
Package ‘timetk’
July 22, 2025

Type Package

Title A Tool Kit for Working with Time Series

Version 2.9.0

Description Easy visualization, wrangling, and feature engineering of time series data for
forecasting and machine learning prediction. Consolidates and extends time series functionality
from packages including 'dplyr', 'stats', 'xts', 'forecast', 'slider', 'padr', 'recipes', and 'rsample'.

URL https://github.com/business-science/timetk,

https://business-science.github.io/timetk/

BugReports https://github.com/business-science/timetk/issues

License GPL (>= 3)

Encoding UTF-8

LazyData true

Depends R (>= 3.3.0)

Imports recipes (>= 1.0.4), rsample, dplyr (>= 1.0.0), ggplot2 (>=
3.4.0), forcats, stringr, plotly, lubridate (>= 1.6.0), padr
(>= 0.5.2), purrr (>= 0.2.2), readr (>= 1.3.0), stringi (>=
1.4.6), tibble (>= 3.0.3), tidyr (>= 1.1.0), xts (>= 0.9-7),
zoo (>= 1.7-14), rlang (>= 1.1.1), tidyselect (>= 1.1.0),
slider, anytime, timeDate, forecast, tsfeatures, hms, generics

Suggests modeltime, glmnet, workflows, parsnip, tune (>= 0.1.2),
knitr, rmarkdown, broom, scales, testthat, fracdiff,
timeSeries, tseries, trelliscopejs

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Matt Dancho [aut, cre],
Davis Vaughan [aut]

Maintainer Matt Dancho <mdancho@business-science.io>

Repository CRAN

Date/Publication 2023-10-31 22:30:02 UTC

1

https://github.com/business-science/timetk
https://business-science.github.io/timetk/
https://github.com/business-science/timetk/issues

2 Contents

Contents
timetk-package . 4
anomalize . 4
between_time . 7
bike_sharing_daily . 9
box_cox_vec . 10
condense_period . 12
diff_vec . 14
FANG . 16
filter_by_time . 17
filter_period . 19
fourier_vec . 20
future_frame . 23
is_date_class . 25
lag_vec . 26
log_interval_vec . 28
m4_daily . 29
m4_hourly . 30
m4_monthly . 31
m4_quarterly . 32
m4_weekly . 32
m4_yearly . 33
mutate_by_time . 34
normalize_vec . 36
pad_by_time . 37
parse_date2 . 40
plot_acf_diagnostics . 41
plot_anomalies . 44
plot_anomaly_diagnostics . 48
plot_seasonal_diagnostics . 52
plot_stl_diagnostics . 54
plot_time_series . 57
plot_time_series_boxplot . 61
plot_time_series_cv_plan . 65
plot_time_series_regression . 67
set_tk_time_scale_template . 69
slice_period . 70
slidify . 72
slidify_vec . 76
smooth_vec . 79
standardize_vec . 81
step_box_cox . 83
step_diff . 85
step_fourier . 87
step_holiday_signature . 90
step_log_interval . 93
step_slidify . 96

Contents 3

step_slidify_augment . 99
step_smooth . 102
step_timeseries_signature . 106
step_ts_clean . 108
step_ts_impute . 111
step_ts_pad . 114
summarise_by_time . 116
taylor_30_min . 119
time_arithmetic . 120
time_series_cv . 121
time_series_split . 124
tk_acf_diagnostics . 127
tk_anomaly_diagnostics . 129
tk_augment_differences . 131
tk_augment_fourier . 132
tk_augment_holiday . 133
tk_augment_lags . 135
tk_augment_slidify . 137
tk_augment_timeseries . 139
tk_get_frequency . 140
tk_get_holiday . 142
tk_get_timeseries . 144
tk_get_timeseries_unit_frequency . 145
tk_get_timeseries_variables . 146
tk_index . 147
tk_make_future_timeseries . 148
tk_make_holiday_sequence . 151
tk_make_timeseries . 153
tk_seasonal_diagnostics . 157
tk_stl_diagnostics . 159
tk_summary_diagnostics . 160
tk_tbl . 161
tk_time_series_cv_plan . 163
tk_ts . 164
tk_tsfeatures . 167
tk_xts . 169
tk_zoo . 171
tk_zooreg . 172
ts_clean_vec . 175
ts_impute_vec . 177
walmart_sales_weekly . 178
wikipedia_traffic_daily . 180

Index 181

4 anomalize

timetk-package timetk: Time Series Analysis in the Tidyverse

Description

The timetk package combines a collection of coercion tools for time series analysis.

Details

The timetk package has several benefits:

1. Visualizing Time Series

2. Wrangling Time Series.

3. Preprocessing and Feature Engineering.

To learn more about timetk, start with the documentation: https://business-science.github.
io/timetk/

Author(s)

Maintainer: Matt Dancho <mdancho@business-science.io>

Authors:

• Davis Vaughan <dvaughan@business-science.io>

See Also

Useful links:

• https://github.com/business-science/timetk

• https://business-science.github.io/timetk/

• Report bugs at https://github.com/business-science/timetk/issues

anomalize Automatic group-wise Anomaly Detection

Description

anomalize() is used to detect anomalies in time series data, either for a single time series or for
multiple time series grouped by a specific column.

https://business-science.github.io/timetk/
https://business-science.github.io/timetk/
https://github.com/business-science/timetk
https://business-science.github.io/timetk/
https://github.com/business-science/timetk/issues

anomalize 5

Usage

anomalize(
.data,
.date_var,
.value,
.frequency = "auto",
.trend = "auto",
.method = "stl",
.iqr_alpha = 0.05,
.clean_alpha = 0.75,
.max_anomalies = 0.2,
.message = TRUE

)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the
LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().

.method The outlier detection method. Default: "stl". Currently "stl" is the only method.
"twitter" is planned.

.iqr_alpha Controls the width of the "normal" range. Lower values are more conservative
while higher values are less prone to incorrectly classifying "normal" observa-
tions.

.clean_alpha Controls the threshold for cleaning the outliers. The default is 0.75, which means
that the anomalies will be cleaned using the 0.75 * lower or upper bound of the
recomposed time series, depending on the direction of the anomaly.

.max_anomalies The maximum percent of anomalies permitted to be identified.

.message A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).

Details

The anomalize() method for anomaly detection that implements a 2-step process to detect outliers
in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

The decomposition separates the "season" and "trend" components from the "observed" values leav-
ing the "remainder" for anomaly detection.

The user can control two parameters: frequency and trend.

6 anomalize

1. .frequency: Adjusts the "season" component that is removed from the "observed" values.
2. .trend: Adjusts the trend window (t.window parameter from stats::stl() that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the
scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection
Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "re-
mainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are de-
termined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IQR Adjustment, alpha parameter

With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an
IQR Factor of 3 (3X). The IQR Factor = 0.15 / alpha (hence 3X with alpha = 0.05):

• To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more
difficult to be an outlier.

• Increase alpha to make it easier to be an outlier.
• The IQR outlier detection method is used in forecast::tsoutliers().
• A similar outlier detection method is used by Twitter’s AnomalyDetection package.
• Both Twitter and Forecast tsoutliers methods have been implemented in Business Science’s
anomalize package.

Value

A tibble or data.frame with the following columns:

• observed: original data
• seasonal: seasonal component
• seasadaj: seasonal adjusted
• trend: trend component
• remainder: residual component
• anomaly: Yes/No flag for outlier detection
• anomaly score: distance from centerline
• anomaly direction: -1, 0, 1 inidicator for direction of the anomaly
• recomposed_l1: lower level bound of recomposed time series
• recomposed_l2: upper level bound of recomposed time series
• observed_clean: original data with anomalies interpolated

References

1. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A
Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol.
6, No. 1 (1990), pp. 3-73.

2. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for
Long-Term Anomaly Detection in the Cloud. Twitter Inc.

between_time 7

Examples

library(dplyr)

walmart_sales_weekly %>%
filter(id %in% c("1_1", "1_3")) %>%
group_by(id) %>%
anomalize(Date, Weekly_Sales)

between_time Between (For Time Series): Range detection for date or date-time se-
quences

Description

The easiest way to filter time series date or date-time vectors. Returns a logical vector indicating
which date or date-time values are within a range. See filter_by_time() for the data.frame
(tibble) implementation.

Usage

between_time(index, start_date = "start", end_date = "end")

Arguments

index A date or date-time vector.

start_date The starting date

end_date The ending date

Details

Pure Time Series Filtering Flexibilty
The start_date and end_date parameters are designed with flexibility in mind.

Each side of the time_formula is specified as the character 'YYYY-MM-DD HH:MM:SS', but powerful
shorthand is available. Some examples are:

• Year: start_date = '2013', end_date = '2015'

• Month: start_date = '2013-01', end_date = '2016-06'

• Day: start_date = '2013-01-05', end_date = '2016-06-04'

• Second: start_date = '2013-01-05 10:22:15', end_date = '2018-06-03 12:14:22'

• Variations: start_date = '2013', end_date = '2016-06'

Key Words: "start" and "end"
Use the keywords "start" and "end" as shorthand, instead of specifying the actual start and end
values. Here are some examples:

8 between_time

• Start of the series to end of 2015: start_date = 'start', end_date = '2015'

• Start of 2014 to end of series: start_date = '2014', end_date = 'end'

Internal Calculations
All shorthand dates are expanded:

• The start_date is expanded to be the first date in that period

• The end_date side is expanded to be the last date in that period

This means that the following examples are equivalent (assuming your index is a POSIXct):

• start_date = '2015' is equivalent to start_date = '2015-01-01 + 00:00:00'

• end_date = '2016' is equivalent to 2016-12-31 + 23:59:59'

Value

A logical vector the same length as index indicating whether or not the timestamp value was
within the start_date and end_date range.

References

• This function is based on the tibbletime::filter_time() function developed by Davis
Vaughan.

See Also

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.

• mutate_by_time() - Simplifies applying mutations by time windows.

• pad_by_time() - Insert time series rows with regularly spaced timestamps

• filter_by_time() - Quickly filter using date ranges.

• filter_period() - Apply filtering expressions inside periods (windows)

• slice_period() - Apply slice inside periods (windows)

• condense_period() - Convert to a different periodicity

• between_time() - Range detection for date or date-time sequences.

• slidify() - Turn any function into a sliding (rolling) function

Examples

library(dplyr)

index_daily <- tk_make_timeseries("2016-01-01", "2017-01-01", by = "day")
index_min <- tk_make_timeseries("2016-01-01", "2017-01-01", by = "min")

How it works
- Returns TRUE/FALSE length of index
- Use sum() to tally the number of TRUE values

bike_sharing_daily 9

index_daily %>% between_time("start", "2016-01") %>% sum()

---- INDEX SLICING ----

Daily Series: Month of January 2016
index_daily[index_daily %>% between_time("start", "2016-01")]

Daily Series: March 1st - June 15th, 2016
index_daily[index_daily %>% between_time("2016-03", "2016-06-15")]

Minute Series:
index_min[index_min %>% between_time("2016-02-01 12:00", "2016-02-01 13:00")]

---- FILTERING WITH DPLYR ----
FANG %>%

group_by(symbol) %>%
filter(date %>% between_time("2016-01", "2016-01"))

bike_sharing_daily Daily Bike Sharing Data

Description

This dataset contains the daily count of rental bike transactions between years 2011 and 2012 in
Capital bikeshare system with the corresponding weather and seasonal information.

Usage

bike_sharing_daily

Format

A tibble: 731 x 16

• instant: record index

• dteday : date

• season : season (1:winter, 2:spring, 3:summer, 4:fall)

• yr : year (0: 2011, 1:2012)

• mnth : month (1 to 12)

• hr : hour (0 to 23)

• holiday : weather day is holiday or not

• weekday : day of the week

• workingday : if day is neither weekend nor holiday is 1, otherwise is 0.

• weathersit :

– 1: Clear, Few clouds, Partly cloudy, Partly cloudy

10 box_cox_vec

– 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
– 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered

clouds
– 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

• temp : Normalized temperature in Celsius. The values are derived via (t-t_min)/(t_max-
t_min), t_min=-8, t_max=+39 (only in hourly scale)

• atemp: Normalized feeling temperature in Celsius. The values are derived via (t-t_min)/(t_max-
t_min), t_min=-16, t_max=+50 (only in hourly scale)

• hum: Normalized humidity. The values are divided to 100 (max)

• windspeed: Normalized wind speed. The values are divided to 67 (max)

• casual: count of casual users

• registered: count of registered users

• cnt: count of total rental bikes including both casual and registered

References

Fanaee-T, Hadi, and Gama, Joao, ’Event labeling combining ensemble detectors and background
knowledge’, Progress in Artificial Intelligence (2013): pp. 1-15, Springer Berlin Heidelberg.

Examples

bike_sharing_daily

box_cox_vec Box Cox Transformation

Description

This is mainly a wrapper for the BoxCox transformation from the forecast R package. The
box_cox_vec() function performs the transformation. box_cox_inv_vec() inverts the transfor-
mation. auto_lambda() helps in selecting the optimal lambda value.

Usage

box_cox_vec(x, lambda = "auto", silent = FALSE)

box_cox_inv_vec(x, lambda)

auto_lambda(
x,
method = c("guerrero", "loglik"),
lambda_lower = -1,
lambda_upper = 2

)

box_cox_vec 11

Arguments

x A numeric vector.

lambda The box cox transformation parameter. If set to "auto", performs automated
lambda selection using auto_lambda().

silent Whether or not to report the automated lambda selection as a message.

method The method used for automatic lambda selection. Either "guerrero" or "loglik".

lambda_lower A lower limit for automatic lambda selection

lambda_upper An upper limit for automatic lambda selection

Details

The Box Cox transformation is a power transformation that is commonly used to reduce variance
of a time series.

Automatic Lambda Selection

If desired, the lambda argument can be selected using auto_lambda(), a wrapper for the Forecast
R Package’s forecast::BoxCox.lambda() function. Use either of 2 methods:

1. "guerrero" - Minimizes the non-seasonal variance

2. "loglik" - Maximizes the log-likelihood of a linear model fit to x

Value

Returns a numeric vector that has been transformed.

References

• Forecast R Package

• Forecasting: Principles & Practices: Transformations & Adjustments

• Guerrero, V.M. (1993) Time-series analysis supported by power transformations. Journal of
Forecasting, 12, 37–48.

See Also

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Other common transformations to reduce variance: log(), log1p() and sqrt()

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/transformations.html

12 condense_period

Examples

library(dplyr)
d10_daily <- m4_daily %>% dplyr::filter(id == "D10")

--- VECTOR ----

value_bc <- box_cox_vec(d10_daily$value)
value <- box_cox_inv_vec(value_bc, lambda = 1.25119350454964)

--- MUTATE ----

m4_daily %>%
dplyr::group_by(id) %>%
dplyr::mutate(value_bc = box_cox_vec(value))

condense_period Convert the Period to a Lower Periodicity (e.g. Go from Daily to
Monthly)

Description

Convert a data.frame object from daily to monthly, from minute data to hourly, and more. This
allows the user to easily aggregate data to a less granular level by taking the value from either the
beginning or end of the period.

Usage

condense_period(.data, .date_var, .period = "1 day", .side = c("start", "end"))

Arguments

.data A tbl object or data.frame

.date_var A column containing date or date-time values. If missing, attempts to auto-
detect date column.

.period A period to condense the time series to. Time units are condensed using lubridate::floor_date()
or lubridate::ceiling_date().
The value can be:

• second

• minute

• hour

• day

• week

• month

• bimonth

• quarter

condense_period 13

• season

• halfyear

• year

Arbitrary unique English abbreviations as in the lubridate::period() con-
structor are allowed:

• "1 year"

• "2 months"

• "30 seconds"

.side One of "start" or "end". Determines if the first observation in the period should
be returned or the last.

Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.

• mutate_by_time() - Simplifies applying mutations by time windows.

• pad_by_time() - Insert time series rows with regularly spaced timestamps

• filter_by_time() - Quickly filter using date ranges.

• filter_period() - Apply filtering expressions inside periods (windows)

• slice_period() - Apply slice inside periods (windows)

• condense_period() - Convert to a different periodicity

• between_time() - Range detection for date or date-time sequences.

• slidify() - Turn any function into a sliding (rolling) function

Examples

Libraries
library(dplyr)

First value in each month
m4_daily %>%

group_by(id) %>%
condense_period(.period = "1 month")

Last value in each month
m4_daily %>%

group_by(id) %>%
condense_period(.period = "1 month", .side = "end")

14 diff_vec

diff_vec Differencing Transformation

Description

diff_vec() applies a Differencing Transformation. diff_inv_vec() inverts the differencing trans-
formation.

Usage

diff_vec(
x,
lag = 1,
difference = 1,
log = FALSE,
initial_values = NULL,
silent = FALSE

)

diff_inv_vec(x, lag = 1, difference = 1, log = FALSE, initial_values = NULL)

Arguments

x A numeric vector to be differenced or inverted.

lag Which lag (how far back) to be included in the differencing calculation.

difference The number of differences to perform.

• 1 Difference is equivalent to measuring period change.
• 2 Differences is equivalent to measuring period acceleration.

log If log differences should be calculated. Note that difference inversion of a log-
difference is approximate.

initial_values Only used in the diff_vec_inv() operation. A numeric vector of the initial
values, which are used to invert differences. This vector is the original values
that are the length of the NA missing differences.

silent Whether or not to report the initial values used to invert the difference as a
message.

Details

Benefits:
This function is NA padded by default so it works well with dplyr::mutate() operations.

Difference Calculation
Single differencing, diff_vec(x_t) is equivalent to: x_t - x_t1, where the subscript _t1 indicates
the first lag. This transformation can be interpereted as change.

Double Differencing Calculation

diff_vec 15

Double differencing, diff_vec(x_t, difference = 2) is equivalent to: (x_t - x_t1) - (x_t - x_t1)_t1,
where the subscript _t1 indicates the first lag. This transformation can be interpereted as accelera-
tion.

Log Difference Calculation
Log differencing, diff_vec(x_t, log = TRUE) is equivalent to: log(x_t) - log(x_t1) = log(x_t
/ x_t1), where x_t is the series and x_t1 is the first lag.

The 1st difference diff_vec(difference = 1, log = TRUE) has an interesting property where diff_vec(difference
= 1, log = TRUE) %>% exp() is approximately 1 + rate of change.

