Package 'tornado'

July 22, 2025

Title Plots for Model Sensitivity and Variable Importance

Version 0.1.3

Description Draws tornado plots for model sensitivity to univariate changes. Implements methods for many modeling methods including linear models, generalized linear models, survival regression models, and arbitrary machine learning models in the caret package. Also draws variable importance plots.

License GPL-3

Encoding UTF-8

Suggests testthat, caret, glmnet, randomForest, knitr, rmarkdown

RoxygenNote 7.3.0

Imports survival, assertthat, ggplot2, scales, grid, gridExtra, rlang

VignetteBuilder knitr

URL https://github.com/bertcarnell/tornado

BugReports https://github.com/bertcarnell/tornado/issues

NeedsCompilation no Author Rob Carnell [aut, cre] Maintainer Rob Carnell <bertcarnell@gmail.com> Repository CRAN Date/Publication 2024-01-21 17:30:02 UTC

Contents

mportance	2
mportance.cv.glmnet	3
mportance.glm	4
mportance.lm	5
mportance.survreg	6
mportance.train	7
plot.importance_plot	8
olot.tornado_plot	9

importance

print.importance_plot	. 10
print.tornado_plot	. 10
quantile.ordered	. 11
tornado	. 11
tornado.coxph	. 12
tornado.cv.glmnet	. 13
tornado.glm	. 15
tornado.lm	. 16
tornado.survreg	. 17
tornado.train	. 18
	20

Index

importance

Generic Importance Plot

Description

Generic Importance Plot

Usage

importance(model_final, ...)

Arguments

model_final	a model object
	arguments passed to other methods

Value

an object of type importance_plot

type	the type of importance plot
data	the importance data required for the plot

See Also

importance.glm importance.lm importance.cv.glmnet importance.survreg

importance.cv.glmnet Plot Variable Importance for a GLMNET model

Description

Plot Variable Importance for a GLMNET model

Usage

```
## S3 method for class 'cv.glmnet'
importance(model_final, model_data, form, dict = NA, nperm = 500, ...)
```

Arguments

model_final	a model object
model_data	the data used to fit the model
form	the model formula
dict	a variable dictionary for plotting
nperm	the number of permutations used to calculate the importance
	arguments passed to other methods

Value

an object of type importance_plot

type	the type of importance plot
data	the importance data required for the plot

See Also

importance

```
if (requireNamespace("glmnet", quietly = TRUE))
{
   form <- formula(mpg ~ cyl*wt*hp)
   mf <- model.frame(form, data = mtcars)
   mm <- model.matrix(mf, mf)
   gtest <- glmnet::cv.glmnet(x = mm, y = mtcars$mpg, family = "gaussian")
   imp <- importance(gtest, mtcars, form, nperm = 50)
   plot(imp)
}</pre>
```

importance.glm

Description

GLM variable importance plot

Usage

```
## S3 method for class 'glm'
importance(model_final, model_null, dict = NA, ...)
```

Arguments

model_final	a model object
<pre>model_null</pre>	a glm object for the null model
dict	a dictionary to translate the model variables to plotting variables
	arguments passed to other methods

Value

an object of type importance_plot

type	the type of importance plot
data	the importance data required for the plot

See Also

importance

```
gtest <- glm(mpg ~ cyl*wt*hp + gear + carb, data=mtcars, family=gaussian)
gtestreduced <- glm(mpg ~ 1, data=mtcars, family=gaussian)
imp <- importance(gtest, gtestreduced)
plot(imp)
gtest <- glm(mpg ~ cyl + wt + hp + gear + carb, data=mtcars, family=gaussian)
gtestreduced <- glm(mpg ~ 1, data=mtcars, family=gaussian)
imp <- importance(gtest, gtestreduced)</pre>
```

```
plot(imp)
```

```
gtest <- glm(vs ~ wt + disp + gear, data=mtcars, family=binomial(link="logit"))
gtestreduced <- glm(vs ~ 1, data=mtcars, family=binomial(link="logit"))
imp <- importance(gtest, gtestreduced)
plot(imp)</pre>
```

importance.lm

Description

Linear Model variable importance plot

Usage

```
## S3 method for class 'lm'
importance(model_final, model_null, dict = NA, ...)
```

Arguments

<pre>model_final</pre>	a model object
model_null	a 1m object for the null model
dict	a dictionary to translate the model variables to plotting variables
	arguments passed to other methods

Value

an object of type importance_plot

type	the type of importance plot
data	the importance data required for the plot

See Also

importance

```
gtest <- lm(mpg ~ cyl*wt*hp + gear + carb, data=mtcars)
gtestreduced <- lm(mpg ~ 1, data=mtcars)
imp <- importance(gtest, gtestreduced)
plot(imp)
gtest <- lm(mpg ~ cyl + wt + hp + gear + carb, data=mtcars)
gtestreduced <- lm(mpg ~ 1, data=mtcars)
imp <- importance(gtest, gtestreduced)
plot(imp)</pre>
```

importance.survreg Create a variable importance plot for a survreg model

Description

Create a variable importance plot for a survreg model

Usage

```
## S3 method for class 'survreg'
importance(model_final, model_data, dict = NA, nperm = 500, ...)
```

