string. comment_print() returns NULL invisibly.

Examples

two_class_set

two_class_set |> comment_get("none_cart")

new_set <-
two_class_set |>
comment_add("none_cart", "What does 'cart' stand for\u2753") |>
comment_add("none_cart", "Classification And Regression Trees.")

comment_print(new_set)

new_set |> comment_get("none_cart")

12 extract_workflow_set_result

new_set |>
comment_reset("none_cart") |>
comment_get("none_cart")

extract_workflow_set_result

Extract elements of workflow sets

Description

These functions extract various elements from a workflow set object. If they do not exist yet, an
error is thrown.

• extract_preprocessor() returns the formula, recipe, or variable expressions used for pre-
processing.

• extract_spec_parsnip() returns the parsnip model specification.

• extract_fit_parsnip() returns the parsnip model fit object.

• extract_fit_engine() returns the engine specific fit embedded within a parsnip model fit.
For example, when using parsnip::linear_reg() with the "lm" engine, this returns the
underlying lm object.

• extract_mold() returns the preprocessed "mold" object returned from hardhat::mold(). It
contains information about the preprocessing, including either the prepped recipe, the formula
terms object, or variable selectors.

• extract_recipe() returns the recipe. The estimated argument specifies whether the fitted
or original recipe is returned.

• extract_workflow_set_result() returns the results of workflow_map() for a particular
workflow.

• extract_workflow() returns the workflow object. The workflow will not have been esti-
mated.

• extract_parameter_set_dials() returns the parameter set that will be used to fit the sup-
plied row id of the workflow set. Note that workflow sets reference a parameter set associated
with the workflow contained in the info column by default, but can be fitted with a modified
parameter set via the option_add() interface. This extractor returns the latter, if it exists,
and returns the former if not, mirroring the process that workflow_map() follows to provide
tuning functions a parameter set.

• extract_parameter_dials() returns the parameters object that will be used to fit the sup-
plied tuning parameter in the supplied row id of the workflow set. See the above notes in
extract_parameter_set_dials() on precedence.

extract_workflow_set_result 13

Usage

extract_workflow_set_result(x, id, ...)

S3 method for class 'workflow_set'
extract_workflow(x, id, ...)

S3 method for class 'workflow_set'
extract_spec_parsnip(x, id, ...)

S3 method for class 'workflow_set'
extract_recipe(x, id, ..., estimated = TRUE)

S3 method for class 'workflow_set'
extract_fit_parsnip(x, id, ...)

S3 method for class 'workflow_set'
extract_fit_engine(x, id, ...)

S3 method for class 'workflow_set'
extract_mold(x, id, ...)

S3 method for class 'workflow_set'
extract_preprocessor(x, id, ...)

S3 method for class 'workflow_set'
extract_parameter_set_dials(x, id, ...)

S3 method for class 'workflow_set'
extract_parameter_dials(x, id, parameter, ...)

Arguments

x A workflow set outputted by workflow_set() or workflow_map().

id A single character string for a workflow ID.

... Other options (not currently used).

estimated A logical for whether the original (unfit) recipe or the fitted recipe should be
returned.

parameter A single string for the parameter ID.

Details

These functions supersede the pull_*() functions (e.g., extract_workflow_set_result()).

Value

The extracted value from the object, x, as described in the description section.

14 fit_best.workflow_set

Note

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

Examples

library(tune)

two_class_res

extract_workflow_set_result(two_class_res, "none_cart")

extract_workflow(two_class_res, "none_cart")

fit_best.workflow_set Fit a model to the numerically optimal configuration

Description

fit_best() takes results from tuning many models and fits the workflow configuration associated
with the best performance to the training set.

Usage

S3 method for class 'workflow_set'
fit_best(x, metric = NULL, eval_time = NULL, ...)

Arguments

x A workflow_set object that has been evaluated with workflow_map(). Note
that the workflow set must have been fitted with the control option save_workflow
= TRUE.

metric A character string giving the metric to rank results by.
eval_time A single numeric time point where dynamic event time metrics should be chosen

(e.g., the time-dependent ROC curve, etc). The values should be consistent with
the values used to create x. The NULL default will automatically use the first
evaluation time used by x.