Value

A numeric vector

See Also

Advanced Differencing and Modeling:

• step_diff() - Recipe for tidymodels workflow

• tk_augment_differences() - Adds many differences to a data.frame (tibble)

Additional Vector Functions:

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(dplyr)

--- USAGE ----

diff_vec(1:10, lag = 2, difference = 2) %>%
diff_inv_vec(lag = 2, difference = 2, initial_values = 1:4)

--- VECTOR ----

Get Change
1:10 %>% diff_vec()

Get Acceleration
1:10 %>% diff_vec(difference = 2)

Get approximate rate of change

16 FANG

1:10 %>% diff_vec(log = TRUE) %>% exp() - 1

--- MUTATE ----

m4_daily %>%
group_by(id) %>%
mutate(difference = diff_vec(value, lag = 1)) %>%
mutate(

difference_inv = diff_inv_vec(
difference,
lag = 1,
Add initial value to calculate the inverse difference
initial_values = value[1]

)
)

FANG Stock prices for the "FANG" stocks.

Description

A dataset containing the daily historical stock prices for the "FANG" tech stocks, "FB", "AMZN",
"NFLX", and "GOOG", spanning from the beginning of 2013 through the end of 2016.

Usage

FANG

Format

A "tibble" ("tidy" data frame) with 4,032 rows and 8 variables:

symbol stock ticker symbol

date trade date

open stock price at the open of trading, in USD

high stock price at the highest point during trading, in USD

low stock price at the lowest point during trading, in USD

close stock price at the close of trading, in USD

volume number of shares traded

adjusted stock price at the close of trading adjusted for stock splits, in USD

filter_by_time 17

filter_by_time Filter (for Time-Series Data)

Description

The easiest way to filter time-based start/end ranges using shorthand timeseries notation. See
filter_period() for applying filter expression by period (windows).

Usage

filter_by_time(.data, .date_var, .start_date = "start", .end_date = "end")

Arguments

.data A tibble with a time-based column.

.date_var A column containing date or date-time values to filter. If missing, attempts to
auto-detect date column.

.start_date The starting date for the filter sequence

.end_date The ending date for the filter sequence

Details

Pure Time Series Filtering Flexibilty
The .start_date and .end_date parameters are designed with flexibility in mind.

Each side of the time_formula is specified as the character 'YYYY-MM-DD HH:MM:SS', but powerful
shorthand is available. Some examples are:

• Year: .start_date = '2013', .end_date = '2015'

• Month: .start_date = '2013-01', .end_date = '2016-06'

• Day: .start_date = '2013-01-05', .end_date = '2016-06-04'

• Second: .start_date = '2013-01-05 10:22:15', .end_date = '2018-06-03 12:14:22'

• Variations: .start_date = '2013', .end_date = '2016-06'

Key Words: "start" and "end"
Use the keywords "start" and "end" as shorthand, instead of specifying the actual start and end
values. Here are some examples:

• Start of the series to end of 2015: .start_date = 'start', .end_date = '2015'

• Start of 2014 to end of series: .start_date = '2014', .end_date = 'end'

Internal Calculations
All shorthand dates are expanded:

• The .start_date is expanded to be the first date in that period

• The .end_date side is expanded to be the last date in that period

18 filter_by_time

This means that the following examples are equivalent (assuming your index is a POSIXct):

• .start_date = '2015' is equivalent to .start_date = '2015-01-01 + 00:00:00'

• .end_date = '2016' is equivalent to 2016-12-31 + 23:59:59'

Value

Returns a tibble or data.frame that has been filtered.

References

• This function is based on the tibbletime::filter_time() function developed by Davis
Vaughan.

See Also

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.

• mutate_by_time() - Simplifies applying mutations by time windows.

• pad_by_time() - Insert time series rows with regularly spaced timestamps

• filter_by_time() - Quickly filter using date ranges.

• filter_period() - Apply filtering expressions inside periods (windows)

• slice_period() - Apply slice inside periods (windows)

• condense_period() - Convert to a different periodicity

• between_time() - Range detection for date or date-time sequences.

• slidify() - Turn any function into a sliding (rolling) function

Examples

library(dplyr)

Filter values in January 1st through end of February, 2013
FANG %>%

group_by(symbol) %>%
filter_by_time(.start_date = "start", .end_date = "2013-02") %>%
plot_time_series(date, adjusted, .facet_ncol = 2, .interactive = FALSE)

filter_period 19

filter_period Apply filtering expressions inside periods (windows)

Description

Applies a dplyr filtering expression inside a time-based period (window). See filter_by_time()
for filtering continuous ranges defined by start/end dates. filter_period() enables filtering ex-
pressions like:

• Filtering to the maximum value each month.
• Filtering the first date each month.
• Filtering all rows with value greater than a monthly average

Usage

filter_period(.data, ..., .date_var, .period = "1 day")

Arguments

.data A tbl object or data.frame

... Filtering expression. Expressions that return a logical value, and are defined in
terms of the variables in .data. If multiple expressions are included, they are
combined with the & operator. Only rows for which all conditions evaluate to
TRUE are kept.

.date_var A column containing date or date-time values. If missing, attempts to auto-
detect date column.

.period A period to filter within. Time units are grouped using lubridate::floor_date()
or lubridate::ceiling_date().
The value can be:

• second

• minute

• hour

• day

• week

• month

• bimonth

• quarter

• season

• halfyear

• year

Arbitrary unique English abbreviations as in the lubridate::period() con-
structor are allowed:

• "1 year"

• "2 months"

• "30 seconds"

20 fourier_vec

Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.

• mutate_by_time() - Simplifies applying mutations by time windows.

• pad_by_time() - Insert time series rows with regularly spaced timestamps

• filter_by_time() - Quickly filter using date ranges.

• filter_period() - Apply filtering expressions inside periods (windows)

• slice_period() - Apply slice inside periods (windows)

• condense_period() - Convert to a different periodicity

• between_time() - Range detection for date or date-time sequences.

• slidify() - Turn any function into a sliding (rolling) function

Examples

Libraries
library(dplyr)

Max value in each month
m4_daily %>%

group_by(id) %>%
filter_period(.period = "1 month", value == max(value))

First date each month
m4_daily %>%

group_by(id) %>%
filter_period(.period = "1 month", date == first(date))

All observations that are greater than a monthly average
m4_daily %>%

group_by(id) %>%
filter_period(.period = "1 month", value > mean(value))

fourier_vec Fourier Series

Description

fourier_vec() calculates a Fourier Series from a date or date-time index.

fourier_vec 21

Usage

fourier_vec(x, period, K = 1, type = c("sin", "cos"), scale_factor = NULL)

Arguments

x A date, POSIXct, yearmon, yearqtr, or numeric sequence (scaled to difference 1
for period alignment) to be converted to a fourier series.

period The number of observations that complete one cycle.

K The fourier term order.

type Either "sin" or "cos" for the appropriate type of fourier term.

scale_factor Scale factor is a calculated value that scales date sequences to numeric se-
quences. A user can provide a different value of scale factor to override the
date scaling. Default: NULL (auto-scale).

Details

Benefits:

This function is NA padded by default so it works well with dplyr::mutate() operations.

Fourier Series Calculation

The internal calculation is relatively straightforward: fourier(x) = sin(2 * pi * term * x) or cos(2 * pi * term * x),
where term = K / period.

Period Alignment, period

The period alignment with the sequence is an essential part of fourier series calculation.

• Date, Date-Time, and Zoo (yearqtr and yearmon) Sequences - Are scaled to unit difference
of 1. This happens internally, so there’s nothing you need to do or to worry about. Future time
series will be scaled appropriately.

• Numeric Sequences - Are not scaled, which means you should transform them to a unit
difference of 1 so that your x is a sequence that increases by 1. Otherwise your period and
fourier order will be incorrectly calculated. The solution is to just take your sequence and
divide by the median difference between values.

Fourier Order, K

The fourier order is a parameter that increases the frequency. K = 2 doubles the frequency. It’s
common in time series analysis to add multiple fourier orders (e.g. 1 through 5) to account for
seasonalities that occur faster than the primary seasonality.

Type (Sin/Cos)

The type of the fourier series can be either sin or cos. It’s common in time series analysis to add
both sin and cos series.

Value

A numeric vector

22 fourier_vec

See Also

Fourier Modeling Functions:

• step_fourier() - Recipe for tidymodels workflow

• tk_augment_fourier() - Adds many fourier series to a data.frame (tibble)

Additional Vector Functions:

• Fourier Series: fourier_vec()

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(dplyr)

Set max.print to 50
options_old <- options()$max.print
options(max.print = 50)

date_sequence <- tk_make_timeseries("2016-01-01", "2016-01-31", by = "hour")

--- VECTOR ---

fourier_vec(date_sequence, period = 7 * 24, K = 1, type = "sin")

--- MUTATE ---

tibble(date = date_sequence) %>%
Add cosine series that oscilates at a 7-day period
mutate(

C1_7 = fourier_vec(date, period = 7*24, K = 1, type = "cos"),
C2_7 = fourier_vec(date, period = 7*24, K = 2, type = "cos")

) %>%
Visualize
tidyr::pivot_longer(cols = contains("_"), names_to = "name", values_to = "value") %>%
plot_time_series(

date, value, .color_var = name,
.smooth = FALSE,
.interactive = FALSE,
.title = "7-Day Fourier Terms"

)

options(max.print = options_old)

future_frame 23

future_frame Make future time series from existing

Description

Make future time series from existing

Usage

future_frame(
.data,
.date_var,
.length_out,
.inspect_weekdays = FALSE,
.inspect_months = FALSE,
.skip_values = NULL,
.insert_values = NULL,
.bind_data = FALSE

)

Arguments

.data A data.frame or tibble

.date_var A date or date-time variable.

.length_out Number of future observations. Can be numeric number or a phrase like "1
year".

.inspect_weekdays

Uses a logistic regression algorithm to inspect whether certain weekdays (e.g.
weekends) should be excluded from the future dates. Default is FALSE.

.inspect_months

Uses a logistic regression algorithm to inspect whether certain days of months
(e.g. last two weeks of year or seasonal days) should be excluded from the future
dates. Default is FALSE.

.skip_values A vector of same class as idx of timeseries values to skip.

.insert_values A vector of same class as idx of timeseries values to insert.

.bind_data Whether or not to perform a row-wise bind of the .data and the future data.
Default: FALSE

Details

This is a wrapper for tk_make_future_timeseries() that works on data.frames. It respects dplyr
groups.

Specifying Length of Future Observations
The argument .length_out determines how many future index observations to compute. It can be
specified as:

24 future_frame

• A numeric value - the number of future observations to return.

– The number of observations returned is always equal to the value the user inputs.
– The end date can vary based on the number of timestamps chosen.

• A time-based phrase - The duration into the future to include (e.g. "6 months" or "30 min-
utes").

– The duration defines the end date for observations.
– The end date will not change and those timestamps that fall within the end date will be

returned (e.g. a quarterly time series will return 4 quarters if .length_out = "1 year").
– The number of observations will vary to fit within the end date.

Weekday and Month Inspection

The .inspect_weekdays and .inspect_months arguments apply to "daily" (scale = "day") data
(refer to tk_get_timeseries_summary() to get the index scale).

• The .inspect_weekdays argument is useful in determining missing days of the week that oc-
cur on a weekly frequency such as every week, every other week, and so on. It’s recommended
to have at least 60 days to use this option.

• The .inspect_months argument is useful in determining missing days of the month, quarter
or year; however, the algorithm can inadvertently select incorrect dates if the pattern is erratic.

Skipping / Inserting Values

The .skip_values and .insert_values arguments can be used to remove and add values into the
series of future times. The values must be the same format as the idx class.

• The .skip_values argument useful for passing holidays or special index values that should
be excluded from the future time series.

• The .insert_values argument is useful for adding values back that the algorithm may have
excluded.

Binding with Data

Rowwise binding with the original is so common that I’ve added an argument .bind_data to per-
form a row-wise bind of the future data and the incoming data.

This replaces the need to do:

df %>%
future_frame(.length_out = "6 months") %>%
bind_rows(df, .)

Now you can just do:

df %>%
future_frame(.length_out = "6 months", .bind_data = TRUE)

Value

A tibble that has been extended with future date, date-time timestamps.

is_date_class 25

See Also

• Making Future Time Series: tk_make_future_timeseries() (Underlying function)

Examples

library(dplyr)

30-min interval data
taylor_30_min %>%

future_frame(date, .length_out = "1 week")

Daily Data (Grouped)
m4_daily %>%

group_by(id) %>%
future_frame(date, .length_out = "6 weeks")

Specify how many observations to project into the future
m4_daily %>%

group_by(id) %>%
future_frame(date, .length_out = 100)

Bind with Original Data
m4_daily %>%

group_by(id) %>%
future_frame(date, .length_out = 100, .bind_data = TRUE)

holidays <- tk_make_holiday_sequence(
start_date = "2017-01-01",
end_date = "2017-12-31",
calendar = "NYSE")

weekends <- tk_make_weekend_sequence(
start_date = "2017-01-01",
end_date = "2017-12-31"

)

FANG %>%
group_by(symbol) %>%
future_frame(

.length_out = "1 year",

.skip_values = c(holidays, weekends)
)

is_date_class Check if an object is a date class

Description

Check if an object is a date class

26 lag_vec

Usage

is_date_class(x)

Arguments

x A vector to check

Value

Logical (TRUE/FALSE)

Examples

library(dplyr)

tk_make_timeseries("2011") %>% is_date_class()

letters %>% is_date_class()

lag_vec Lag Transformation

Description

lag_vec() applies a Lag Transformation.

Usage

lag_vec(x, lag = 1)

lead_vec(x, lag = -1)

Arguments

x A vector to be lagged.

lag Which lag (how far back) to be included in the differencing calculation. Nega-
tive lags are leads.

Details

Benefits:
This function is NA padded by default so it works well with dplyr::mutate() operations. The
function allows both lags and leads (negative lags).

Lag Calculation
A lag is an offset of lag periods. NA values are returned for the number of lag periods.

lag_vec 27

Lead Calculation

A negative lag is considered a lead. The only difference between lead_vec() and lag_vec() is
that the lead_vec() function contains a starting negative value.

Value

A numeric vector

See Also

Modeling and Advanced Lagging:

• recipes::step_lag() - Recipe for adding lags in tidymodels modeling

• tk_augment_lags() - Add many lags group-wise to a data.frame (tibble)

Vectorized Transformations:

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(dplyr)

--- VECTOR ----

Lag
1:10 %>% lag_vec(lag = 1)

Lead
1:10 %>% lag_vec(lag = -1)

--- MUTATE ----

m4_daily %>%
group_by(id) %>%
mutate(lag_1 = lag_vec(value, lag = 1))

28 log_interval_vec

log_interval_vec Log-Interval Transformation for Constrained Interval Forecasting

Description

The log_interval_vec() transformation constrains a forecast to an interval specified by an upper_limit
and a lower_limit. The transformation provides similar benefits to log() transformation, while
ensuring the inverted transformation stays within an upper and lower limit.

Usage

log_interval_vec(
x,
limit_lower = "auto",
limit_upper = "auto",
offset = 0,
silent = FALSE

)

log_interval_inv_vec(x, limit_lower, limit_upper, offset = 0)

Arguments

x A positive numeric vector.

limit_lower A lower limit. Must be less than the minimum value. If set to "auto", selects
zero.

limit_upper An upper limit. Must be greater than the maximum value. If set to "auto", selects
a value that is 10% greater than the maximum value.

offset An offset to include in the log transformation. Useful when the data contains
values less than or equal to zero.

silent Whether or not to report the parameter selections as a message.

Details

Log Interval Transformation

The Log Interval Transformation constrains values to specified upper and lower limits. The trans-
formation maps limits to a function:

log(((x + offset) - a)/(b - (x + offset)))

where a is the lower limit and b is the upper limit

Inverse Transformation

The inverse transformation:

(b-a)*(exp(x)) / (1 + exp(x)) + a - offset

m4_daily 29

Value

A numeric vector of the transformed series.

References

• Forecasting: Principles & Practices: Forecasts constrained to an interval

See Also

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation & Anomaly Cleaning for Time Series: ts_impute_vec(), ts_clean_vec()

Other common transformations to reduce variance: log(), log1p() and sqrt()

Examples

library(dplyr)

values_trans <- log_interval_vec(1:10, limit_lower = 0, limit_upper = 11)
values_trans

values_trans_forecast <- c(values_trans, 3.4, 4.4, 5.4)

values_trans_forecast %>%
log_interval_inv_vec(limit_lower = 0, limit_upper = 11) %>%
plot()

m4_daily Sample of 4 Daily Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The compe-
tition included 100,000 time series datasets. This dataset includes a sample of 4 daily time series
from the competition.

Usage

m4_daily

https://otexts.com/fpp2/limits.html

30 m4_hourly

Format

A tibble: 9,743 x 3

• id Factor. Unique series identifier (4 total)

• date Date. Timestamp information. Daily format.

• value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 daily data sets from the M4 competition.

Source

• M4 Competition Website

Examples

m4_daily

m4_hourly Sample of 4 Hourly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The compe-
tition included 100,000 time series datasets. This dataset includes a sample of 4 hourly time series
from the competition.

Usage

m4_hourly

Format

A tibble: 3,060 x 3

• id Factor. Unique series identifier (4 total)

• date Date-time. Timestamp information. Hourly format.

• value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 hourly data sets from the M4 competition.

Source

• M4 Competition Website

https://mofc.unic.ac.cy/m4/
https://mofc.unic.ac.cy/m4/

m4_monthly 31

Examples

m4_hourly

m4_monthly Sample of 4 Monthly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The com-
petition included 100,000 time series datasets. This dataset includes a sample of 4 monthly time
series from the competition.

Usage

m4_monthly

Format

A tibble: 9,743 x 3

• id Factor. Unique series identifier (4 total)

• date Date. Timestamp information. Monthly format.

• value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Monthly data sets from the M4 competition.

Source

• M4 Competition Website

Examples

m4_monthly

https://mofc.unic.ac.cy/m4/

32 m4_weekly

m4_quarterly Sample of 4 Quarterly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The com-
petition included 100,000 time series datasets. This dataset includes a sample of 4 quarterly time
series from the competition.

Usage

m4_quarterly

Format

A tibble: 9,743 x 3

• id Factor. Unique series identifier (4 total)

• date Date. Timestamp information. Quarterly format.

• value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Quarterly data sets from the M4 competition.

Source

• M4 Competition Website

Examples

m4_quarterly

m4_weekly Sample of 4 Weekly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The com-
petition included 100,000 time series datasets. This dataset includes a sample of 4 weekly time
series from the competition.