Arguments

model_final	a model object
model_data	the data used to fit the model
dict	a plotting dictionary for models terms
nperm	the number of permutations used to calculate the importance
	arguments passed to other methods

Value

an object of type importance_plot

type	the type of importance plot
data	the importance data required for the plot

See Also

importance

importance.train Importance Plot for the caret::train objects

Description

Importance Plot for the caret::train objects

Usage

```
## S3 method for class 'train'
importance(model_final, ...)
```

Arguments

model_final	a model object
	arguments passed to other methods

Value

an object of type importance_plot

type	the type of importance plot
data	the importance data required for the plot

See Also

importance

```
if (requireNamespace("caret", quietly = TRUE) &
    requireNamespace("randomForest", quietly = TRUE))
{
    model_final <- caret::train(x = subset(mtcars, select = -mpg), y = mtcars$mpg, method = "rf")
    imp <- importance(model_final)
    plot(imp)
}</pre>
```

Description

Plot an Importance Plot object

Usage

```
## S3 method for class 'importance_plot'
plot(
    x,
    plot = TRUE,
    nvar = NA,
    col_imp_alone = "#69BE28",
    col_imp_cumulative = "#427730",
    geom_bar_control = list(fill = "#69BE28"),
    ...
)
```

Arguments

Х	a importance_plot object
plot	boolean to determine if the plot is displayed, or just returned
nvar	the number of variables to plot in order of importance
col_imp_alone	the color used for the variance explained by each variable alone
col_imp_cumulat	ive
	the color used for the cumulative variance explained
<pre>geom_bar_contro</pre>	1
	list of arguments to control the plotting of ggplot2::geom_bar
	future arguments

Value

the plot

plot.tornado_plot Plot a Tornado Plot object

Description

Plot a Tornado Plot object

Usage

```
## S3 method for class 'tornado_plot'
plot(
    x,
    plot = TRUE,
    nvar = NA,
    xlabel = "Model Response",
    sensitivity_colors = c("grey", "#69BE28"),
    geom_bar_control = list(width = NULL),
    geom_point_control = list(fill = "black", col = "black"),
    ...
)
```

Arguments

	х	a tornado_plot object
	plot	boolean to determine if the plot is displayed, or just returned
	nvar	the number of variables to plot
	<pre>xlabel sensitivity_col</pre>	a label for the x-axis ors
		a two element character vector of the bar colors for a lower value and upper value
	geom_bar_contro	1
		a list of ggplot2::geom_bar options
<pre>geom_point_control</pre>		
		a list of ggplot2::geom_point
		future arguments

Value

the plot

```
gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars)
tp <- tornado(gtest, type = "PercentChange", alpha = 0.10, xlabel = "MPG")
plot(tp)</pre>
```

print.importance_plot print data in an importance_plot

Description

print data in an importance_plot

Usage

```
## S3 method for class 'importance_plot'
print(x, ...)
```

Arguments

Х	the object to be printed
	further arguments passed to print.data.frame

Examples

```
gtest <- glm(vs ~ wt + disp + gear, data=mtcars, family=binomial(link="logit"))
gtestreduced <- glm(vs ~ 1, data=mtcars, family=binomial(link="logit"))
g <- importance(gtest, gtestreduced)
print(g)</pre>
```

print.tornado_plot print data in a tornado_plot

Description

print data in a tornado_plot

Usage

```
## S3 method for class 'tornado_plot'
print(x, ...)
```

Arguments

х	the object to be printed
	further arguments passed to print.data.frame

```
gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars)
tp <- tornado(gtest, type = "PercentChange", alpha = 0.10, xlabel = "MPG")
print(tp)</pre>
```

quantile.ordered Quantile for Ordered Factors

Description

Quantile for Ordered Factors

Usage

```
## S3 method for class 'ordered'
quantile(x, probs = seq(0, 1, 0.25), ...)
```

Arguments

х	an ordered factor
probs	the desired quatiles
	arugments passed on

Value

ordered factor levels at the desired quantiles

Examples

```
tornado
```

```
Generic tornado plotting method
```

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```
tornado(model, type, alpha, dict, ...)
```

Arguments

model	a model object
type	PercentChange, percentiles, ranges, or StdDev
alpha	the level of change, the percentile level, or the number of standard deviations
dict	a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
	further arguments, not used

Value

a tornado_plot object

type	the type of tornado plot
data	the data required for the plot
family	the model family if available

See Also

tornado.lm, tornado.glm, tornado.cv.glmnet, tornado.survreg, tornado.coxph, tornado.train

tornad	lo.co	xph
--------	-------	-----

Cox Proportional Hazards Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```
## S3 method for class 'coxph'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, modeldata, ...)
```

tornado.cv.glmnet

Arguments

model	a model object
type	PercentChange, percentiles, ranges, or StdDev
alpha	the level of change, the percentile level, or the number of standard deviations
dict	a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
modeldata	the data used to fit the model
	further arguments, not used

Value

a tornado_plot object

type	the type of tornado plot
data	the data required for the plot
family	the model family if available