... Additional options to pass to tune::fit_best.

fit_best.workflow_set 15

Details

This function is a shortcut for the steps needed to fit the numerically optimal configuration in a fitted
workflow set. The function ranks results, extracts the tuning result pertaining to the best result, and
then again calls fit_best() (itself a wrapper) on the tuning result containing the best result.

In pseudocode:

rankings <- rank_results(wf_set, metric, select_best = TRUE)
tune_res <- extract_workflow_set_result(wf_set, rankings$wflow_id[1])
fit_best(tune_res, metric)

Note

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

Examples

library(tune)
library(modeldata)
library(rsample)

data(Chicago)
Chicago <- Chicago[1:1195,]

time_val_split <-
sliding_period(
Chicago,
date,
"month",
lookback = 38,
assess_stop = 1

)

chi_features_set

chi_features_res_new <-
chi_features_set |>
note: must set `save_workflow = TRUE` to use `fit_best()`
option_add(control = control_grid(save_workflow = TRUE)) |>
evaluate with resamples

16 leave_var_out_formulas

workflow_map(resamples = time_val_split, grid = 21, seed = 1, verbose = TRUE)

chi_features_res_new

sort models by performance metrics
rank_results(chi_features_res_new)

fit the numerically optimal configuration to the training set
chi_features_wf <- fit_best(chi_features_res_new)

chi_features_wf

to select optimal value based on a specific metric:
fit_best(chi_features_res_new, metric = "rmse")

leave_var_out_formulas

Create formulas without each predictor

Description

From an initial model formula, create a list of formulas that exclude each predictor.

Usage

leave_var_out_formulas(formula, data, full_model = TRUE, ...)

Arguments

formula A model formula that contains at least two predictors.

data A data frame.

full_model A logical; should the list include the original formula?

... Options to pass to stats::model.frame()

Details

The new formulas obey the hierarchy rule so that interactions without main effects are not included
(unless the original formula contains such terms).

Factor predictors are left as-is (i.e., no indicator variables are created).

Value

A named list of formulas

See Also

workflow_set()

option_add 17

Examples

data(penguins, package = "modeldata")

leave_var_out_formulas(
bill_length_mm ~ .,
data = penguins

)

leave_var_out_formulas(
bill_length_mm ~ (island + sex)^2 + flipper_length_mm,
data = penguins

)

leave_var_out_formulas(
bill_length_mm ~ (island + sex)^2 + flipper_length_mm +
I(flipper_length_mm^2),

data = penguins
)

option_add Add and edit options saved in a workflow set

Description

The option column controls options for the functions that are used to evaluate the workflow set,
such as tune::fit_resamples() or tune::tune_grid(). Examples of common options to set for
these functions include param_info and grid.

These functions are helpful for manipulating the information in the option column.

Usage

option_add(x, ..., id = NULL, strict = FALSE)

option_remove(x, ...)

option_add_parameters(x, id = NULL, strict = FALSE)

Arguments

x A workflow set outputted by workflow_set() or workflow_map().

... Arguments to pass to the tune_*() functions (e.g. tune::tune_grid()) or
tune::fit_resamples(). For option_remove() this can be a series of un-
quoted option names.

id A character string of one or more values from the wflow_id column that indi-
cates which options to update. By default, all workflows are updated.

strict A logical; should execution stop if existing options are being replaced?

18 option_list

Details

option_add() is used to update all of the options in a workflow set.

option_remove() will eliminate specific options across rows.

option_add_parameters() adds a parameter object to the option column (if parameters are being
tuned).

Note that executing a function on the workflow set, such as tune_grid(), will add any options
given to that function to the option column.

These functions do not control options for the individual workflows, such as the recipe blueprint.
When creating a workflow manually, use workflows::add_model() or workflows::add_recipe()
to specify extra options. To alter these in a workflow set, use update_workflow_model() or
update_workflow_recipe().

Value

An updated workflow set.

Examples

library(tune)

two_class_set

two_class_set |>
option_add(grid = 10)

two_class_set |>
option_add(grid = 10) |>
option_add(grid = 50, id = "none_cart")

two_class_set |>
option_add_parameters()

option_list Make a classed list of options

Description

This function returns a named list with an extra class of "workflow_set_options" that has corre-
sponding formatting methods for printing inside of tibbles.

Usage

option_list(...)