Usage

m4_weekly

https://mofc.unic.ac.cy/m4/

m4_yearly 33

Format

A tibble: 9,743 x 3

• id Factor. Unique series identifier (4 total)

• date Date. Timestamp information. Weekly format.

• value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Weekly data sets from the M4 competition.

Source

• M4 Competition Website

Examples

m4_weekly

m4_yearly Sample of 4 Yearly Time Series Datasets from the M4 Competition

Description

The fourth M Competition. M4, started on 1 January 2018 and ended in 31 May 2018. The compe-
tition included 100,000 time series datasets. This dataset includes a sample of 4 yearly time series
from the competition.

Usage

m4_yearly

Format

A tibble: 9,743 x 3

• id Factor. Unique series identifier (4 total)

• date Date. Timestamp information. Yearly format.

• value Numeric. Value at the corresponding timestamp.

Details

This is a sample of 4 Yearly data sets from the M4 competition.

Source

• M4 Competition Website

https://mofc.unic.ac.cy/m4/
https://mofc.unic.ac.cy/m4/

34 mutate_by_time

Examples

m4_yearly

mutate_by_time Mutate (for Time Series Data)

Description

mutate_by_time() is a time-based variant of the popular dplyr::mutate() function that uses
.date_var to specify a date or date-time column and .by to group the calculation by groups like
"5 seconds", "week", or "3 months".

Usage

mutate_by_time(
.data,
.date_var,
.by = "day",
...,
.type = c("floor", "ceiling", "round")

)

Arguments

.data A tbl object or data.frame

.date_var A column containing date or date-time values to summarize. If missing, attempts
to auto-detect date column.

.by A time unit to summarise by. Time units are collapsed using lubridate::floor_date()
or lubridate::ceiling_date().
The value can be:

• second

• minute

• hour

• day

• week

• month

• bimonth

• quarter

• season

• halfyear

• year

Arbitrary unique English abbreviations as in the lubridate::period() con-
structor are allowed.

mutate_by_time 35

... Name-value pairs. The name gives the name of the column in the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.type One of "floor", "ceiling", or "round. Defaults to "floor". See lubridate::round_date.

Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.

• mutate_by_time() - Simplifies applying mutations by time windows.

• pad_by_time() - Insert time series rows with regularly spaced timestamps

• filter_by_time() - Quickly filter using date ranges.

• filter_period() - Apply filtering expressions inside periods (windows)

• slice_period() - Apply slice inside periods (windows)

• condense_period() - Convert to a different periodicity

• between_time() - Range detection for date or date-time sequences.

• slidify() - Turn any function into a sliding (rolling) function

Examples

Libraries
library(dplyr)

First value in each month
m4_daily_first_by_month_tbl <- m4_daily %>%

group_by(id) %>%
mutate_by_time(

.date_var = date,

.by = "month", # Setup for monthly aggregation
mutate recycles a single value
first_value_by_month = first(value)

)
m4_daily_first_by_month_tbl

Visualize Time Series vs 1st Value Each Month
m4_daily_first_by_month_tbl %>%

tidyr::pivot_longer(value:first_value_by_month) %>%
plot_time_series(date, value, name,

36 normalize_vec

.facet_scale = "free", .facet_ncol = 2,

.smooth = FALSE, .interactive = FALSE)

normalize_vec Normalize to Range (0, 1)

Description

Normalization is commonly used to center and scale numeric features to prevent one from domi-
nating in algorithms that require data to be on the same scale.

Usage

normalize_vec(x, min = NULL, max = NULL, silent = FALSE)

normalize_inv_vec(x, min, max)

Arguments

x A numeric vector.
min The population min value in the normalization process.
max The population max value in the normalization process.
silent Whether or not to report the automated min and max parameters as a message.

Details

Standardization vs Normalization

• Standardization refers to a transformation that reduces the range to mean 0, standard devia-
tion 1

• Normalization refers to a transformation that reduces the min-max range: (0, 1)

Value

A numeric vector with the transformation applied.

See Also

• Normalization/Standardization: standardize_vec(), normalize_vec()
• Box Cox Transformation: box_cox_vec()
• Lag Transformation: lag_vec()
• Differencing Transformation: diff_vec()
• Rolling Window Transformation: slidify_vec()
• Loess Smoothing Transformation: smooth_vec()
• Fourier Series: fourier_vec()
• Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

pad_by_time 37

Examples

library(dplyr)

d10_daily <- m4_daily %>% dplyr::filter(id == "D10")

--- VECTOR ----

value_norm <- normalize_vec(d10_daily$value)
value <- normalize_inv_vec(value_norm,

min = 1781.6,
max = 2649.3)

--- MUTATE ----

m4_daily %>%
group_by(id) %>%
mutate(value_norm = normalize_vec(value))

pad_by_time Insert time series rows with regularly spaced timestamps

Description

The easiest way to fill in missing timestamps or convert to a more granular period (e.g. quarter to
month). Wraps the padr::pad() function for padding tibbles.

Usage

pad_by_time(
.data,
.date_var,
.by = "auto",
.pad_value = NA,
.fill_na_direction = c("none", "down", "up", "downup", "updown"),
.start_date = NULL,
.end_date = NULL

)

Arguments

.data A tibble with a time-based column.

.date_var A column containing date or date-time values to pad

.by Either "auto", a time-based frequency like "year", "month", "day", "hour", etc,
or a time expression like "5 min", or "7 days". See Details.

.pad_value Fills in padded values. Default is NA.

38 pad_by_time

.fill_na_direction

Users can provide an NA fill strategy using tidyr::fill(). Possible values:
'none', 'down', 'up', 'downup', 'updown'. Default: 'none'

.start_date Specifies the start of the padded series. If NULL it will use the lowest value of
the input variable.

.end_date Specifies the end of the padded series. If NULL it will use the highest value of
the input variable.

Details

Padding Missing Observations
The most common use case for pad_by_time() is to add rows where timestamps are missing. This
could be from sales data that have missing values on weekends and holidays. Or it could be high
frequency data where observations are irregularly spaced and should be reset to a regular frequency.

Going from Low to High Frequency
The second use case is going from a low frequency (e.g. day) to high frequency (e.g. hour). This is
possible by supplying a higher frequency to pad_by_time().

Interval, .by
Padding can be applied in the following ways:

• .by = "auto" - pad_by_time() will detect the time-stamp frequency and apply padding.

• The eight intervals in are: year, quarter, month, week, day, hour, min, and sec.

• Intervals like 5 minutes, 6 hours, 10 days are possible.

Pad Value, .pad_value
A pad value can be supplied that fills in missing numeric data. Note that this is only applied to
numeric columns.

Fill NA Direction, .fill_na_directions
Uses tidyr::fill() to fill missing observations using a fill strategy.

Value

A tibble or data.frame with rows containing missing timestamps added.

References

• This function wraps the padr::pad() function developed by Edwin Thoen.

See Also

Imputation:

• ts_impute_vec() - Impute missing values for time series.

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.

pad_by_time 39

• mutate_by_time() - Simplifies applying mutations by time windows.

• pad_by_time() - Insert time series rows with regularly spaced timestamps

• filter_by_time() - Quickly filter using date ranges.

• filter_period() - Apply filtering expressions inside periods (windows)

• slice_period() - Apply slice inside periods (windows)

• condense_period() - Convert to a different periodicity

• between_time() - Range detection for date or date-time sequences.

• slidify() - Turn any function into a sliding (rolling) function

Examples

library(dplyr)

Create a quarterly series with 1 missing value
missing_data_tbl <- tibble::tibble(

date = tk_make_timeseries("2014-01-01", "2015-01-01", by = "quarter"),
value = 1:5

) %>%
slice(-4) # Lose the 4th quarter on purpose

missing_data_tbl

Detects missing quarter, and pads the missing regularly spaced quarter with NA
missing_data_tbl %>% pad_by_time(date, .by = "quarter")

Can specify a shorter period. This fills monthly.
missing_data_tbl %>% pad_by_time(date, .by = "month")

Can let pad_by_time() auto-detect date and period
missing_data_tbl %>% pad_by_time()

Can specify a .pad_value
missing_data_tbl %>% pad_by_time(date, .by = "quarter", .pad_value = 0)

Can then impute missing values
missing_data_tbl %>%

pad_by_time(date, .by = "quarter") %>%
mutate(value = ts_impute_vec(value, period = 1))

Can specify a custom .start_date and .end_date
missing_data_tbl %>%

pad_by_time(date, .by = "quarter", .start_date = "2013", .end_date = "2015-07-01")

Can specify a tidyr::fill() direction
missing_data_tbl %>%

pad_by_time(date, .by = "quarter",
.fill_na_direction = "downup",
.start_date = "2013", .end_date = "2015-07-01")

--- GROUPS ----

40 parse_date2

Apply standard NA padding to groups
FANG %>%

group_by(symbol) %>%
pad_by_time(.by = "day")

Apply constant pad value
FANG %>%

group_by(symbol) %>%
pad_by_time(.by = "day", .pad_value = 0)

Apply filled padding to groups
FANG %>%

group_by(symbol) %>%
pad_by_time(.by = "day", .fill_na_direction = "down")

parse_date2 Fast, flexible date and datetime parsing

Description

Significantly faster time series parsing than readr::parse_date, readr::parse_datetime, lubridate::as_date(),
and lubridate::as_datetime(). Uses anytime package, which relies on Boost.Date_Time C++
library for date/datetime parsing.

Usage

parse_date2(x, ..., silent = FALSE)

parse_datetime2(x, tz = "UTC", tz_shift = FALSE, ..., silent = FALSE)

Arguments

x A character vector

... Additional parameters passed to anytime() and anydate()

silent If TRUE, warns the user of parsing failures.

tz Datetime only. A timezone (see OlsenNames()).

tz_shift Datetime only. If FALSE, forces the datetime into the time zone. If TRUE,
offsets the datetime from UTC to the new time zone.

Details

Parsing Formats

• Date Formats: Must follow a Year, Month, Day sequence. (e.g. parse_date2("2011 June")
is OK, parse_date2("June 2011") is NOT OK).

plot_acf_diagnostics 41

• Date Time Formats: Must follow a YMD HMS sequence.

Refer to lubridate::mdy() for Month, Day, Year and additional formats.

Time zones (Datetime)
Time zones are handled in a similar way to lubridate::as_datetime() in that time zones are
forced rather than shifted. This is a key difference between anytime::anytime(), which shifts
datetimes to the specified timezone by default.

Value

Returns a date or datatime vector from the transformation applied to character timestamp vector.

References

• This function wraps the anytime::anytime() and anytime::anydate() functions devel-
oped by Dirk Eddelbuettel.

Examples

Fast date parsing
parse_date2("2011")
parse_date2("2011 June 3rd")

Fast datetime parsing
parse_datetime2("2011")
parse_datetime2("2011 Jan 1 12:35:21")

Time Zones (datetime only)
parse_datetime2("2011 Jan 1 12:35:21", tz = "Europe/London")

plot_acf_diagnostics Visualize the ACF, PACF, and CCFs for One or More Time Series

Description

Returns the ACF and PACF of a target and optionally CCF’s of one or more lagged predictors
in interactive plotly plots. Scales to multiple time series with group_by().

Usage

plot_acf_diagnostics(
.data,
.date_var,
.value,
.ccf_vars = NULL,
.lags = 1000,
.show_ccf_vars_only = FALSE,

42 plot_acf_diagnostics

.show_white_noise_bars = TRUE,

.facet_ncol = 1,

.facet_scales = "fixed",

.line_color = "#2c3e50",

.line_size = 0.5,

.line_alpha = 1,

.point_color = "#2c3e50",

.point_size = 1,

.point_alpha = 1,

.x_intercept = NULL,

.x_intercept_color = "#E31A1C",

.hline_color = "#2c3e50",

.white_noise_line_type = 2,

.white_noise_line_color = "#A6CEE3",

.title = "Lag Diagnostics",

.x_lab = "Lag",

.y_lab = "Correlation",

.interactive = TRUE,

.plotly_slider = FALSE
)

Arguments

.data A data frame or tibble with numeric features (values) in descending chronolog-
ical order

.date_var A column containing either date or date-time values

.value A numeric column with a value to have ACF and PACF calculations performed.

.ccf_vars Additional features to perform Lag Cross Correlations (CCFs) versus the .value.
Useful for evaluating external lagged regressors.

.lags A sequence of one or more lags to evaluate.

.show_ccf_vars_only

Hides the ACF and PACF plots so you can focus on only CCFs.
.show_white_noise_bars

Shows the white noise significance bounds.

.facet_ncol Facets: Number of facet columns. Has no effect if using grouped_df.

.facet_scales Facets: Options include "fixed", "free", "free_y", "free_x"

.line_color Line color. Use keyword: "scale_color" to change the color by the facet.

.line_size Line size (linewidth)

.line_alpha Line opacity. Adjust the transparency of the line. Range: (0, 1)

.point_color Point color. Use keyword: "scale_color" to change the color by the facet.

.point_size Point size

.point_alpha Opacity. Adjust the transparency of the points. Range: (0, 1)

.x_intercept Numeric lag. Adds a vertical line.

.x_intercept_color

Color for the x-intercept line.

plot_acf_diagnostics 43

.hline_color Color for the y-intercept = 0 line.

.white_noise_line_type

Line type for white noise bars. Set to 2 for "dashed" by default.
.white_noise_line_color

Line color for white noise bars. Set to tidyquant::palette_light() "steel
blue" by default.

.title Title for the plot

.x_lab X-axis label for the plot

.y_lab Y-axis label for the plot

.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

.plotly_slider If TRUE, returns a plotly x-axis range slider.

Details

Simplified ACF, PACF, & CCF
We are often interested in all 3 of these functions. Why not get all 3+ at once? Now you can.

• ACF - Autocorrelation between a target variable and lagged versions of itself

• PACF - Partial Autocorrelation removes the dependence of lags on other lags highlighting key
seasonalities.

• CCF - Shows how lagged predictors can be used for prediction of a target variable.

Lag Specification
Lags (.lags) can either be specified as:

• A time-based phrase indicating a duraction (e.g. 2 months)

• A maximum lag (e.g. .lags = 28)

• A sequence of lags (e.g. .lags = 7:28)

Scales to Multiple Time Series with Groups
The plot_acf_diagnostics() works with grouped_df’s, meaning you can group your time series
by one or more categorical columns with dplyr::group_by() and then apply plot_acf_diagnostics()
to return group-wise lag diagnostics.

Special Note on Groups
Unlike other plotting utilities, the .facet_vars arguments is NOT included. Use dplyr::group_by()
for processing multiple time series groups.

Calculating the White Noise Significance Bars
The formula for the significance bars is +2/sqrt(T) and -2/sqrt(T) where T is the length of the
time series. For a white noise time series, 95% of the data points should fall within this range.
Those that don’t may be significant autocorrelations.

Value

A static ggplot2 plot or an interactive plotly plot

44 plot_anomalies

See Also

• Visualizing ACF, PACF, & CCF: plot_acf_diagnostics()

• Visualizing Seasonality: plot_seasonal_diagnostics()

• Visualizing Time Series: plot_time_series()

Examples

library(dplyr)
library(ggplot2)

Apply Transformations
- Differencing transformation to identify ARIMA & SARIMA Orders
m4_hourly %>%

group_by(id) %>%
plot_acf_diagnostics(

date, value, # ACF & PACF
.lags = "7 days", # 7-Days of hourly lags
.interactive = FALSE

)

Apply Transformations
- Differencing transformation to identify ARIMA & SARIMA Orders
m4_hourly %>%

group_by(id) %>%
plot_acf_diagnostics(

date,
diff_vec(value, lag = 1), # Difference the value column
.lags = 0:(24*7), # 7-Days of hourly lags
.interactive = FALSE

) +
ggtitle("ACF Diagnostics", subtitle = "1st Difference")

CCFs Too!
walmart_sales_weekly %>%

select(id, Date, Weekly_Sales, Temperature, Fuel_Price) %>%
group_by(id) %>%
plot_acf_diagnostics(

Date, Weekly_Sales, # ACF & PACF
.ccf_vars = c(Temperature, Fuel_Price), # CCFs
.lags = "3 months", # 3 months of weekly lags
.interactive = FALSE

)

plot_anomalies Visualize Anomalies for One or More Time Series

plot_anomalies 45

Description

plot_anomalies() is an interactive and scalable function for visualizing anomalies in time series
data. Plots are available in interactive plotly (default) and static ggplot2 format.

plot_anomalies_decomp(): Takes in data from the anomalize() function, and returns a plot of
the anomaly decomposition. Useful for interpeting how the anomalize() function is determining
outliers from "remainder".

plot_anomalies_cleaned() helps users visualize the before/after of cleaning anomalies.

Usage

plot_anomalies(
.data,
.date_var,
.facet_vars = NULL,
.facet_ncol = 1,
.facet_nrow = 1,
.facet_scales = "free",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.anom_color = "#e31a1c",
.anom_alpha = 1,
.anom_size = 1.5,
.ribbon_fill = "grey20",
.ribbon_alpha = 0.2,
.legend_show = TRUE,
.title = "Anomaly Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Anomaly",
.interactive = TRUE,
.trelliscope = FALSE,
.trelliscope_params = list()

)

plot_anomalies_decomp(
.data,
.date_var,
.facet_vars = NULL,
.facet_scales = "free",
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,

46 plot_anomalies

.line_alpha = 1,

.title = "Anomaly Decomposition Plot",

.x_lab = "",

.y_lab = "",

.interactive = TRUE
)

plot_anomalies_cleaned(
.data,
.date_var,
.facet_vars = NULL,
.facet_ncol = 1,
.facet_nrow = 1,
.facet_scales = "free",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.cleaned_line_color = "#e31a1c",
.cleaned_line_size = 0.5,
.cleaned_line_type = 1,
.cleaned_line_alpha = 1,
.legend_show = TRUE,
.title = "Anomalies Cleaned Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,
.trelliscope = FALSE,
.trelliscope_params = list()

)

Arguments

.data A tibble or data.frame that has been anomalized by anomalize()

.date_var A column containing either date or date-time values

.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

.facet_ncol Number of facet columns.

.facet_nrow Number of facet rows (only used for .trelliscope = TRUE)

.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

.facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".

plot_anomalies 47

.facet_collapse

Multiple facets included on one facet strip instead of multiple facet strips.
.facet_collapse_sep

The separator used for collapsing facets.
.facet_strip_remove

Whether or not to remove the strip and text label for each facet.