Examples

tornado.cv.glmnet GLMNET Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```
## S3 method for class 'cv.glmnet'
tornado(
    model,
    type = "PercentChange",
    alpha = 0.1,
    dict = NA,
    modeldata,
    form,
    s = "lambda.1se",
    ...
)
```

Arguments

model	a model object
type	PercentChange, percentiles, ranges, or StdDev
alpha	the level of change, the percentile level, or the number of standard deviations
dict	a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
modeldata	the raw data used to fit the glmnet model
form	the model formula
S	Value(s) of the penalty parameter lambda at which predictions are required. Default is the value s="lambda.lse" stored on the CV object. Alternatively s="lambda.min" can be used. If s is numeric, it is taken as the value(s) of lambda to be used.
	further arguments, not used

Value

a tornado_plot object

type	the type of tornado plot
data	the data required for the plot
family	the model family if available

See Also

tornado

Examples

```
if (requireNamespace("glmnet", quietly = TRUE))
{
   form <- formula(mpg ~ cyl*wt*hp)
   mf <- model.frame(form, data = mtcars)</pre>
```

14

tornado.glm

GLM Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```
## S3 method for class 'glm'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, ...)
```

Arguments

model	a model object
type	PercentChange, percentiles, ranges, or StdDev
alpha	the level of change, the percentile level, or the number of standard deviations
dict	a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
	further arguments, not used

Value

a tornado_plot object

type	the type of tornado plot
data	the data required for the plot
family	the model family if available

See Also

tornado

Examples

```
gtest <- glm(mpg ~ cyl*wt*hp, data = mtcars, family = gaussian)
torn <- tornado(gtest, type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "MPG")
```

tornado.lm

Linear Model Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```
## S3 method for class 'lm'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, ...)
```

Arguments

model	a model object
type	PercentChange, percentiles, ranges, or StdDev
alpha	the level of change, the percentile level, or the number of standard deviations
dict	a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
	further arguments, not used

Value

a tornado_plot object

type	the type of tornado plot
data	the data required for the plot
family	the model family if available

16

tornado.survreg

See Also

tornado

Examples

```
gtest <- lm(mpg ~ cyl*wt*hp, data = mtcars)
torn <- tornado(gtest, type = "PercentChange", alpha = 0.10)
plot(torn, xlabel = "MPG")</pre>
```

tornado.survreg Survreg Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```
## S3 method for class 'survreg'
tornado(model, type = "PercentChange", alpha = 0.1, dict = NA, modeldata, ...)
```

Arguments

type PercentChange, percentiles, ranges, or StdDev
alpha the level of change, the percentile level, or the number of standard deviations
dict a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.
modeldata the data used to fit the model
further arguments, not used

Value

a tornado_plot object

type	the type of tornado plot
data	the data required for the plot
family	the model family if available

See Also

tornado

Examples

tornado.train Caret Tornado Diagram

Description

A tornado plot is a visualization of the range of outputs expected from a variety of inputs, or alternatively, the sensitivity of the output to the range of inputs. The center of the tornado is plotted at the response expected from the mean of each input variable. For a given variable, the width of the tornado is determined by the range of the variable, a multiplicative factor of the variable, or a quantile of the variable. Variables are ordered vertically with the widest bar at the top and narrowest at the bottom. Only one variable is moved from its mean value at a time. Factors or categorical variables have also been added to these plots by plotting dots at the resulting output as each factor is varied through all of its levels. The base factor level is chosen as the input variable for the center of the tornado.

Usage

```
## S3 method for class 'train'
tornado(
   model,
   type = "PercentChange",
   alpha = 0.1,
   dict = NA,
   class_number = NA,
   ...
)
```

Arguments

model	a model object
type	PercentChange, percentiles, ranges, or StdDev
alpha	the level of change, the percentile level, or the number of standard deviations
dict	a dictionary to translate variables for the plot. The dictionary must be a list or data.frame with elements old and new. The old element must contain each variable in the model.

18

tornado.train

class_number	for classification models, which number of the class that will be plotted
	further arguments, not used

Value

a tornado_plot object

type	the type of tornado plot
data	the data required for the plot
family	the model family if available

See Also

tornado

```
if (requireNamespace("caret", quietly = TRUE) &
    requireNamespace("randomForest", quietly = TRUE))
{
    gtest <- caret::train(x = subset(mtcars, select = -mpg), y = mtcars$mpg, method = "rf")
    torn <- tornado(gtest, type = "PercentChange", alpha = 0.10)
    plot(torn, xlabel = "MPG")
}</pre>
```

Index

importance, 2, 3-7
importance.cv.glmnet, 2, 3
importance.glm, 2, 4
importance.lm, 2, 5
importance.survreg, 2, 6
importance.train, 7

plot.importance_plot, 8
plot.tornado_plot, 9
print.importance_plot, 10
print.tornado_plot, 10

quantile.ordered, 11

tornado, 11, *14*, *16–19* tornado.coxph, *12*, 12 tornado.cv.glmnet, *12*, 13 tornado.glm, *12*, 15 tornado.lm, *12*, 16 tornado.survreg, *12*, 17 tornado.train, *12*, 18