Arguments

... A set of named options (or nothing)

pull_workflow_set_result 19

Value

A classed list.

Examples

option_list(a = 1, b = 2)
option_list()

pull_workflow_set_result

Extract elements from a workflow set

Description

[Deprecated]

Usage

pull_workflow_set_result(x, id)

pull_workflow(x, id)

Arguments

x A workflow set outputted by workflow_set() or workflow_map().

id A single character string for a workflow ID.

Details

pull_workflow_set_result() retrieves the results of workflow_map() for a particular workflow
while pull_workflow() extracts the unfitted workflow from the info column.

The extract_workflow_set_result() and extract_workflow() functions should be used in-
stead of these functions.

Value

pull_workflow_set_result() produces a tune_result or resample_results object. pull_workflow()
returns an unfit workflow object.

20 rank_results

rank_results Rank the results by a metric

Description

This function sorts the results by a specific performance metric.

Usage

rank_results(x, rank_metric = NULL, eval_time = NULL, select_best = FALSE)

Arguments

x A workflow_set object that has been evaluated with workflow_map().

rank_metric A character string for a metric.

eval_time A single numeric time point where dynamic event time metrics should be chosen
(e.g., the time-dependent ROC curve, etc). The values should be consistent with
the values used to create x. The NULL default will automatically use the first
evaluation time used by x.

select_best A logical giving whether the results should only contain the numerically best
submodel per workflow.

Details

If some models have the exact same performance, rank(value, ties.method = "random") is used
(with a reproducible seed) so that all ranks are integers.

No columns are returned for the tuning parameters since they are likely to be different (or not exist)
for some models. The wflow_id and .config columns can be used to determine the corresponding
parameter values.

Value

A tibble with columns: wflow_id, .config, .metric, mean, std_err, n, preprocessor, model,
and rank.

Note

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence

two_class_set 21

of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

Examples

chi_features_res

rank_results(chi_features_res)
rank_results(chi_features_res, select_best = TRUE)
rank_results(chi_features_res, rank_metric = "rsq")

two_class_set Two Class Example Data

Description

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

Details

See below for the source code to generate the Two Class example workflow sets:

library(workflowsets)
library(workflows)
library(modeldata)
library(recipes)
library(parsnip)
library(dplyr)
library(rsample)
library(tune)
library(yardstick)

--

data(two_class_dat, package = "modeldata")

set.seed(1)

22 two_class_set

folds <- vfold_cv(two_class_dat, v = 5)

--

decision_tree_rpart_spec <-
decision_tree(min_n = tune(), cost_complexity = tune()) |>
set_engine('rpart') |>
set_mode('classification')

logistic_reg_glm_spec <-
logistic_reg() |>
set_engine('glm')

mars_earth_spec <-
mars(prod_degree = tune()) |>
set_engine('earth') |>
set_mode('classification')

--

yj_recipe <-
recipe(Class ~ ., data = two_class_dat) |>
step_YeoJohnson(A, B)

--

two_class_set <-
workflow_set(

preproc = list(none = Class ~ A + B, yj_trans = yj_recipe),
models = list(cart = decision_tree_rpart_spec, glm = logistic_reg_glm_spec,

mars = mars_earth_spec)
)

--

two_class_res <-
two_class_set |>
workflow_map(
resamples = folds,
grid = 10,
seed = 2,
verbose = TRUE,
control = control_grid(save_workflow = TRUE)

)

Examples

data(two_class_set)

update_workflow_model 23

two_class_set

update_workflow_model Update components of a workflow within a workflow set

Description

Workflows can take special arguments for the recipe (e.g. a blueprint) or a model (e.g. a special for-
mula). However, when creating a workflow set, there is no way to specify these extra components.

update_workflow_model() and update_workflow_recipe() allow users to set these values af-
ter the workflow set is initially created. They are analogous to workflows::add_model() or
workflows::add_recipe().