.line_color Line color.

.line_size Line size.

.line_type Line type.

.line_alpha Line alpha (opacity). Range: (0, 1).

.anom_color Color for the anomaly dots

.anom_alpha Opacity for the anomaly dots. Range: (0, 1).

.anom_size Size for the anomaly dots

.ribbon_fill Fill color for the acceptable range

.ribbon_alpha Fill opacity for the acceptable range. Range: (0, 1).

.legend_show Toggles on/off the Legend

.title Plot title.

.x_lab Plot x-axis label

.y_lab Plot y-axis label

.color_lab Plot label for the color legend

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.

.trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have trelliscopejs installed.

.trelliscope_params

Pass parameters to the trelliscopejs::facet_trelliscope() function as a
list(). The only parameters that cannot be passed are:

• ncol: use .facet_ncol

• nrow: use .facet_nrow

• scales: use facet_scales

• as_plotly: use .interactive

.cleaned_line_color

Line color.
.cleaned_line_size

Line size.
.cleaned_line_type

Line type.
.cleaned_line_alpha

Line alpha (opacity). Range: (0, 1).

Value

A plotly or ggplot2 visualization

48 plot_anomaly_diagnostics

Examples

Plot Anomalies
library(dplyr)

walmart_sales_weekly %>%
filter(id %in% c("1_1", "1_3")) %>%
group_by(id) %>%
anomalize(Date, Weekly_Sales) %>%
plot_anomalies(Date, .facet_ncol = 2, .ribbon_alpha = 0.25, .interactive = FALSE)

Plot Anomalies Decomposition
library(dplyr)

walmart_sales_weekly %>%
filter(id %in% c("1_1", "1_3")) %>%
group_by(id) %>%
anomalize(Date, Weekly_Sales, .message = FALSE) %>%
plot_anomalies_decomp(Date, .interactive = FALSE)

Plot Anomalies Cleaned
library(dplyr)

walmart_sales_weekly %>%
filter(id %in% c("1_1", "1_3")) %>%
group_by(id) %>%
anomalize(Date, Weekly_Sales, .message = FALSE) %>%
plot_anomalies_cleaned(Date, .facet_ncol = 2, .interactive = FALSE)

plot_anomaly_diagnostics

Visualize Anomalies for One or More Time Series

Description

An interactive and scalable function for visualizing anomalies in time series data. Plots are available
in interactive plotly (default) and static ggplot2 format.

Usage

plot_anomaly_diagnostics(
.data,
.date_var,
.value,
.facet_vars = NULL,
.frequency = "auto",
.trend = "auto",
.alpha = 0.05,
.max_anomalies = 0.2,

plot_anomaly_diagnostics 49

.message = TRUE,

.facet_ncol = 1,

.facet_nrow = 1,

.facet_scales = "free",

.facet_dir = "h",

.facet_collapse = FALSE,

.facet_collapse_sep = " ",

.facet_strip_remove = FALSE,

.line_color = "#2c3e50",

.line_size = 0.5,

.line_type = 1,

.line_alpha = 1,

.anom_color = "#e31a1c",

.anom_alpha = 1,

.anom_size = 1.5,

.ribbon_fill = "grey20",

.ribbon_alpha = 0.2,

.legend_show = TRUE,

.title = "Anomaly Diagnostics",

.x_lab = "",

.y_lab = "",

.color_lab = "Anomaly",

.interactive = TRUE,

.trelliscope = FALSE,

.trelliscope_params = list()
)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the
LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().

.alpha Controls the width of the "normal" range. Lower values are more conservative
while higher values are less prone to incorrectly classifying "normal" observa-
tions.

.max_anomalies The maximum percent of anomalies permitted to be identified.

.message A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).

.facet_ncol Number of facet columns.

50 plot_anomaly_diagnostics

.facet_nrow Number of facet rows (only used for .trelliscope = TRUE)

.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

.facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".

.facet_collapse

Multiple facets included on one facet strip instead of multiple facet strips.
.facet_collapse_sep

The separator used for collapsing facets.
.facet_strip_remove

Whether or not to remove the strip and text label for each facet.

.line_color Line color.

.line_size Line size.

.line_type Line type.

.line_alpha Line alpha (opacity). Range: (0, 1).

.anom_color Color for the anomaly dots

.anom_alpha Opacity for the anomaly dots. Range: (0, 1).

.anom_size Size for the anomaly dots

.ribbon_fill Fill color for the acceptable range

.ribbon_alpha Fill opacity for the acceptable range. Range: (0, 1).

.legend_show Toggles on/off the Legend

.title Plot title.

.x_lab Plot x-axis label

.y_lab Plot y-axis label

.color_lab Plot label for the color legend

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.

.trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have trelliscopejs installed.

.trelliscope_params

Pass parameters to the trelliscopejs::facet_trelliscope() function as a
list(). The only parameters that cannot be passed are:

• ncol: use .facet_ncol

• nrow: use .facet_nrow

• scales: use facet_scales

• as_plotly: use .interactive

Details

The plot_anomaly_diagnostics() is a visualization wrapper for tk_anomaly_diagnostics()
group-wise anomaly detection, implements a 2-step process to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

plot_anomaly_diagnostics 51

The decomposition separates the "season" and "trend" components from the "observed" values leav-
ing the "remainder" for anomaly detection.

The user can control two parameters: frequency and trend.

1. .frequency: Adjusts the "season" component that is removed from the "observed" values.

2. .trend: Adjusts the trend window (t.window parameter from stats::stl() that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the
scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "re-
mainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are de-
termined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IQR Adjustment, alpha parameter

With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an
IQR Factor of 3 (3X). The IQR Factor = 0.15 / alpha (hence 3X with alpha = 0.05):

• To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more
difficult to be an outlier.

• Increase alpha to make it easier to be an outlier.

• The IQR outlier detection method is used in forecast::tsoutliers().

• A similar outlier detection method is used by Twitter’s AnomalyDetection package.

• Both Twitter and Forecast tsoutliers methods have been implemented in Business Science’s
anomalize package.

Value

A plotly or ggplot2 visualization

References

1. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A
Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol.
6, No. 1 (1990), pp. 3-73.

2. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for
Long-Term Anomaly Detection in the Cloud. Twitter Inc.

See Also

• tk_anomaly_diagnostics(): Group-wise anomaly detection

52 plot_seasonal_diagnostics

Examples

library(dplyr)

walmart_sales_weekly %>%
group_by(id) %>%
plot_anomaly_diagnostics(Date, Weekly_Sales,

.message = FALSE,

.facet_ncol = 3,

.ribbon_alpha = 0.25,

.interactive = FALSE)

plot_seasonal_diagnostics

Visualize Multiple Seasonality Features for One or More Time Series

Description

An interactive and scalable function for visualizing time series seasonality. Plots are available in
interactive plotly (default) and static ggplot2 format.

Usage

plot_seasonal_diagnostics(
.data,
.date_var,
.value,
.facet_vars = NULL,
.feature_set = "auto",
.geom = c("boxplot", "violin"),
.geom_color = "#2c3e50",
.geom_outlier_color = "#2c3e50",
.title = "Seasonal Diagnostics",
.x_lab = "",
.y_lab = "",
.interactive = TRUE

)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

plot_seasonal_diagnostics 53

.feature_set One or multiple selections to analyze for seasonality. Choices include:

• "auto" - Automatically selects features based on the time stamps and length
of the series.

• "second" - Good for analyzing seasonality by second of each minute.
• "minute" - Good for analyzing seasonality by minute of the hour
• "hour" - Good for analyzing seasonality by hour of the day
• "wday.lbl" - Labeled weekdays. Good for analyzing seasonality by day of

the week.
• "week" - Good for analyzing seasonality by week of the year.
• "month.lbl" - Labeled months. Good for analyzing seasonality by month of

the year.
• "quarter" - Good for analyzing seasonality by quarter of the year
• "year" - Good for analyzing seasonality over multiple years.

.geom Either "boxplot" or "violin"

.geom_color Geometry color. Line color. Use keyword: "scale_color" to change the color by
the facet.

.geom_outlier_color

Color used to highlight outliers.

.title Plot title.

.x_lab Plot x-axis label

.y_lab Plot y-axis label

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.

Details

Automatic Feature Selection

Internal calculations are performed to detect a sub-range of features to include useing the following
logic:

• The minimum feature is selected based on the median difference between consecutive times-
tamps

• The maximum feature is selected based on having 2 full periods.

Example: Hourly timestamp data that lasts more than 2 weeks will have the following features:
"hour", "wday.lbl", and "week".

Scalable with Grouped Data Frames

This function respects grouped data.frame and tibbles that were made with dplyr::group_by().

For grouped data, the automatic feature selection returned is a collection of all features within the
sub-groups. This means extra features are returned even though they may be meaningless for some
of the groups.

Transformations

The .value parameter respects transformations (e.g. .value = log(sales)).

54 plot_stl_diagnostics

Value

A plotly or ggplot2 visualization

Examples

library(dplyr)

---- MULTIPLE FREQUENCY ----
Taylor 30-minute dataset from forecast package
taylor_30_min

Visualize series
taylor_30_min %>%

plot_time_series(date, value, .interactive = FALSE)

Visualize seasonality
taylor_30_min %>%

plot_seasonal_diagnostics(date, value, .interactive = FALSE)

---- GROUPED EXAMPLES ----
m4 hourly dataset
m4_hourly

Visualize series
m4_hourly %>%

group_by(id) %>%
plot_time_series(date, value, .facet_scales = "free", .interactive = FALSE)

Visualize seasonality
m4_hourly %>%

group_by(id) %>%
plot_seasonal_diagnostics(date, value, .interactive = FALSE)

plot_stl_diagnostics Visualize STL Decomposition Features for One or More Time Series

Description

An interactive and scalable function for visualizing time series STL Decomposition. Plots are
available in interactive plotly (default) and static ggplot2 format.

Usage

plot_stl_diagnostics(
.data,
.date_var,

plot_stl_diagnostics 55

.value,

.facet_vars = NULL,

.feature_set = c("observed", "season", "trend", "remainder", "seasadj"),

.frequency = "auto",

.trend = "auto",

.message = TRUE,

.facet_scales = "free",

.line_color = "#2c3e50",

.line_size = 0.5,

.line_type = 1,

.line_alpha = 1,

.title = "STL Diagnostics",

.x_lab = "",

.y_lab = "",

.interactive = TRUE
)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

.feature_set The STL decompositions to visualize. Select one or more of "observed", "sea-
son", "trend", "remainder", "seasadj".

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the
lowess smoother, which is used to remove the remainder.

.message A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).

.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

.line_color Line color.

.line_size Line size.

.line_type Line type.

.line_alpha Line alpha (opacity). Range: (0, 1).

.title Plot title.

.x_lab Plot x-axis label

.y_lab Plot y-axis label

.interactive If TRUE, returns a plotly interactive plot. If FALSE, returns a static ggplot2
plot.

56 plot_stl_diagnostics

Details

The plot_stl_diagnostics() function generates a Seasonal-Trend-Loess decomposition. The
function is "tidy" in the sense that it works on data frames and is designed to work with dplyr
groups.

STL method:

The STL method implements time series decomposition using the underlying stats::stl(). The
decomposition separates the "season" and "trend" components from the "observed" values leaving
the "remainder".

Frequency & Trend Selection
The user can control two parameters: .frequency and .trend.

1. The .frequency parameter adjusts the "season" component that is removed from the "ob-
served" values.

2. The .trend parameter adjusts the trend window (t.window parameter from stl()) that is
used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which automatically selects the frequency and/or trend based
on the scale of the time series.

Value

A plotly or ggplot2 visualization

Examples

library(dplyr)

---- SINGLE TIME SERIES DECOMPOSITION ----
m4_hourly %>%

filter(id == "H10") %>%
plot_stl_diagnostics(

date, value,
Set features to return, desired frequency and trend
.feature_set = c("observed", "season", "trend", "remainder"),
.frequency = "24 hours",
.trend = "1 week",
.interactive = FALSE)

---- GROUPS ----
m4_hourly %>%

group_by(id) %>%
plot_stl_diagnostics(

date, value,
.feature_set = c("observed", "season", "trend"),
.interactive = FALSE)

plot_time_series 57

plot_time_series Interactive Plotting for One or More Time Series

Description

A workhorse time-series plotting function that generates interactive plotly plots, consolidates 20+
lines of ggplot2 code, and scales well to many time series.

Usage

plot_time_series(
.data,
.date_var,
.value,
.color_var = NULL,
.facet_vars = NULL,
.facet_ncol = 1,
.facet_nrow = 1,
.facet_scales = "free_y",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.y_intercept = NULL,
.y_intercept_color = "#2c3e50",
.x_intercept = NULL,
.x_intercept_color = "#2c3e50",
.smooth = TRUE,
.smooth_period = "auto",
.smooth_message = FALSE,
.smooth_span = NULL,
.smooth_degree = 2,
.smooth_color = "#3366FF",
.smooth_size = 1,
.smooth_alpha = 1,
.legend_show = TRUE,
.title = "Time Series Plot",
.x_lab = "",
.y_lab = "",
.color_lab = "Legend",
.interactive = TRUE,
.plotly_slider = FALSE,
.trelliscope = FALSE,

58 plot_time_series

.trelliscope_params = list()
)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.color_var A categorical column that can be used to change the line color

.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

.facet_ncol Number of facet columns.

.facet_nrow Number of facet rows (only used for .trelliscope = TRUE)

.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

.facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".

.facet_collapse

Multiple facets included on one facet strip instead of multiple facet strips.
.facet_collapse_sep

The separator used for collapsing facets.
.facet_strip_remove

Whether or not to remove the strip and text label for each facet.

.line_color Line color. Overrided if .color_var is specified.

.line_size Line size.

.line_type Line type.

.line_alpha Line alpha (opacity). Range: (0, 1).

.y_intercept Value for a y-intercept on the plot

.y_intercept_color

Color for the y-intercept

.x_intercept Value for a x-intercept on the plot

.x_intercept_color

Color for the x-intercept

.smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()
to apply a LOESS smoother.

.smooth_period Number of observations to include in the Loess Smoother. Set to "auto" by
default, which uses tk_get_trend() to determine a logical trend cycle.

.smooth_message

Logical. Whether or not to return the trend selected as a message. Useful for
those that want to see what .smooth_period was selected.

.smooth_span Percentage of observations to include in the Loess Smoother. You can use either
period or span. See smooth_vec().

plot_time_series 59

.smooth_degree Flexibility of Loess Polynomial. Either 0, 1, 2 (0 = lest flexible, 2 = more
flexible).

.smooth_color Smoother line color

.smooth_size Smoother line size

.smooth_alpha Smoother alpha (opacity). Range: (0, 1).

.legend_show Toggles on/off the Legend

.title Title for the plot

.x_lab X-axis label for the plot

.y_lab Y-axis label for the plot

.color_lab Legend label if a color_var is used.

.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

.plotly_slider If TRUE, returns a plotly date range slider.

.trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have trelliscopejs installed.

.trelliscope_params

Pass parameters to the trelliscopejs::facet_trelliscope() function as a
list(). The only parameters that cannot be passed are:

• ncol: use .facet_ncol

• nrow: use .facet_nrow

• scales: use facet_scales

• as_plotly: use .interactive

Details

plot_time_series() is a scalable function that works with both ungrouped and grouped data.frame
objects (and tibbles!).

Interactive by Default
plot_time_series() is built for exploration using:

• Interactive Plots: plotly (default) - Great for exploring!

• Static Plots: ggplot2 (set .interactive = FALSE) - Great for PDF Reports

By default, an interactive plotly visualization is returned.

Scalable with Facets & Dplyr Groups
plot_time_series() returns multiple time series plots using ggplot2 facets:

• group_by() - If groups are detected, multiple facets are returned

• plot_time_series(.facet_vars) - You can manually supply facets as well.

Can Transform Values just like ggplot
The .values argument accepts transformations just like ggplot2. For example, if you want to
take the log of sales you can use a call like plot_time_series(date, log(sales)) and the log
transformation will be applied.

60 plot_time_series

Smoother Period / Span Calculation

The .smooth = TRUE option returns a smoother that is calculated based on either:

1. A .smooth_period: Number of observations

2. A .smooth_span: A percentage of observations

By default, the .smooth_period is automatically calculated using 75% of the observertions. This
is the same as geom_smooth(method = "loess", span = 0.75).

A user can specify a time-based window (e.g. .smooth_period = "1 year") or a numeric value
(e.g. smooth_period = 365).

Time-based windows return the median number of observations in a window using tk_get_trend().

Value

A static ggplot2 plot or an interactive plotly plot

Examples

library(dplyr)
library(lubridate)

Works with individual time series
FANG %>%

filter(symbol == "FB") %>%
plot_time_series(date, adjusted, .interactive = FALSE)

Works with groups
FANG %>%

group_by(symbol) %>%
plot_time_series(date, adjusted,

.facet_ncol = 2, # 2-column layout

.interactive = FALSE)

Can also group inside & use .color_var
FANG %>%

mutate(year = year(date)) %>%
plot_time_series(date, adjusted,

.facet_vars = c(symbol, year), # add groups/facets

.color_var = year, # color by year

.facet_ncol = 4,

.facet_scales = "free",

.facet_collapse = TRUE, # combine group strip text into 1 line

.interactive = FALSE)

Can apply transformations to .value or .color_var
- .value = log(adjusted)
- .color_var = year(date)
FANG %>%

plot_time_series(date, log(adjusted),
.color_var = year(date),
.facet_vars = contains("symbol"),

plot_time_series_boxplot 61

.facet_ncol = 2,

.facet_scales = "free",

.y_lab = "Log Scale",

.interactive = FALSE)

plot_time_series_boxplot

Interactive Time Series Box Plots

Description

A boxplot function that generates interactive plotly plots for time series.

Usage

plot_time_series_boxplot(
.data,
.date_var,
.value,
.period,
.color_var = NULL,
.facet_vars = NULL,
.facet_ncol = 1,
.facet_nrow = 1,
.facet_scales = "free_y",
.facet_dir = "h",
.facet_collapse = FALSE,
.facet_collapse_sep = " ",
.facet_strip_remove = FALSE,
.line_color = "#2c3e50",
.line_size = 0.5,
.line_type = 1,
.line_alpha = 1,
.y_intercept = NULL,
.y_intercept_color = "#2c3e50",
.smooth = TRUE,
.smooth_func = ~mean(.x, na.rm = TRUE),
.smooth_period = "auto",
.smooth_message = FALSE,
.smooth_span = NULL,
.smooth_degree = 2,
.smooth_color = "#3366FF",
.smooth_size = 1,
.smooth_alpha = 1,
.legend_show = TRUE,

62 plot_time_series_boxplot

.title = "Time Series Plot",

.x_lab = "",

.y_lab = "",

.color_lab = "Legend",

.interactive = TRUE,

.plotly_slider = FALSE,

.trelliscope = FALSE,

.trelliscope_params = list()
)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.period A time series unit of aggregation for the boxplot. Examples include:

• "1 week"
• "3 years"
• "30 minutes"

.color_var A categorical column that can be used to change the line color

.facet_vars One or more grouping columns that broken out into ggplot2 facets. These can
be selected using tidyselect() helpers (e.g contains()).

.facet_ncol Number of facet columns.

.facet_nrow Number of facet rows (only used for .trelliscope = TRUE)

.facet_scales Control facet x & y-axis ranges. Options include "fixed", "free", "free_y",
"free_x"

.facet_dir The direction of faceting ("h" for horizontal, "v" for vertical). Default is "h".

.facet_collapse

Multiple facets included on one facet strip instead of multiple facet strips.
.facet_collapse_sep

The separator used for collapsing facets.
.facet_strip_remove

Whether or not to remove the strip and text label for each facet.

.line_color Line color. Overrided if .color_var is specified.

.line_size Line size.

.line_type Line type.

.line_alpha Line alpha (opacity). Range: (0, 1).

.y_intercept Value for a y-intercept on the plot

.y_intercept_color

Color for the y-intercept

.smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()
to apply a LOESS smoother.

plot_time_series_boxplot 63

.smooth_func Defines how to aggregate the .value to show the smoothed trendline. The default
is ~ mean(.x, na.rm = TRUE), which uses lambda function to ensure NA values
are removed. Possible values are:

• A function, e.g. mean.
• A purrr-style lambda, e.g. ~ mean(.x, na.rm = TRUE)

.smooth_period Number of observations to include in the Loess Smoother. Set to "auto" by
default, which uses tk_get_trend() to determine a logical trend cycle.

.smooth_message

Logical. Whether or not to return the trend selected as a message. Useful for
those that want to see what .smooth_period was selected.

.smooth_span Percentage of observations to include in the Loess Smoother. You can use either
period or span. See smooth_vec().

.smooth_degree Flexibility of Loess Polynomial. Either 0, 1, 2 (0 = lest flexible, 2 = more
flexible).

.smooth_color Smoother line color

.smooth_size Smoother line size

.smooth_alpha Smoother alpha (opacity). Range: (0, 1).

.legend_show Toggles on/off the Legend

.title Title for the plot

.x_lab X-axis label for the plot

.y_lab Y-axis label for the plot

.color_lab Legend label if a color_var is used.

.interactive Returns either a static (ggplot2) visualization or an interactive (plotly) visu-
alization

.plotly_slider If TRUE, returns a plotly date range slider.

.trelliscope Returns either a normal plot or a trelliscopejs plot (great for many time series)
Must have trelliscopejs installed.

.trelliscope_params

Pass parameters to the trelliscopejs::facet_trelliscope() function as a
list(). The only parameters that cannot be passed are:

• ncol: use .facet_ncol

• nrow: use .facet_nrow

• scales: use facet_scales

• as_plotly: use .interactive

Details

plot_time_series_boxplot() is a scalable function that works with both ungrouped and grouped
data.frame objects (and tibbles!).

Interactive by Default
plot_time_series_boxplot() is built for exploration using:

• Interactive Plots: plotly (default) - Great for exploring!

64 plot_time_series_boxplot

• Static Plots: ggplot2 (set .interactive = FALSE) - Great for PDF Reports

By default, an interactive plotly visualization is returned.

Scalable with Facets & Dplyr Groups
plot_time_series_boxplot() returns multiple time series plots using ggplot2 facets:

• group_by() - If groups are detected, multiple facets are returned

• plot_time_series_boxplot(.facet_vars) - You can manually supply facets as well.

Can Transform Values just like ggplot
The .values argument accepts transformations just like ggplot2. For example, if you want to take
the log of sales you can use a call like plot_time_series_boxplot(date, log(sales)) and the
log transformation will be applied.

Smoother Period / Span Calculation
The .smooth = TRUE option returns a smoother that is calculated based on either:

1. A .smooth_func: The method of aggregation. Usually an aggregation like mean is used. The
purrr-style function syntax can be used to apply complex functions.

2. A .smooth_period: Number of observations

3. A .smooth_span: A percentage of observations

By default, the .smooth_period is automatically calculated using 75% of the observertions. This
is the same as geom_smooth(method = "loess", span = 0.75).

A user can specify a time-based window (e.g. .smooth_period = "1 year") or a numeric value
(e.g. smooth_period = 365).

Time-based windows return the median number of observations in a window using tk_get_trend().

Value

A static ggplot2 plot or an interactive plotly plot

Examples

library(dplyr)
library(lubridate)

Works with individual time series
FANG %>%

filter(symbol == "FB") %>%
plot_time_series_boxplot(

date, adjusted,
.period = "3 month",
.interactive = FALSE)

Works with groups
FANG %>%

group_by(symbol) %>%
plot_time_series_boxplot(

date, adjusted,

plot_time_series_cv_plan 65

.period = "3 months",

.facet_ncol = 2, # 2-column layout

.interactive = FALSE)

Can also group inside & use .color_var
FANG %>%

mutate(year = year(date)) %>%
plot_time_series_boxplot(

date, adjusted,
.period = "3 months",
.facet_vars = c(symbol, year), # add groups/facets
.color_var = year, # color by year
.facet_ncol = 4,
.facet_scales = "free",
.interactive = FALSE)

Can apply transformations to .value or .color_var
- .value = log(adjusted)
- .color_var = year(date)
FANG %>%

plot_time_series_boxplot(
date, log(adjusted),
.period = "3 months",
.color_var = year(date),
.facet_vars = contains("symbol"),
.facet_ncol = 2,
.facet_scales = "free",
.y_lab = "Log Scale",
.interactive = FALSE)

Can adjust the smoother
FANG %>%

group_by(symbol) %>%
plot_time_series_boxplot(

date, adjusted,
.period = "3 months",
.smooth = TRUE,
.smooth_func = median, # Smoother function
.smooth_period = "5 years", # Smoother Period
.facet_ncol = 2,
.interactive = FALSE)

plot_time_series_cv_plan

Visualize a Time Series Resample Plan

66 plot_time_series_cv_plan

Description

The plot_time_series_cv_plan() function provides a visualization for a time series resample
specification (rset) of either rolling_origin or time_series_cv class.

Usage

plot_time_series_cv_plan(
.data,
.date_var,
.value,
...,
.smooth = FALSE,
.title = "Time Series Cross Validation Plan"

)

Arguments

.data A time series resample specification of of either rolling_origin or time_series_cv
class or a data frame (tibble) that has been prepared using tk_time_series_cv_plan().

.date_var A column containing either date or date-time values

.value A column containing numeric values

... Additional parameters passed to plot_time_series()

.smooth Logical - Whether or not to include a trendline smoother. Uses See smooth_vec()
to apply a LOESS smoother.

.title Title for the plot

Details

Resample Set

A resample set is an output of the timetk::time_series_cv() function or the rsample::rolling_origin()
function.

Value

Returns a static ggplot or interactive plotly object depending on whether or not .interactive is
FALSE or TRUE, respectively.

See Also

• time_series_cv() and rsample::rolling_origin() - Functions used to create time series
resample specfications.

• plot_time_series_cv_plan() - The plotting function used for visualizing the time series
resample plan.

plot_time_series_regression 67

Examples

library(dplyr)
library(rsample)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

resample_spec <- time_series_cv(
FB_tbl,
initial = "1 year",
assess = "6 weeks",
skip = "3 months",
lag = "1 month",
cumulative = FALSE,
slice_limit = 6

)

resample_spec %>% tk_time_series_cv_plan()

resample_spec %>%
tk_time_series_cv_plan() %>%
plot_time_series_cv_plan(

date, adjusted, # date variable and value variable
Additional arguments passed to plot_time_series(),
.facet_ncol = 2,
.line_alpha = 0.5,
.interactive = FALSE

)

plot_time_series_regression

Visualize a Time Series Linear Regression Formula

Description

A wrapper for stats::lm() that overlays a linear regression fitted model over a time series, which
can help show the effect of feature engineering

Usage

plot_time_series_regression(
.data,
.date_var,
.formula,
.show_summary = FALSE,
...

)

68 plot_time_series_regression

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.formula A linear regression formula. The left-hand side of the formula is used as the
y-axis value. The right-hand side of the formula is used to develop the linear
regression model. See stats::lm() for details.

.show_summary If TRUE, prints the summary.lm().

... Additional arguments passed to plot_time_series()

Details

plot_time_series_regression() is a scalable function that works with both ungrouped and
grouped data.frame objects (and tibbles!).

Time Series Formula
The .formula uses stats::lm() to apply a linear regression, which is used to visualize the effect
of feature engineering on a time series.

• The left-hand side of the formula is used as the y-axis value.

• The right-hand side of the formula is used to develop the linear regression model.

Interactive by Default
plot_time_series_regression() is built for exploration using:

• Interactive Plots: plotly (default) - Great for exploring!

• Static Plots: ggplot2 (set .interactive = FALSE) - Great for PDF Reports

By default, an interactive plotly visualization is returned.

Scalable with Facets & Dplyr Groups
plot_time_series_regression() returns multiple time series plots using ggplot2 facets:

• group_by() - If groups are detected, multiple facets are returned

• plot_time_series_regression(.facet_vars) - You can manually supply facets as well.

Value

A static ggplot2 plot or an interactive plotly plot

Examples

library(dplyr)
library(lubridate)

---- SINGLE SERIES ----
m4_monthly %>%

filter(id == "M750") %>%
plot_time_series_regression(

.date_var = date,

set_tk_time_scale_template 69

.formula = log(value) ~ as.numeric(date) + month(date, label = TRUE),

.show_summary = TRUE,

.facet_ncol = 2,

.interactive = FALSE
)

---- GROUPED SERIES ----
m4_monthly %>%

group_by(id) %>%
plot_time_series_regression(

.date_var = date,

.formula = log(value) ~ as.numeric(date) + month(date, label = TRUE),

.facet_ncol = 2,

.interactive = FALSE
)

set_tk_time_scale_template

Get and modify the Time Scale Template

Description

Get and modify the Time Scale Template

Usage

set_tk_time_scale_template(.data)

get_tk_time_scale_template()

tk_time_scale_template()

Arguments

.data A tibble with a "time_scale", "frequency", and "trend" columns.

Details

Used to get and set the time scale template, which is used by tk_get_frequency() and tk_get_trend()
when period = "auto".

The predefined template is stored in a function tk_time_scale_template(). This is the default
used by timetk.

Changing the Default Template

• You can access the current template with get_tk_time_scale_template().

• You can modify the current template with set_tk_time_scale_template().

70 slice_period

Value

• get_tk_time_scale_template(): Returns tibble containing the time scale template infor-
mation.

• set_tk_time_scale_template(): Returns nothing.

See Also

• Automated Frequency and Trend Calculation: tk_get_frequency(), tk_get_trend()

Examples

get_tk_time_scale_template()

set_tk_time_scale_template(tk_time_scale_template())

slice_period Apply slice inside periods (windows)

Description

Applies a dplyr slice inside a time-based period (window).

Usage

slice_period(.data, ..., .date_var, .period = "1 day")

Arguments

.data A tbl object or data.frame

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods.

.date_var A column containing date or date-time values. If missing, attempts to auto-
detect date column.

.period A period to slice within. Time units are grouped using lubridate::floor_date()
or lubridate::ceiling_date().
The value can be:

• second

• minute

• hour

• day

• week

slice_period 71

• month

• bimonth

• quarter

• season

• halfyear

• year

Arbitrary unique English abbreviations as in the lubridate::period() con-
structor are allowed:

• "1 year"

• "2 months"

• "30 seconds"

Value

A tibble or data.frame

See Also

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.

• mutate_by_time() - Simplifies applying mutations by time windows.

• pad_by_time() - Insert time series rows with regularly spaced timestamps

• filter_by_time() - Quickly filter using date ranges.

• filter_period() - Apply filtering expressions inside periods (windows)

• slice_period() - Apply slice inside periods (windows)

• condense_period() - Convert to a different periodicity

• between_time() - Range detection for date or date-time sequences.

• slidify() - Turn any function into a sliding (rolling) function

Examples

Libraries
library(dplyr)

First 5 observations in each month
m4_daily %>%

group_by(id) %>%
slice_period(1:5, .period = "1 month")

Last observation in each month
m4_daily %>%

group_by(id) %>%
slice_period(n(), .period = "1 month")

72 slidify

slidify Create a rolling (sliding) version of any function

Description

slidify returns a rolling (sliding) version of the input function, with a rolling (sliding) .period
specified by the user.

Usage

slidify(
.f,
.period = 1,
.align = c("center", "left", "right"),
.partial = FALSE,
.unlist = TRUE

)

Arguments

.f A function, formula, or vector (not necessarily atomic).
If a function, it is used as is.
If a formula, e.g. ~ .x + 2, it is converted to a function. There are three ways to
refer to the arguments:

• For a single argument function, use .

• For a two argument function, use .x and .y

• For more arguments, use ..1, ..2, ..3 etc

This syntax allows you to create very compact anonymous functions. Note that
formula functions conceptually take dots (that’s why you can use ..1 etc). They
silently ignore additional arguments that are not used in the formula expression.
If character vector, numeric vector, or list, it is converted to an extractor func-
tion. Character vectors index by name and numeric vectors index by position;
use a list to index by position and name at different levels. If a component is not
present, the value of .default will be returned.

.period The period size to roll over

.align One of "center", "left" or "right".

.partial Should the moving window be allowed to return partial (incomplete) windows
instead of NA values. Set to FALSE by default, but can be switched to TRUE to
remove NA’s.

.unlist If the function returns a single value each time it is called, use .unlist = TRUE.
If the function returns more than one value, or a more complicated object (like a
linear model), use .unlist = FALSE to create a list-column of the rolling results.

slidify 73

Details

The slidify() function is almost identical to tibbletime::rollify() with 3 improvements:

1. Alignment ("center", "left", "right")
2. Partial windows are allowed
3. Uses slider under the hood, which improves speed and reliability by implementing code at

C++ level

Make any function a Sliding (Rolling) Function
slidify() turns a function into a sliding version of itself for use inside of a call to dplyr::mutate(),
however it works equally as well when called from purrr::map().

Because of it’s intended use with dplyr::mutate(), slidify creates a function that always returns
output with the same length of the input

Alignment
Rolling / Sliding functions generate .period - 1 fewer values than the incoming vector. Thus, the
vector needs to be aligned. Alignment of the vector follows 3 types:

• center (default): NA or .partial values are divided and added to the beginning and end of
the series to "Center" the moving average. This is common in Time Series applications (e.g.
denoising).

• left: NA or .partial values are added to the end to shift the series to the Left.
• right: NA or .partial values are added to the beginning to shift the series to the Right. This

is common in Financial Applications (e.g moving average cross-overs).

Allowing Partial Windows
A key improvement over tibbletime::slidify() is that timetk::slidify() implements .partial
rolling windows. Just set .partial = TRUE.

Value

A function with the rolling/sliding conversion applied.

References

• The Tibbletime R Package by Davis Vaughan, which includes the original rollify() Func-
tion

See Also

Transformation Functions:

• slidify_vec() - A simple vectorized function for applying summary functions to rolling
windows.

Augmentation Functions (Add Rolling Multiple Columns):

• tk_augment_slidify() - For easily adding multiple rolling windows to you data

Slider R Package:

• slider::pslide() - The workhorse function that powers timetk::slidify()

https://business-science.github.io/tibbletime/index.html

74 slidify

Examples

library(dplyr)

FB <- FANG %>% dplyr::filter(symbol == "FB")

--- ROLLING MEAN (SINGLE ARG EXAMPLE) ---

Turn the normal mean function into a rolling mean with a 5 row .period
mean_roll_5 <- slidify(mean, .period = 5, .align = "right")

FB %>%
mutate(rolling_mean_5 = mean_roll_5(adjusted))

Use `partial = TRUE` to allow partial windows (those with less than the full .period)
mean_roll_5_partial <- slidify(mean, .period = 5, .align = "right", .partial = TRUE)

FB %>%
mutate(rolling_mean_5 = mean_roll_5_partial(adjusted))

There's nothing stopping you from combining multiple rolling functions with
different .period sizes in the same mutate call

mean_roll_10 <- slidify(mean, .period = 10, .align = "right")

FB %>%
select(symbol, date, adjusted) %>%
mutate(

rolling_mean_5 = mean_roll_5(adjusted),
rolling_mean_10 = mean_roll_10(adjusted)

)

For summary operations like rolling means, we can accomplish large-scale
multi-rolls with tk_augment_slidify()

FB %>%
select(symbol, date, adjusted) %>%
tk_augment_slidify(

adjusted, .period = 5:10, .f = mean, .align = "right",
.names = stringr::str_c("MA_", 5:10)

)

--- GROUPS AND ROLLING ----

One of the most powerful things about this is that it works with
groups since `mutate` is being used

mean_roll_3 <- slidify(mean, .period = 3, .align = "right")

FANG %>%
group_by(symbol) %>%
mutate(mean_roll = mean_roll_3(adjusted)) %>%

slidify 75

slice(1:5)

--- ROLLING CORRELATION (MULTIPLE ARG EXAMPLE) ---

With 2 args, use the purrr syntax of ~ and .x, .y
Rolling correlation example
cor_roll <- slidify(~cor(.x, .y), .period = 5, .align = "right")

FB %>%
mutate(running_cor = cor_roll(adjusted, open))

With >2 args, create an anonymous function with >2 args or use
the purrr convention of ..1, ..2, ..3 to refer to the arguments
avg_of_avgs <- slidify(

function(x, y, z) (mean(x) + mean(y) + mean(z)) / 3,
.period = 10,
.align = "right"

)

Or
avg_of_avgs <- slidify(

~(mean(..1) + mean(..2) + mean(..3)) / 3,
.period = 10,
.align = "right"

)

FB %>%
mutate(avg_of_avgs = avg_of_avgs(open, high, low))

Optional arguments MUST be passed at the creation of the rolling function
Only data arguments that are "rolled over" are allowed when calling the
rolling version of the function
FB$adjusted[1] <- NA

roll_mean_na_rm <- slidify(~mean(.x, na.rm = TRUE), .period = 5, .align = "right")

FB %>%
mutate(roll_mean = roll_mean_na_rm(adjusted))

--- ROLLING REGRESSIONS ----

Rolling regressions are easy to implement using `.unlist = FALSE`
lm_roll <- slidify(~lm(.x ~ .y), .period = 90, .unlist = FALSE, .align = "right")

FB %>%
tidyr::drop_na() %>%
mutate(numeric_date = as.numeric(date)) %>%
mutate(rolling_lm = lm_roll(adjusted, numeric_date)) %>%
filter(!is.na(rolling_lm))

76 slidify_vec

slidify_vec Rolling Window Transformation

Description

slidify_vec() applies a summary function to a rolling sequence of windows.