Usage

update_workflow_model(x, id, spec, formula = NULL)

update_workflow_recipe(x, id, recipe, blueprint = NULL)

Arguments

x A workflow set outputted by workflow_set() or workflow_map().

id A single character string from the wflow_id column indicating which workflow
to update.

spec A parsnip model specification.

formula An optional formula override to specify the terms of the model. Typically, the
terms are extracted from the formula or recipe preprocessing methods. How-
ever, some models (like survival and bayesian models) use the formula not to
preprocess, but to specify the structure of the model. In those cases, a formula
specifying the model structure must be passed unchanged into the model call
itself. This argument is used for those purposes.

recipe A recipe created using recipes::recipe(). The recipe should not have been
trained already with recipes::prep(); workflows will handle training inter-
nally.

blueprint A hardhat blueprint used for fine tuning the preprocessing.
If NULL, hardhat::default_recipe_blueprint() is used.
Note that preprocessing done here is separate from preprocessing that might be
done automatically by the underlying model.

Note

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe

24 workflow_map

utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

Examples

library(parsnip)

new_mod <-
decision_tree() |>
set_engine("rpart", method = "anova") |>
set_mode("classification")

new_set <- update_workflow_model(two_class_res, "none_cart", spec = new_mod)

new_set

extract_workflow(new_set, id = "none_cart")

workflow_map Process a series of workflows

Description

workflow_map() will execute the same function across the workflows in the set. The various
tune_*() functions can be used as well as tune::fit_resamples().

Usage

workflow_map(
object,
fn = "tune_grid",
verbose = FALSE,
seed = sample.int(10^4, 1),
...

)

Arguments

object A workflow set.

fn The name of the function to run, as a character. Acceptable values are: "tune_grid",
"tune_bayes", "fit_resamples", "tune_race_anova", "tune_race_win_loss", or "tune_sim_anneal".
Note that users need not provide the namespace or parentheses in this argument,
e.g. provide "tune_grid" rather than "tune::tune_grid" or "tune_grid()".

workflow_map 25

verbose A logical for logging progress.

seed A single integer that is set prior to each function execution.

... Options to pass to the modeling function. See details below.

Details

When passing options, anything passed in the ... will be combined with any values in the option
column. The values in ... will override that column’s values and the new options are added to the
options column.

Any failures in execution result in the corresponding row of results to contain a try-error object.

In cases where a model has no tuning parameters is mapped to one of the tuning functions, tune::fit_resamples()
will be used instead and a warning is issued if verbose = TRUE.

If a workflow requires packages that are not installed, a message is printed and workflow_map()
continues with the next workflow (if any).

Value

An updated workflow set. The option column will be updated with any options for the tune
package functions given to workflow_map(). Also, the results will be added to the result column.
If the computations for a workflow fail, a try-catch object will be saved in place of the results
(without stopping execution).

Note

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

See Also

workflow_set(), as_workflow_set(), extract_workflow_set_result()

Examples

library(workflowsets)
library(workflows)
library(modeldata)
library(recipes)
library(parsnip)
library(dplyr)

26 workflow_map

library(rsample)
library(tune)
library(yardstick)
library(dials)

An example of processed results
chi_features_res

Recreating them:

data(Chicago)
Chicago <- Chicago[1:1195,]

time_val_split <-
sliding_period(
Chicago,
date,
"month",
lookback = 38,
assess_stop = 1

)

base_recipe <-
recipe(ridership ~ ., data = Chicago) |>
create date features
step_date(date) |>
step_holiday(date) |>
remove date from the list of predictors
update_role(date, new_role = "id") |>
create dummy variables from factor columns
step_dummy(all_nominal()) |>
remove any columns with a single unique value
step_zv(all_predictors()) |>
step_normalize(all_predictors())

date_only <-
recipe(ridership ~ ., data = Chicago) |>
create date features
step_date(date) |>
update_role(date, new_role = "id") |>
create dummy variables from factor columns
step_dummy(all_nominal()) |>
remove any columns with a single unique value
step_zv(all_predictors())

date_and_holidays <-
recipe(ridership ~ ., data = Chicago) |>
create date features
step_date(date) |>
step_holiday(date) |>

workflow_map 27

remove date from the list of predictors
update_role(date, new_role = "id") |>
create dummy variables from factor columns
step_dummy(all_nominal()) |>
remove any columns with a single unique value
step_zv(all_predictors())

date_and_holidays_and_pca <-
recipe(ridership ~ ., data = Chicago) |>
create date features
step_date(date) |>
step_holiday(date) |>
remove date from the list of predictors
update_role(date, new_role = "id") |>
create dummy variables from factor columns
step_dummy(all_nominal()) |>
remove any columns with a single unique value
step_zv(all_predictors()) |>
step_pca(!!stations, num_comp = tune())

lm_spec <- linear_reg() |> set_engine("lm")

pca_param <-
parameters(num_comp()) |>
update(num_comp = num_comp(c(0, 20)))

chi_features_set <-
workflow_set(

preproc = list(
date = date_only,
plus_holidays = date_and_holidays,
plus_pca = date_and_holidays_and_pca