Usage

slidify_vec(
.x,
.f,
...,
.period = 1,
.align = c("center", "left", "right"),
.partial = FALSE

)

Arguments

.x A vector to have a rolling window transformation applied.

.f A summary [function / formula]

• If a function, e.g. mean, the function is used with any additional arguments,
....

• If a formula, e.g. ~ mean(., na.rm = TRUE), it is converted to a function.

This syntax allows you to create very compact anonymous functions.

... Additional arguments passed on to the .f function.

.period The number of periods to include in the local rolling window. This is effectively
the "window size".

.align One of "center", "left" or "right".

.partial Should the moving window be allowed to return partial (incomplete) windows
instead of NA values. Set to FALSE by default, but can be switched to TRUE to
remove NA’s.

Details

The slidify_vec() function is a wrapper for slider::slide_vec() with parameters simplified
"center", "left", "right" alignment.

Vector Length In == Vector Length Out
NA values or .partial values are always returned to ensure the length of the return vector is the
same length of the incoming vector. This ensures easier use with dplyr::mutate().

slidify_vec 77

Alignment
Rolling functions generate .period - 1 fewer values than the incoming vector. Thus, the vector
needs to be aligned. Alignment of the vector follows 3 types:

• Center: NA or .partial values are divided and added to the beginning and end of the se-
ries to "Center" the moving average. This is common for de-noising operations. See also
[smooth_vec()] for LOESS without NA values.

• Left: NA or .partial values are added to the end to shift the series to the Left.

• Right: NA or .partial values are added to the beginning to shif the series to the Right. This
is common in Financial Applications such as moving average cross-overs.

Partial Values

• The advantage to using .partial values vs NA padding is that the series can be filled (good
for time-series de-noising operations).

• The downside to partial values is that the partials can become less stable at the regions where
incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is smooth_vec(),
which implements local polynomial regression.

Value

A numeric vector

References

• Slider R Package by Davis Vaughan

See Also

Modeling and More Complex Rolling Operations:

• step_slidify() - Roll apply for tidymodels modeling

• tk_augment_slidify() - Add many rolling columns group-wise

• slidify() - Turn any function into a rolling function. Great for rolling cor, rolling regression,
etc.

• For more complex rolling operations, check out the slider R package.

Vectorized Transformation Functions:

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation for Time Series: ts_impute_vec()

https://slider.r-lib.org/

78 slidify_vec

Examples

library(dplyr)
library(ggplot2)

Training Data
FB_tbl <- FANG %>%

filter(symbol == "FB") %>%
select(symbol, date, adjusted)

---- FUNCTION FORMAT ----
- The `.f = mean` function is used. Argument `na.rm = TRUE` is passed as ...
FB_tbl %>%

mutate(adjusted_30_ma = slidify_vec(
.x = adjusted,
.period = 30,
.f = mean,
na.rm = TRUE,
.align = "center")) %>%
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30_ma), color = "blue", na.rm = TRUE)

---- FORMULA FORMAT ----
- Anonymous function `.f = ~ mean(., na.rm = TRUE)` is used
FB_tbl %>%

mutate(adjusted_30_ma = slidify_vec(
.x = adjusted,
.period = 30,
.f = ~ mean(., na.rm = TRUE),
.align = "center")) %>%
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30_ma), color = "blue", na.rm = TRUE)

---- PARTIAL VALUES ----
- set `.partial = TRUE`
FB_tbl %>%

mutate(adjusted_30_ma = slidify_vec(
.x = adjusted,
.f = ~ mean(., na.rm = TRUE),
.period = 30,
.align = "center",
.partial = TRUE)) %>%
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30_ma), color = "blue")

---- Loess vs Moving Average ----
- Loess: Using `.degree = 0` to make less flexible. Comparable to a moving average.

FB_tbl %>%
mutate(

smooth_vec 79

adjusted_loess_30 = smooth_vec(adjusted, period = 30, degree = 0),
adjusted_ma_30 = slidify_vec(adjusted, .f = mean,

.period = 30, .partial = TRUE)
) %>%
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_loess_30), color = "red") +
geom_line(aes(y = adjusted_ma_30), color = "blue") +
labs(title = "Loess vs Moving Average")

smooth_vec Smoothing Transformation using Loess

Description

smooth_vec() applies a LOESS transformation to a numeric vector.

Usage

smooth_vec(x, period = 30, span = NULL, degree = 2)

Arguments

x A numeric vector to have a smoothing transformation applied.

period The number of periods to include in the local smoothing. Similar to window
size for a moving average. See details for an explanation period vs span spec-
ification.

span The span is a percentage of data to be included in the smoothing window. Pe-
riod is preferred for shorter windows to fix the window size. See details for an
explanation period vs span specification.

degree The degree of the polynomials to be used. Accetable values (least to most flexi-
ble): 0, 1, 2. Set to 2 by default for 2nd order polynomial (most flexible).

Details

Benefits:

• When using period, the effect is similar to a moving average without creating missing
values.

• When using span, the effect is to detect the trend in a series using a percentage of the total
number of observations.

80 smooth_vec

Loess Smoother Algorithm This function is a simplified wrapper for the stats::loess() with a
modification to set a fixed period rather than a percentage of data points via a span.

Why Period vs Span? The period is fixed whereas the span changes as the number of observations
change.

When to use Period? The effect of using a period is similar to a Moving Average where the
Window Size is the Fixed Period. This helps when you are trying to smooth local trends. If you
want a 30-day moving average, specify period = 30.

When to use Span? Span is easier to specify when you want a Long-Term Trendline where the
window size is unknown. You can specify span = 0.75 to locally regress using a window of 75%
of the data.

Value

A numeric vector

See Also

Loess Modeling Functions:

• step_smooth() - Recipe for tidymodels workflow

Additional Vector Functions:

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation for Time Series: ts_impute_vec()

Examples

library(dplyr)
library(ggplot2)

Training Data
FB_tbl <- FANG %>%

filter(symbol == "FB") %>%
select(symbol, date, adjusted)

---- PERIOD ----

FB_tbl %>%
mutate(adjusted_30 = smooth_vec(adjusted, period = 30, degree = 2)) %>%
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30), color = "red")

standardize_vec 81

---- SPAN ----

FB_tbl %>%
mutate(adjusted_30 = smooth_vec(adjusted, span = 0.75, degree = 2)) %>%
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_30), color = "red")

---- Loess vs Moving Average ----
- Loess: Using `degree = 0` to make less flexible. Comperable to a moving average.

FB_tbl %>%
mutate(

adjusted_loess_30 = smooth_vec(adjusted, period = 30, degree = 0),
adjusted_ma_30 = slidify_vec(adjusted, .period = 30,

.f = mean, .partial = TRUE)
) %>%
ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(aes(y = adjusted_loess_30), color = "red") +
geom_line(aes(y = adjusted_ma_30), color = "blue") +
labs(title = "Loess vs Moving Average")

standardize_vec Standardize to Mean 0, Standard Deviation 1 (Center & Scale)

Description

Standardization is commonly used to center and scale numeric features to prevent one from domi-
nating in algorithms that require data to be on the same scale.

Usage

standardize_vec(x, mean = NULL, sd = NULL, silent = FALSE)

standardize_inv_vec(x, mean, sd)

Arguments

x A numeric vector.

mean The mean used to invert the standardization

sd The standard deviation used to invert the standardization process.

silent Whether or not to report the automated mean and sd parameters as a message.

82 standardize_vec

Details

Standardization vs Normalization

• Standardization refers to a transformation that reduces the range to mean 0, standard devia-
tion 1

• Normalization refers to a transformation that reduces the min-max range: (0, 1)

Value

Returns a numeric vector with the standardization transformation applied.

See Also

• Normalization/Standardization: standardize_vec(), normalize_vec()

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation for Time Series: ts_impute_vec(), ts_clean_vec()

Examples

library(dplyr)

d10_daily <- m4_daily %>% dplyr::filter(id == "D10")

--- VECTOR ----

value_std <- standardize_vec(d10_daily$value)
value <- standardize_inv_vec(value_std,

mean = 2261.60682492582,
sd = 175.603721730477)

--- MUTATE ----

m4_daily %>%
group_by(id) %>%
mutate(value_std = standardize_vec(value))

step_box_cox 83

step_box_cox Box-Cox Transformation using Forecast Methods

Description

step_box_cox creates a specification of a recipe step that will transform data using a Box-Cox
transformation. This function differs from recipes::step_BoxCox by adding multiple methods
including Guerrero lambda optimization and handling for negative data used in the Forecast R
Package.

Usage

step_box_cox(
recipe,
...,
method = c("guerrero", "loglik"),
limits = c(-1, 2),
role = NA,
trained = FALSE,
lambdas_trained = NULL,
skip = FALSE,
id = rand_id("box_cox")

)

S3 method for class 'step_box_cox'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

method One of "guerrero" or "loglik"

limits A length 2 numeric vector defining the range to compute the transformation
parameter lambda.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.
lambdas_trained

A numeric vector of transformation values. This is NULL until computed by
prep().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome

84 step_box_cox

variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_box_cox object.

Details

The step_box_cox() function is designed specifically to handle time series using methods imple-
mented in the Forecast R Package.

Negative Data
This function can be applied to Negative Data.

Lambda Optimization Methods
This function uses 2 methods for optimizing the lambda selection from the Forecast R Package:

1. method = "guerrero": Guerrero’s (1993) method is used, where lambda minimizes the coef-
ficient of variation for subseries of x.

2. method = loglik: the value of lambda is chosen to maximize the profile log likelihood of a
linear model fitted to x. For non-seasonal data, a linear time trend is fitted while for seasonal
data, a linear time trend with seasonal dummy variables is used.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).

References

1. Guerrero, V.M. (1993) Time-series analysis supported by power transformations. Journal of
Forecasting, 12, 37–48.

2. Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations. JRSS B 26 211–246.

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Transformations to reduce variance:

• recipes::step_log() - Log transformation

step_diff 85

• recipes::step_sqrt() - Square-Root Power Transformation

Recipe Setup and Application:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

Examples

library(dplyr)
library(recipes)

FANG_wide <- FANG %>%
select(symbol, date, adjusted) %>%
tidyr::pivot_wider(names_from = symbol, values_from = adjusted)

recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%
step_box_cox(FB, AMZN, NFLX, GOOG) %>%
prep()

recipe_box_cox %>% bake(FANG_wide)

recipe_box_cox %>% tidy(1)

step_diff Create a differenced predictor

Description

step_diff creates a specification of a recipe step that will add new columns of differenced data.
Differenced data will include NA values where a difference was induced. These can be removed
with step_naomit().

Usage

step_diff(
recipe,
...,
role = "predictor",
trained = FALSE,
lag = 1,
difference = 1,
log = FALSE,
prefix = "diff_",
columns = NULL,
skip = FALSE,

86 step_diff

id = rand_id("diff")
)

S3 method for class 'step_diff'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details.

role Defaults to "predictor"

trained A logical to indicate if the quantities for preprocessing have been estimated.

lag A vector of positive integers identifying which lags (how far back) to be included
in the differencing calculation.

difference The number of differences to perform.

log Calculates log differences instead of differences.

prefix A prefix for generated column names, default to "diff_".

columns A character string of variable names that will be populated (eventually) by the
terms argument.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_diff object.

Details

The step assumes that the data are already in the proper sequential order for lagging.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

step_fourier 87

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Remove NA Values:

• recipes::step_naomit()

Main Recipe Functions:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

Examples

library(recipes)

FANG_wide <- FANG %>%
dplyr::select(symbol, date, adjusted) %>%
tidyr::pivot_wider(names_from = symbol, values_from = adjusted)

Make and apply recipe ----

recipe_diff <- recipe(~ ., data = FANG_wide) %>%
step_diff(FB, AMZN, NFLX, GOOG, lag = 1:3, difference = 1) %>%
prep()

recipe_diff %>% bake(FANG_wide)

Get information with tidy ----

recipe_diff %>% tidy()

recipe_diff %>% tidy(1)

step_fourier Fourier Features for Modeling Seasonality

Description

step_fourier creates a a specification of a recipe step that will convert a Date or Date-time column
into a Fourier series

88 step_fourier

Usage

step_fourier(
recipe,
...,
period,
K,
role = "predictor",
trained = FALSE,
columns = NULL,
scale_factor = NULL,
skip = FALSE,
id = rand_id("fourier")

)

S3 method for class 'step_fourier'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... A single column with class Date or POSIXct. See recipes::selections() for
more details. For the tidy method, these are not currently used.

period The numeric period for the oscillation frequency. See details for examples of
period specification.

K The number of orders to include for each sine/cosine fourier series. More orders
increase the number of fourier terms and therefore the variance of the fitted
model at the expense of bias. See details for examples of K specification.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep() is used.

scale_factor A factor for scaling the numeric index extracted from the date or date-time fea-
ture. This is a placeholder and will be populated once recipes::prep() is
used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_fourier object.

step_fourier 89

Details

Date Variable
Unlike other steps, step_fourier does not remove the original date variables. recipes::step_rm()
can be used for this purpose.

Period Specification
The period argument is used to generate the distance between peaks in the fourier sequence. The
key is to line up the peaks with unique seasonalities in the data.

For Daily Data, typical period specifications are:

• Yearly frequency is 365

• Quarterly frequency is 365 / 4 = 91.25

• Monthly frequency is 365 / 12 = 30.42

K Specification
The K argument specifies the maximum number of orders of Fourier terms. Examples:

• Specifying period = 365 and K = 1 will return a cos365_K1 and sin365_K1 fourier series

• Specifying period = 365 and K = 2 will return a cos365_K1, cos365_K2, sin365_K1 and
sin365_K2 sequence, which tends to increase the models ability to fit vs the K = 1 specifi-
cation (at the expense of possibly overfitting).

Multiple values of period and K

It’s possible to specify multiple values of period in a single step such as step_fourier(period = c(91.25, 365), K = 2.
This returns 8 Fouriers series:

• cos91.25_K1, sin91.25_K1, cos91.25_K2, sin91.25_K2

• cos365_K1, sin365_K1, cos365_K2, sin365_K2

Value

For step_fourier, an updated version of recipe with the new step added to the sequence of ex-
isting steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names).

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Main Recipe Functions:

90 step_holiday_signature

• recipes::recipe()

• recipes::prep()

• recipes::bake()

Examples

library(recipes)
library(dplyr)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

Create a recipe object with a timeseries signature step
- 252 Trade days per year
- period = c(252/4, 252): Adds quarterly and yearly fourier series
- K = 2: Adds 1st and 2nd fourier orders

rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_fourier(date, period = c(252/4, 252), K = 2)

View the recipe object
rec_obj

Prepare the recipe object
prep(rec_obj)

Bake the recipe object - Adds the Fourier Series
bake(prep(rec_obj), FB_tbl)

Tidy shows which features have been added during the 1st step
in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))
tidy(prep(rec_obj), number = 1)

step_holiday_signature

Holiday Feature (Signature) Generator

Description

step_holiday_signature creates a a specification of a recipe step that will convert date or date-
time data into many holiday features that can aid in machine learning with time-series data. By
default, many features are returned for different holidays, locales, and stock exchanges.

step_holiday_signature 91

Usage

step_holiday_signature(
recipe,
...,
holiday_pattern = ".",
locale_set = "all",
exchange_set = "all",
role = "predictor",
trained = FALSE,
columns = NULL,
features = NULL,
skip = FALSE,
id = rand_id("holiday_signature")

)

S3 method for class 'step_holiday_signature'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables that will be used to cre-
ate the new variables. The selected variables should have class Date or POSIXct.
See recipes::selections() for more details. For the tidy method, these are
not currently used.

holiday_pattern

A regular expression pattern to search the "Holiday Set".

locale_set Return binary holidays based on locale. One of: "all", "none", "World", "US",
"CA", "GB", "FR", "IT", "JP", "CH", "DE".

exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all",
"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep() is used.

features A character string of features that will be generated. This field is a placeholder
and will be populated once recipes::prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

92 step_holiday_signature

id A character string that is unique to this step to identify it.

x A step_holiday_signature object.

Details

Use Holiday Pattern and Feature Sets to Pare Down Features By default, you’re going to get A
LOT of Features. This is a good thing because many machine learning algorithms have regulariza-
tion built in. But, in many cases you will still want to reduce the number of unnecessary features.
Here’s how:

• Holiday Pattern: This is a Regular Expression pattern that can be used to filter. Try holiday_pattern
= "(US_Christ)|(US_Thanks)" to return just Christmas and Thanksgiving features.

• Locale Sets: This is a logical as to whether or not the locale has a holiday. For locales outside
of US you may want to combine multiple locales. For example, locale_set = c("World",
"GB") returns both World Holidays and Great Britain.

• Exchange Sets: This is a logical as to whether or not the Business is off due to a holiday.
Different Stock Exchanges are used as a proxy for business holiday calendars. For example,
exchange_set = "NYSE" returns business holidays for New York Stock Exchange.

Removing Unnecessary Features By default, many features are created automatically. Unneces-
sary features can be removed using recipes::step_rm() and recipes::selections() for more
details.

Value

For step_holiday_signature, an updated version of recipe with the new step added to the se-
quence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors
or variables selected), value (the feature names).

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Main Recipe Functions:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

step_log_interval 93

Examples

library(recipes)
library(dplyr)

Sample Data
dates_in_2017_tbl <- tibble::tibble(

index = tk_make_timeseries("2017-01-01", "2017-12-31", by = "day")
)

Add US holidays and Non-Working Days due to Holidays
- Physical Holidays are added with holiday pattern (individual) and locale_set
rec_holiday <- recipe(~ ., dates_in_2017_tbl) %>%

step_holiday_signature(index,
holiday_pattern = "^US_",
locale_set = "US",
exchange_set = "NYSE")

Not yet prep'ed - just returns parameters selected
rec_holiday %>% tidy(1)

Prep the recipe
rec_holiday_prep <- prep(rec_holiday)

Now prep'ed - returns new features that will be created
rec_holiday_prep %>% tidy(1)

Apply the recipe to add new holiday features!
bake(rec_holiday_prep, dates_in_2017_tbl)

step_log_interval Log Interval Transformation for Constrained Interval Forecasting

Description

step_log_interval creates a specification of a recipe step that will transform data using a Log-
Inerval transformation. This function provides a recipes interface for the log_interval_vec()
transformation function.

Usage

step_log_interval(
recipe,
...,
limit_lower = "auto",
limit_upper = "auto",

94 step_log_interval

offset = 0,
role = NA,
trained = FALSE,
limit_lower_trained = NULL,
limit_upper_trained = NULL,
skip = FALSE,
id = rand_id("log_interval")

)

S3 method for class 'step_log_interval'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

limit_lower A lower limit. Must be less than the minimum value. If set to "auto", selects
zero.

limit_upper An upper limit. Must be greater than the maximum value. If set to "auto", selects
a value that is 10% greater than the maximum value.

offset An offset to include in the log transformation. Useful when the data contains
values less than or equal to zero.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.
limit_lower_trained

A numeric vector of transformation values. This is NULL until computed by
prep().

limit_upper_trained

A numeric vector of transformation values. This is NULL until computed by
prep().

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_log_interval object.

Details

The step_log_interval() function is designed specifically to handle time series using methods
implemented in the Forecast R Package.

Positive Data

step_log_interval 95

If data includes values of zero, use offset to adjust the series to make the values positive.

Implementation
Refer to the log_interval_vec() function for the transformation implementation details.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_log_interval()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Transformations to reduce variance:

• recipes::step_log() - Log transformation

• recipes::step_sqrt() - Square-Root Power Transformation

Recipe Setup and Application:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

Examples

library(dplyr)
library(recipes)

FANG_wide <- FANG %>%
select(symbol, date, adjusted) %>%
tidyr::pivot_wider(names_from = symbol, values_from = adjusted)

recipe_log_interval <- recipe(~ ., data = FANG_wide) %>%
step_log_interval(FB, AMZN, NFLX, GOOG, offset = 1) %>%
prep()

recipe_log_interval %>%
bake(FANG_wide) %>%
tidyr::pivot_longer(-date) %>%
plot_time_series(date, value, name, .smooth = FALSE, .interactive = FALSE)

96 step_slidify

recipe_log_interval %>% tidy(1)

step_slidify Slidify Rolling Window Transformation

Description

step_slidify creates a a specification of a recipe step that will apply a function to one or more a
Numeric column(s).

Usage

step_slidify(
recipe,
...,
period,
.f,
align = c("center", "left", "right"),
partial = FALSE,
names = NULL,
role = "predictor",
trained = FALSE,
columns = NULL,
f_name = NULL,
skip = FALSE,
id = rand_id("slidify")

)

S3 method for class 'step_slidify'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more numeric columns to be smoothed. See recipes::selections()
for more details. For the tidy method, these are not currently used.

period The number of periods to include in the local rolling window. This is effectively
the "window size".

.f A summary formula in one of the following formats:

• mean with no arguments
• function(x) mean(x, na.rm = TRUE)

• ~ mean(.x, na.rm = TRUE), it is converted to a function.

step_slidify 97

align Rolling functions generate period - 1 fewer values than the incoming vector.
Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

• Center: NA or .partial values are divided and added to the beginning
and end of the series to "Center" the moving average. This is common for
de-noising operations. See also [smooth_vec()] for LOESS without NA
values.

• Left: NA or .partial values are added to the end to shift the series to the
Left.

• Right: NA or .partial values are added to the beginning to shif the series
to the Right. This is common in Financial Applications such as moving
average cross-overs.

partial Should the moving window be allowed to return partial (incomplete) windows
instead of NA values. Set to FALSE by default, but can be switched to TRUE to
remove NA’s.

names An optional character string that is the same length of the number of terms se-
lected by terms. These will be the names of the new columns created by the
step.

• If NULL, existing columns are transformed.
• If not NULL, new columns will be created.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep() is used.

f_name A character string for the function being applied. This field is a placeholder and
will be populated during the tidy() step.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_slidify object.

Details

Alignment
Rolling functions generate period - 1 fewer values than the incoming vector. Thus, the vector
needs to be aligned. Alignment of the vector follows 3 types:

• Center: NA or partial values are divided and added to the beginning and end of the se-
ries to "Center" the moving average. This is common for de-noising operations. See also
[smooth_vec()] for LOESS without NA values.

• Left: NA or partial values are added to the end to shift the series to the Left.

98 step_slidify

• Right: NA or partial values are added to the beginning to shif the series to the Right. This is
common in Financial Applications such as moving average cross-overs.

Partial Values

• The advantage to using partial values vs NA padding is that the series can be filled (good for
time-series de-noising operations).

• The downside to partial values is that the partials can become less stable at the regions where
incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is step_smooth(),
which implements local polynomial regression.

Value

For step_slidify, an updated version of recipe with the new step added to the sequence of ex-
isting steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names).

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Main Recipe Functions:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

Examples

library(recipes)
library(dplyr)
library(ggplot2)

Training Data
FB_tbl <- FANG %>%

filter(symbol == "FB") %>%
select(symbol, date, adjusted)

New Data - Make some fake new data next 90 time stamps
new_data <- FB_tbl %>%

tail(90) %>%

step_slidify_augment 99

mutate(date = date %>% tk_make_future_timeseries(length_out = 90))

OVERWRITE EXISTING COLUMNS -----

Create a recipe object with a step_slidify
rec_ma_50 <- recipe(adjusted ~ ., data = FB_tbl) %>%

step_slidify(adjusted, period = 50, .f = ~ mean(.x))

Bake the recipe object - Applies the Moving Average Transformation
training_data_baked <- bake(prep(rec_ma_50), FB_tbl)

Apply to New Data
new_data_baked <- bake(prep(rec_ma_50), new_data)

Visualize effect
training_data_baked %>%

ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(color = "red", data = new_data_baked)

---- NEW COLUMNS ----
Use the `names` argument to create new columns instead of overwriting existing

rec_ma_30_names <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_slidify(adjusted, period = 30, .f = mean, names = "adjusted_ma_30")

bake(prep(rec_ma_30_names), FB_tbl) %>%
ggplot(aes(date, adjusted)) +
geom_line(alpha = 0.5) +
geom_line(aes(y = adjusted_ma_30), color = "red", size = 1)

step_slidify_augment Slidify Rolling Window Transformation (Augmented Version)

Description

step_slidify_augment creates a a specification of a recipe step that will "augment" (add multiple
new columns) that have had a sliding function applied.

Usage

step_slidify_augment(
recipe,
...,
period,
.f,
align = c("center", "left", "right"),

100 step_slidify_augment

partial = FALSE,
prefix = "slidify_",
role = "predictor",
trained = FALSE,
columns = NULL,
f_name = NULL,
skip = FALSE,
id = rand_id("slidify_augment")

)

S3 method for class 'step_slidify_augment'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more numeric columns to be smoothed. See recipes::selections()
for more details. For the tidy method, these are not currently used.

period The number of periods to include in the local rolling window. This is effectively
the "window size".

.f A summary formula in one of the following formats:

• mean with no arguments
• function(x) mean(x, na.rm = TRUE)

• ~ mean(.x, na.rm = TRUE), it is converted to a function.

align Rolling functions generate period - 1 fewer values than the incoming vector.
Thus, the vector needs to be aligned. Alignment of the vector follows 3 types:

• Center: NA or .partial values are divided and added to the beginning
and end of the series to "Center" the moving average. This is common for
de-noising operations. See also [smooth_vec()] for LOESS without NA
values.

• Left: NA or .partial values are added to the end to shift the series to the
Left.

• Right: NA or .partial values are added to the beginning to shif the series
to the Right. This is common in Financial Applications such as moving
average cross-overs.

partial Should the moving window be allowed to return partial (incomplete) windows
instead of NA values. Set to FALSE by default, but can be switched to TRUE to
remove NA’s.

prefix A prefix for generated column names, default to "slidify_".

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

step_slidify_augment 101

columns A character string of variable names that will be populated (eventually) by the
terms argument.

f_name A character string for the function being applied. This field is a placeholder and
will be populated during the tidy() step.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations

id A character string that is unique to this step to identify it.

x A step_slidify_augment object.

Details

Alignment
Rolling functions generate period - 1 fewer values than the incoming vector. Thus, the vector
needs to be aligned. Alignment of the vector follows 3 types:

• Center: NA or partial values are divided and added to the beginning and end of the se-
ries to "Center" the moving average. This is common for de-noising operations. See also
[smooth_vec()] for LOESS without NA values.

• Left: NA or partial values are added to the end to shift the series to the Left.

• Right: NA or partial values are added to the beginning to shif the series to the Right. This is
common in Financial Applications such as moving average cross-overs.

Partial Values

• The advantage to using partial values vs NA padding is that the series can be filled (good for
time-series de-noising operations).

• The downside to partial values is that the partials can become less stable at the regions where
incomplete windows are used.

If instability is not desirable for de-noising operations, a suitable alternative is step_smooth(),
which implements local polynomial regression.

Value

For step_slidify_augment, an updated version of recipe with the new step added to the sequence
of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors or
variables selected), value (the feature names).

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

102 step_smooth

• Variance Reduction: step_box_cox()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Main Recipe Functions:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

Examples

library(tidymodels)
library(dplyr)
library(recipes)
library(parsnip)

m750 <- m4_monthly %>%
filter(id == "M750") %>%
mutate(value_2 = value / 2)

m750_splits <- time_series_split(m750, assess = "2 years", cumulative = TRUE)

Make a recipe
recipe_spec <- recipe(value ~ date + value_2, rsample::training(m750_splits)) %>%

step_slidify_augment(
value, value_2,
period = c(6, 12, 24),
.f = ~ mean(.x),
align = "center",
partial = FALSE

)

recipe_spec %>% prep() %>% juice()

bake(prep(recipe_spec), rsample::testing(m750_splits))

step_smooth Smoothing Transformation using Loess

Description

step_smooth creates a a specification of a recipe step that will apply local polynomial regression
to one or more a Numeric column(s). The effect is smoothing the time series similar to a moving
average without creating missing values or using partial smoothing.

step_smooth 103

Usage

step_smooth(
recipe,
...,
period = 30,
span = NULL,
degree = 2,
names = NULL,
role = "predictor",
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("smooth")

)

S3 method for class 'step_smooth'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more numeric columns to be smoothed. See recipes::selections()
for more details. For the tidy method, these are not currently used.

period The number of periods to include in the local smoothing. Similar to window
size for a moving average. See details for an explanation period vs span spec-
ification.

span The span is a percentage of data to be included in the smoothing window. Pe-
riod is preferred for shorter windows to fix the window size. See details for an
explanation period vs span specification.

degree The degree of the polynomials to be used. Set to 2 by default for 2nd order
polynomial.

names An optional character string that is the same length of the number of terms se-
lected by terms. These will be the names of the new columns created by the
step.

• If NULL, existing columns are transformed.
• If not NULL, new columns will be created.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may

104 step_smooth

not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_smooth object.

Details

Smoother Algorithm This function is a recipe specification that wraps the stats::loess() with
a modification to set a fixed period rather than a percentage of data points via a span.

Why Period vs Span? The period is fixed whereas the span changes as the number of observations
change.

When to use Period? The effect of using a period is similar to a Moving Average where the
Window Size is the Fixed Period. This helps when you are trying to smooth local trends. If you
want a 30-day moving average, specify period = 30.

When to use Span? Span is easier to specify when you want a Long-Term Trendline where the
window size is unknown. You can specify span = 0.75 to locally regress using a window of 75%
of the data.

Warning - Using Span with New Data When using span on New Data, the number of observations
is likely different than what you trained with. This means the trendline / smoother can be vastly
different than the smoother you trained with.

Solution to Span with New Data Don’t use span. Rather, use period to fix the window size. This
ensures that new data includes the same number of observations in the local polynomial regression
(loess) as the training data.

Value

For step_smooth, an updated version of recipe with the new step added to the sequence of exist-
ing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names).

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Main Recipe Functions:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

step_smooth 105

Examples

library(recipes)
library(dplyr)
library(ggplot2)

Training Data
FB_tbl <- FANG %>%

filter(symbol == "FB") %>%
select(symbol, date, adjusted)

New Data - Make some fake new data next 90 time stamps
new_data <- FB_tbl %>%

tail(90) %>%
mutate(date = date %>% tk_make_future_timeseries(length_out = 90))

---- PERIOD ----

Create a recipe object with a step_smooth()
rec_smooth_period <- recipe(adjusted ~ ., data = FB_tbl) %>%

step_smooth(adjusted, period = 30)

Bake the recipe object - Applies the Loess Transformation
training_data_baked <- bake(prep(rec_smooth_period), FB_tbl)

"Period" Effect on New Data
new_data_baked <- bake(prep(rec_smooth_period), new_data)

Smoother's fit on new data is very similar because
30 days are used in the new data regardless of the new data being 90 days
training_data_baked %>%

ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(color = "red", data = new_data_baked)

---- SPAN ----

Create a recipe object with a step_smooth
rec_smooth_span <- recipe(adjusted ~ ., data = FB_tbl) %>%

step_smooth(adjusted, span = 0.03)

Bake the recipe object - Applies the Loess Transformation
training_data_baked <- bake(prep(rec_smooth_span), FB_tbl)

"Period" Effect on New Data
new_data_baked <- bake(prep(rec_smooth_span), new_data)

Smoother's fit is not the same using span because new data is only 90 days
and 0.03 x 90 = 2.7 days
training_data_baked %>%

ggplot(aes(date, adjusted)) +
geom_line() +
geom_line(color = "red", data = new_data_baked)

106 step_timeseries_signature

---- NEW COLUMNS ----
Use the `names` argument to create new columns instead of overwriting existing

rec_smooth_names <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_smooth(adjusted, period = 30, names = "adjusted_smooth_30") %>%
step_smooth(adjusted, period = 180, names = "adjusted_smooth_180") %>%
step_smooth(adjusted, span = 0.75, names = "long_term_trend")

bake(prep(rec_smooth_names), FB_tbl) %>%
ggplot(aes(date, adjusted)) +
geom_line(alpha = 0.5) +
geom_line(aes(y = adjusted_smooth_30), color = "red", size = 1) +
geom_line(aes(y = adjusted_smooth_180), color = "blue", size = 1) +
geom_line(aes(y = long_term_trend), color = "orange", size = 1)

step_timeseries_signature

Time Series Feature (Signature) Generator

Description

step_timeseries_signature creates a a specification of a recipe step that will convert date or
date-time data into many features that can aid in machine learning with time-series data

Usage

step_timeseries_signature(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("timeseries_signature")

)

S3 method for class 'step_timeseries_signature'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

step_timeseries_signature 107

... One or more selector functions to choose which variables that will be used to cre-
ate the new variables. The selected variables should have class Date or POSIXct.
See recipes::selections() for more details. For the tidy method, these are
not currently used.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_timeseries_signature object.

Details

Date Variable Unlike other steps, step_timeseries_signature does not remove the original date
variables. recipes::step_rm() can be used for this purpose.

Scaling index.num The index.num feature created has a large magnitude (number of seconds since
1970-01-01). It’s a good idea to scale and center this feature (e.g. use recipes::step_normalize()).

Removing Unnecessary Features By default, many features are created automatically. Unneces-
sary features can be removed using recipes::step_rm().

Value

For step_timeseries_signature, an updated version of recipe with the new step added to the
sequence of existing steps (if any). For the tidy method, a tibble with columns terms (the selectors
or variables selected), value (the feature names).

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Main Recipe Functions:

108 step_ts_clean

• recipes::recipe()

• recipes::prep()

• recipes::bake()

Examples

library(recipes)
library(dplyr)

FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")

Create a recipe object with a timeseries signature step
rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%

step_timeseries_signature(date)

View the recipe object
rec_obj

Prepare the recipe object
prep(rec_obj)

Bake the recipe object - Adds the Time Series Signature
bake(prep(rec_obj), FB_tbl)

Tidy shows which features have been added during the 1st step
in this case, step 1 is the step_timeseries_signature step
tidy(rec_obj)
tidy(rec_obj, number = 1)

step_ts_clean Clean Outliers and Missing Data for Time Series

Description

step_ts_clean creates a specification of a recipe step that will clean outliers and impute time
series data.

Usage

step_ts_clean(
recipe,
...,
period = 1,
lambda = "auto",
role = NA,
trained = FALSE,

step_ts_clean 109

lambdas_trained = NULL,
skip = FALSE,
id = rand_id("ts_clean")

)

S3 method for class 'step_ts_clean'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

period A seasonal period to use during the transformation. If period = 1, linear in-
terpolation is performed. If period > 1, a robust STL decomposition is first
performed and a linear interpolation is applied to the seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto", performs automated
lambda selection.

role Not used by this step since no new variables are created.

trained A logical to indicate if the quantities for preprocessing have been estimated.
lambdas_trained

A named numeric vector of lambdas. This is NULL until computed by recipes::prep().
Note that, if the original data are integers, the mean will be converted to an inte-
ger to maintain the same a data type.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.

x A step_ts_clean object.

Details

The step_ts_clean() function is designed specifically to handle time series using seasonal outlier
detection methods implemented in the Forecast R Package.

Cleaning Outliers

#’ Outliers are replaced with missing values using the following methods:

1. Non-Seasonal (period = 1): Uses stats::supsmu()

2. Seasonal (period > 1): Uses forecast::mstl() with robust = TRUE (robust STL decompo-
sition) for seasonal series.

110 step_ts_clean

Imputation using Linear Interpolation
Three circumstances cause strictly linear interpolation:

1. Period is 1: With period = 1, a seasonality cannot be interpreted and therefore linear is used.

2. Number of Non-Missing Values is less than 2-Periods: Insufficient values exist to detect
seasonality.

3. Number of Total Values is less than 3-Periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation
For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first
computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal
component is added back.

Box Cox Transformation
In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative
meaning the variance grows exponentially. A Box Cox transformation can be automated by setting
lambda = "auto" or can be specified by setting lambda = numeric value.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).