),
models = list(lm = lm_spec),
cross = TRUE

)

chi_features_res_new <-
chi_features_set |>
option_add(param_info = pca_param, id = "plus_pca_lm") |>
workflow_map(resamples = time_val_split, grid = 21, seed = 1, verbose = TRUE)

chi_features_res_new

28 workflow_set

workflow_set Generate a set of workflow objects from preprocessing and model ob-
jects

Description

Often a data practitioner needs to consider a large number of possible modeling approaches for a
task at hand, especially for new data sets and/or when there is little knowledge about what modeling
strategy will work best. Workflow sets provide an expressive interface for investigating multiple
models or feature engineering strategies in such a situation.

Usage

workflow_set(preproc, models, cross = TRUE, case_weights = NULL)

Arguments

preproc A list (preferably named) with preprocessing objects: formulas, recipes, or
workflows::workflow_variables().

models A list (preferably named) of parsnip model specifications.

cross A logical: should all combinations of the preprocessors and models be used to
create the workflows? If FALSE, the length of preproc and models should be
equal.

case_weights A single unquoted column name specifying the case weights for the models.
This must be a classed case weights column, as determined by hardhat::is_case_weights().
See the "Case weights" section below for more information.

Details

The preprocessors that can be combined with the model objects can be one or more of:

• A traditional R formula.

• A recipe definition (un-prepared) via recipes::recipe().

• A selectors object created by workflows::workflow_variables().

Since preproc is a named list column, any combination of these can be used in that argument (i.e.,
preproc can be mixed types).

Value

A tibble with extra class ’workflow_set’. A new set includes four columns (but others can be added):

• wflow_id contains character strings for the preprocessor/workflow combination. These can
be changed but must be unique.

• info is a list column with tibbles containing more specific information, including any com-
ments added using comment_add(). This tibble also contains the workflow object (which can
be easily retrieved using extract_workflow()).

workflow_set 29

• option is a list column that will include a list of optional arguments passed to the functions
from the tune package. They can be added manually via option_add() or automatically
when options are passed to workflow_map().

• result is a list column that will contain any objects produced when workflow_map() is used.

Case weights

The case_weights argument can be passed as a single unquoted column name identifying the data
column giving model case weights. For each workflow in the workflow set using an engine that
supports case weights, the case weights will be added with workflows::add_case_weights().
workflow_set() will warn if any of the workflows specify an engine that does not support case
weights—and ignore the case weights argument for those workflows—but will not fail.

Read more about case weights in the tidymodels at ?parsnip::case_weights.

Note

The package supplies two pre-generated workflow sets, two_class_set and chi_features_set,
and associated sets of model fits two_class_res and chi_features_res.

The two_class_* objects are based on a binary classification problem using the two_class_dat
data from the modeldata package. The six models utilize either a bare formula or a basic recipe
utilizing recipes::step_YeoJohnson() as a preprocessor, and a decision tree, logistic regression,
or MARS model specification. See ?two_class_set for source code.

The chi_features_* objects are based on a regression problem using the Chicago data from the
modeldata package. Each of the three models utilize a linear regression model specification, with
three different recipes of varying complexity. The objects are meant to approximate the sequence
of models built in Section 1.3 of Kuhn and Johnson (2019). See ?chi_features_set for source
code.

See Also

workflow_map(), comment_add(), option_add(), as_workflow_set()

Examples

library(workflowsets)
library(workflows)
library(modeldata)
library(recipes)
library(parsnip)
library(dplyr)
library(rsample)
library(tune)
library(yardstick)

--

data(cells)
cells <- cells |> dplyr::select(-case)

30 workflow_set

set.seed(1)
val_set <- validation_split(cells)

--

basic_recipe <-
recipe(class ~ ., data = cells) |>
step_YeoJohnson(all_predictors()) |>
step_normalize(all_predictors())

pca_recipe <-
basic_recipe |>
step_pca(all_predictors(), num_comp = tune())

ss_recipe <-
basic_recipe |>
step_spatialsign(all_predictors())

--

knn_mod <-
nearest_neighbor(neighbors = tune(), weight_func = tune()) |>
set_engine("kknn") |>
set_mode("classification")

lr_mod <-
logistic_reg() |>
set_engine("glm")

--

preproc <- list(none = basic_recipe, pca = pca_recipe, sp_sign = ss_recipe)
models <- list(knn = knn_mod, logistic = lr_mod)

cell_set <- workflow_set(preproc, models, cross = TRUE)
cell_set

--
Using variables and formulas

Select predictors by their names
channels <- paste0("ch_", 1:4)
preproc <- purrr::map(channels, \(.x) workflow_variables(class, c(contains(!!.x))))
names(preproc) <- channels
preproc$everything <- class ~ .
preproc

cell_set_by_group <- workflow_set(preproc, models["logistic"])
cell_set_by_group

Index

∗ datasets
chi_features_set, 6
two_class_set, 21

as_workflow_set, 2
as_workflow_set(), 25, 29
autoplot.workflow_set, 4

chi_features_res (chi_features_set), 6
chi_features_set, 6
collect_extracts.workflow_set

(collect_metrics.workflow_set),
8

collect_metrics.workflow_set, 8
collect_notes.workflow_set

(collect_metrics.workflow_set),
8

collect_predictions.workflow_set
(collect_metrics.workflow_set),
8

comment_add, 11
comment_add(), 28, 29
comment_get (comment_add), 11
comment_print (comment_add), 11
comment_reset (comment_add), 11
control option, 14

extract_fit_engine.workflow_set
(extract_workflow_set_result),
12

extract_fit_parsnip.workflow_set
(extract_workflow_set_result),
12

extract_mold.workflow_set
(extract_workflow_set_result),
12

extract_parameter_dials.workflow_set
(extract_workflow_set_result),
12

extract_parameter_set_dials.workflow_set
(extract_workflow_set_result),
12

extract_preprocessor.workflow_set
(extract_workflow_set_result),
12

extract_recipe.workflow_set
(extract_workflow_set_result),
12

extract_spec_parsnip.workflow_set
(extract_workflow_set_result),
12

extract_workflow(), 19, 28
extract_workflow.workflow_set

(extract_workflow_set_result),
12

extract_workflow_set_result, 12
extract_workflow_set_result(), 13, 19,

25

fit_best.workflow_set, 14

hardhat::default_recipe_blueprint(),
23

hardhat::is_case_weights(), 28
hardhat::mold(), 12

leave_var_out_formulas, 16

option_add, 17
option_add(), 12, 29
option_add_parameters (option_add), 17
option_list, 18
option_remove (option_add), 17

parsnip::linear_reg(), 12
pull_workflow

(pull_workflow_set_result), 19
pull_workflow_set_result, 19

rank_results, 20

31

32 INDEX

rank_results(), 5, 10
recipes::prep(), 23
recipes::recipe(), 23, 28

stats::model.frame(), 16

tune::collect_metrics(), 10
tune::fit_best, 14
tune::fit_resamples(), 17, 24, 25
tune::tune_grid(), 17
two_class_res (two_class_set), 21
two_class_set, 21

update_workflow_model, 23
update_workflow_model(), 18
update_workflow_recipe

(update_workflow_model), 23
update_workflow_recipe(), 18

workflow_map, 24
workflow_map(), 9, 11–14, 17, 19, 20, 23, 29
workflow_set, 9, 14, 20, 28
workflow_set(), 11, 13, 16, 17, 19, 23, 25
workflows::add_case_weights(), 29
workflows::add_model(), 18, 23
workflows::add_recipe(), 18, 23
workflows::workflow_variables(), 28

	as_workflow_set
	autoplot.workflow_set
	chi_features_set
	collect_metrics.workflow_set
	comment_add
	extract_workflow_set_result
	fit_best.workflow_set
	leave_var_out_formulas
	option_add
	option_list
	pull_workflow_set_result
	rank_results
	two_class_set
	update_workflow_model
	workflow_map
	workflow_set
	Index