References

• Forecast R Package

• Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Examples

library(dplyr)
library(tidyr)
library(recipes)

Get missing values
FANG_wide <- FANG %>%

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/missing-outliers.html

step_ts_impute 111

select(symbol, date, adjusted) %>%
pivot_wider(names_from = symbol, values_from = adjusted) %>%
pad_by_time()

FANG_wide

Apply Imputation
recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%

step_ts_clean(FB, AMZN, NFLX, GOOG, period = 252) %>%
prep()

recipe_box_cox %>% bake(FANG_wide)

Lambda parameter used during imputation process
recipe_box_cox %>% tidy(1)

step_ts_impute Missing Data Imputation for Time Series

Description

step_ts_impute creates a specification of a recipe step that will impute time series data.

Usage

step_ts_impute(
recipe,
...,
period = 1,
lambda = NULL,
role = NA,
trained = FALSE,
lambdas_trained = NULL,
skip = FALSE,
id = rand_id("ts_impute")

)

S3 method for class 'step_ts_impute'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

112 step_ts_impute

... One or more selector functions to choose which variables are affected by the
step. See selections() for more details. For the tidy method, these are not
currently used.

period A seasonal period to use during the transformation. If period = 1, linear in-
terpolation is performed. If period > 1, a robust STL decomposition is first
performed and a linear interpolation is applied to the seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto", performs automated
lambda selection.

role Not used by this step since no new variables are created.
trained A logical to indicate if the quantities for preprocessing have been estimated.
lambdas_trained

A named numeric vector of lambdas. This is NULL until computed by recipes::prep().
Note that, if the original data are integers, the mean will be converted to an inte-
ger to maintain the same a data type.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations
may not be able to be conducted on new data (e.g. processing the outcome
variable(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

id A character string that is unique to this step to identify it.
x A step_ts_impute object.

Details

The step_ts_impute() function is designed specifically to handle time series

Imputation using Linear Interpolation
Three circumstances cause strictly linear interpolation:

1. Period is 1: With period = 1, a seasonality cannot be interpreted and therefore linear is used.
2. Number of Non-Missing Values is less than 2-Periods: Insufficient values exist to detect

seasonality.
3. Number of Total Values is less than 3-Periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation
For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first
computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal
component is added back.

Box Cox Transformation
In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative
meaning the variance grows exponentially. A Box Cox transformation can be automated by setting
lambda = "auto" or can be specified by setting lambda = numeric value.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (the selectors or variables selected) and value
(the lambda estimate).

step_ts_impute 113

References

• Forecast R Package

• Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

• Imputation: step_ts_impute(), step_ts_clean()

• Padding: step_ts_pad()

Recipe Setup and Application:

• recipes::recipe()

• recipes::prep()

• recipes::bake()

Examples

library(dplyr)
library(recipes)

Get missing values
FANG_wide <- FANG %>%

select(symbol, date, adjusted) %>%
tidyr::pivot_wider(names_from = symbol, values_from = adjusted) %>%
pad_by_time()

FANG_wide

Apply Imputation
recipe_box_cox <- recipe(~ ., data = FANG_wide) %>%

step_ts_impute(FB, AMZN, NFLX, GOOG, period = 252, lambda = "auto") %>%
prep()

recipe_box_cox %>% bake(FANG_wide)

Lambda parameter used during imputation process
recipe_box_cox %>% tidy(1)

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/missing-outliers.html

114 step_ts_pad

step_ts_pad Pad: Add rows to fill gaps and go from low to high frequency

Description

step_ts_pad creates a a specification of a recipe step that will analyze a Date or Date-time column
adding rows at a specified interval.

Usage

step_ts_pad(
recipe,
...,
by = "day",
pad_value = NA,
role = "predictor",
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("ts_padding")

)

S3 method for class 'step_ts_pad'
tidy(x, ...)

Arguments

recipe A recipe object. The step will be added to the sequence of operations for this
recipe.

... A single column with class Date or POSIXct. See recipes::selections() for
more details. For the tidy method, these are not currently used.

by Either "auto", a time-based frequency like "year", "month", "day", "hour", etc,
or a time expression like "5 min", or "7 days". See Details.

pad_value Fills in padded values. Default is NA.

role For model terms created by this step, what analysis role should they be as-
signed?. By default, the function assumes that the new variable columns created
by the original variables will be used as predictors in a model.

trained A logical to indicate if the quantities for preprocessing have been estimated.

columns A character string of variables that will be used as inputs. This field is a place-
holder and will be populated once recipes::prep() is used.

skip A logical. Should the step be skipped when the recipe is baked by bake.recipe()?
While all operations are baked when prep.recipe() is run, some operations may
not be able to be conducted on new data (e.g. processing the outcome vari-
able(s)). Care should be taken when using skip = TRUE as it may affect the
computations for subsequent operations.

step_ts_pad 115

id A character string that is unique to this step to identify it.

x A step_ts_pad object.

Details

Date Variable

• Only one date or date-time variable may be supplied.
• step_ts_pad()) does not remove the original date variables.

Interval Specification (by)
Padding can be applied in the following ways:

• The eight intervals in are: year, quarter, month, week, day, hour, min, and sec.

• Intervals like 30 minutes, 1 hours, 14 days are possible.

Imputing Missing Values
The generic pad_value defaults to NA, which typically requires imputation. Some common strate-
gies include:

• Numeric data: The step_ts_impute() preprocessing step can be used to impute numeric
time series data with or without seasonality

• Nominal data: The step_mode_impute() preprocessing step can be used to replace missing
values with the most common value.

Value

For step_ts_pad, an updated version of recipe with the new step added to the sequence of exist-
ing steps (if any). For the tidy method, a tibble with columns terms (the selectors or variables
selected), value (the feature names).

See Also

Padding & Imputation:

• Pad Time Series: step_ts_pad()

• Impute missing values with these: step_ts_impute(), step_ts_clean()

Time Series Analysis:

• Engineered Features: step_timeseries_signature(), step_holiday_signature(), step_fourier()

• Diffs & Lags step_diff(), recipes::step_lag()

• Smoothing: step_slidify(), step_smooth()

• Variance Reduction: step_box_cox()

Main Recipe Functions:

• recipes::recipe()

• recipes::prep

• recipes::bake

116 summarise_by_time

Examples

library(recipes)
library(dplyr)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

rec_obj <- recipe(adjusted ~ ., data = FB_tbl) %>%
step_ts_pad(date, by = "day", pad_value = NA)

View the recipe object
rec_obj

Prepare the recipe object
prep(rec_obj)

Bake the recipe object - Adds the padding
bake(prep(rec_obj), FB_tbl)

Tidy shows which features have been added during the 1st step
in this case, step 1 is the step_timeseries_signature step
tidy(prep(rec_obj))
tidy(prep(rec_obj), number = 1)

summarise_by_time Summarise (for Time Series Data)

Description

summarise_by_time() is a time-based variant of the popular dplyr::summarise() function that
uses .date_var to specify a date or date-time column and .by to group the calculation by groups
like "5 seconds", "week", or "3 months".

summarise_by_time() and summarize_by_time() are synonyms.

Usage

summarise_by_time(
.data,
.date_var,
.by = "day",
...,
.type = c("floor", "ceiling", "round"),
.week_start = NULL

)

summarise_by_time 117

summarize_by_time(
.data,
.date_var,
.by = "day",
...,
.type = c("floor", "ceiling", "round"),
.week_start = NULL

)

Arguments

.data A tbl object or data.frame

.date_var A column containing date or date-time values to summarize. If missing, attempts
to auto-detect date column.

.by A time unit to summarise by. Time units are collapsed using lubridate::floor_date()
or lubridate::ceiling_date().
The value can be:

• second

• minute

• hour

• day

• week

• month

• bimonth

• quarter

• season

• halfyear

• year

Arbitrary unique English abbreviations as in the lubridate::period() con-
structor are allowed.

... Name-value pairs of summary functions. The name will be the name of the
variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A vector of length n, e.g. quantile().
• A data frame, to add multiple columns from a single expression.

.type One of "floor", "ceiling", or "round. Defaults to "floor". See lubridate::round_date.

.week_start when unit is weeks, specify the reference day. 7 represents Sunday and 1 repre-
sents Monday.

Value

A tibble or data.frame

118 summarise_by_time

Useful summary functions

• Sum: sum()

• Center: mean(), median()

• Spread: sd(), var()

• Range: min(), max()

• Count: dplyr::n(), dplyr::n_distinct()

• Position: dplyr::first(), dplyr::last(), dplyr::nth()

• Correlation: cor(), cov()

See Also

Time-Based dplyr functions:

• summarise_by_time() - Easily summarise using a date column.

• mutate_by_time() - Simplifies applying mutations by time windows.

• filter_by_time() - Quickly filter using date ranges.

• filter_period() - Apply filtering expressions inside periods (windows)

• between_time() - Range detection for date or date-time sequences.

• pad_by_time() - Insert time series rows with regularly spaced timestamps

• condense_period() - Convert to a different periodicity

• slidify() - Turn any function into a sliding (rolling) function

Examples

Libraries
library(dplyr)

First value in each month
m4_daily %>%

group_by(id) %>%
summarise_by_time(

.date_var = date,

.by = "month", # Setup for monthly aggregation
Summarization
value = first(value)

)

Last value in each month (day is first day of next month with ceiling option)
m4_daily %>%

group_by(id) %>%
summarise_by_time(

.by = "month",
value = last(value),
.type = "ceiling"

) %>%
Shift to the last day of the month
mutate(date = date %-time% "1 day")

taylor_30_min 119

Total each year (.by is set to "year" now)
m4_daily %>%

group_by(id) %>%
summarise_by_time(

.by = "year",
value = sum(value)

)

taylor_30_min Half-hourly electricity demand

Description

Half-hourly electricity demand in England and Wales from Monday 5 June 2000 to Sunday 27
August 2000. Discussed in Taylor (2003).

Usage

taylor_30_min

Format

A tibble: 4,032 x 2

• date: A date-time variable in 30-minute increments

• value: Electricity demand in Megawatts

Source

James W Taylor

References

Taylor, J.W. (2003) Short-term electricity demand forecasting using double seasonal exponential
smoothing. Journal of the Operational Research Society, 54, 799-805.

Examples

taylor_30_min

120 time_arithmetic

time_arithmetic Add / Subtract (For Time Series)

Description

The easiest way to add / subtract a period to a time series date or date-time vector.

Usage

add_time(index, period)

subtract_time(index, period)

index %+time% period

index %-time% period

Arguments

index A date or date-time vector. Can also accept a character representation.
period A period to add. Accepts character strings like "5 seconds", "2 days", and com-

plex strings like "1 month 4 days 34 minutes".

Details

A convenient wrapper for lubridate::period(). Adds and subtracts a period from a time-based
index. Great for:

• Finding a timestamp n-periods into the future or past
• Shifting a time-based index. Note that NA values may be present where dates don’t exist.

Period Specification
The period argument accepts complex strings like:

• "1 month 4 days 43 minutes"
• "second = 3, minute = 1, hour = 2, day = 13, week = 1"

Value

A date or datetime (POSIXct) vector the same length as index with the time values shifted +/- a
period.

See Also

Other Time-Based vector functions:

• between_time() - Range detection for date or date-time sequences.

Underlying function:

• lubridate::period()

time_series_cv 121

Examples

---- LOCATING A DATE N-PERIODS IN FUTURE / PAST ----

Forward (Plus Time)
"2021" %+time% "1 hour 34 seconds"
"2021" %+time% "3 months"
"2021" %+time% "1 year 3 months 6 days"

Backward (Minus Time)
"2021" %-time% "1 hour 34 seconds"
"2021" %-time% "3 months"
"2021" %-time% "1 year 3 months 6 days"

---- INDEX SHIFTING ----

index_daily <- tk_make_timeseries("2016", "2016-02-01")

ADD TIME
- Note `NA` values created where a daily dates aren't possible
(e.g. Feb 29 & 30, 2016 doesn't exist).
index_daily %+time% "1 month"

Subtracting Time
index_daily %-time% "1 month"

time_series_cv Time Series Cross Validation

Description

Create rsample cross validation sets for time series. This function produces a sampling plan starting
with the most recent time series observations, rolling backwards. The sampling procedure is similar
to rsample::rolling_origin(), but places the focus of the cross validation on the most recent
time series data.

Usage

time_series_cv(
data,
date_var = NULL,
initial = 5,
assess = 1,
skip = 1,
lag = 0,

122 time_series_cv

cumulative = FALSE,
slice_limit = n(),
point_forecast = FALSE,
...

)

Arguments

data A data frame.

date_var A date or date-time variable.

initial The number of samples used for analysis/modeling in the initial resample.

assess The number of samples used for each assessment resample.

skip A integer indicating how many (if any) additional resamples to skip to thin the
total amount of data points in the analysis resample. See the example below.

lag A value to include an lag between the assessment and analysis set. This is useful
if lagged predictors will be used during training and testing.

cumulative A logical. Should the analysis resample grow beyond the size specified by
initial at each resample?.

slice_limit The number of slices to return. Set to dplyr::n(), which returns the maximum
number of slices.

point_forecast Whether or not to have the testing set be a single point forecast or to be a forecast
horizon. The default is to be a forecast horizon. Default: FALSE

... These dots are for future extensions and must be empty.

Details

Time-Based Specification
The initial, assess, skip, and lag variables can be specified as:

• Numeric: initial = 24

• Time-Based Phrases: initial = "2 years", if the data contains a date_var (date or date-
time)

Initial (Training Set) and Assess (Testing Set)
The main options, initial and assess, control the number of data points from the original data
that are in the analysis (training set) and the assessment (testing set), respectively.

Skip
skip enables the function to not use every data point in the resamples. When skip = 1, the resam-
pling data sets will increment by one position.

Example: Suppose that the rows of a data set are consecutive days. Using skip = 7 will make the
analysis data set operate on weeks instead of days. The assessment set size is not affected by this
option.

Lag
The Lag parameter creates an overlap between the Testing set. This is needed when lagged predic-
tors are used.

time_series_cv 123

Cumulative vs Sliding Window
When cumulative = TRUE, the initial parameter is ignored and the analysis (training) set will
grow as resampling continues while the assessment (testing) set size will always remain static.

When cumulative = FALSE, the initial parameter fixes the analysis (training) set and resampling
occurs over a fixed window.

Slice Limit
This controls the number of slices. If slice_limit = 5, only the most recent 5 slices will be re-
turned.

Point Forecast
A point forecast is sometimes desired such as if you want to forecast a value "4-weeks" into the
future. You can do this by setting the following parameters:

• assess = "4 weeks"

• point_forecast = TRUE

Panel Data / Time Series Groups / Overlapping Timestamps
Overlapping timestamps occur when your data has more than one time series group. This is some-
times called Panel Data or Time Series Groups.

When timestamps are duplicated (as in the case of "Panel Data" or "Time Series Groups"), the
resample calculation applies a sliding window of fixed length to the dataset. See the example using
walmart_sales_weekly dataset below.

Value

An tibble with classes time_series_cv, rset, tbl_df, tbl, and data.frame. The results include a
column for the data split objects and a column called id that has a character string with the resample
identifier.

See Also

• time_series_cv() and rsample::rolling_origin() - Functions used to create time series
resample specifications.

• plot_time_series_cv_plan() - The plotting function used for visualizing the time series
resample plan.

• time_series_split() - A convenience function to return a single time series split containing
a training/testing sample.

Examples

library(dplyr)

DATA ----
m750 <- m4_monthly %>% dplyr::filter(id == "M750")

RESAMPLE SPEC ----
resample_spec <- time_series_cv(data = m750,

124 time_series_split

initial = "6 years",
assess = "24 months",
skip = "24 months",
cumulative = FALSE,
slice_limit = 3)

resample_spec

VISUALIZE CV PLAN ----

Select date and value columns from the tscv diagnostic tool
resample_spec %>% tk_time_series_cv_plan()

Plot the date and value columns to see the CV Plan
resample_spec %>%

plot_time_series_cv_plan(date, value, .interactive = FALSE)

PANEL DATA / TIME SERIES GROUPS ----
- Time Series Groups are processed using an *ungrouped* data set
- The data has sliding windows applied starting with the beginning of the series
- The seven groups of weekly time series are
processed together for <split [358/78]> dimensions

walmart_tscv <- walmart_sales_weekly %>%
time_series_cv(

date_var = Date,
initial = "12 months",
assess = "3 months",
skip = "3 months",
slice_limit = 4

)

walmart_tscv

walmart_tscv %>%
plot_time_series_cv_plan(Date, Weekly_Sales, .interactive = FALSE)

time_series_split Simple Training/Test Set Splitting for Time Series

Description

time_series_split creates resample splits using time_series_cv() but returns only a single
split. This is useful when creating a single train/test split.

Usage

time_series_split(

time_series_split 125

data,
date_var = NULL,
initial = 5,
assess = 1,
skip = 1,
lag = 0,
cumulative = FALSE,
slice = 1,
point_forecast = FALSE,
...

)

Arguments

data A data frame.

date_var A date or date-time variable.

initial The number of samples used for analysis/modeling in the initial resample.

assess The number of samples used for each assessment resample.

skip A integer indicating how many (if any) additional resamples to skip to thin the
total amount of data points in the analysis resample. See the example below.

lag A value to include an lag between the assessment and analysis set. This is useful
if lagged predictors will be used during training and testing.

cumulative A logical. Should the analysis resample grow beyond the size specified by
initial at each resample?.

slice Returns a single slice from time_series_cv

point_forecast Whether or not to have the testing set be a single point forecast or to be a forecast
horizon. The default is to be a forecast horizon. Default: FALSE

... These dots are for future extensions and must be empty.

Details

Time-Based Specification

The initial, assess, skip, and lag variables can be specified as:

• Numeric: initial = 24

• Time-Based Phrases: initial = "2 years", if the data contains a date_var (date or date-
time)

Initial (Training Set) and Assess (Testing Set)

The main options, initial and assess, control the number of data points from the original data
that are in the analysis (training set) and the assessment (testing set), respectively.

Skip

skip enables the function to not use every data point in the resamples. When skip = 1, the resam-
pling data sets will increment by one position.

126 time_series_split

Example: Suppose that the rows of a data set are consecutive days. Using skip = 7 will make the
analysis data set operate on weeks instead of days. The assessment set size is not affected by this
option.

Lag
The Lag parameter creates an overlap between the Testing set. This is needed when lagged predic-
tors are used.

Cumulative vs Sliding Window
When cumulative = TRUE, the initial parameter is ignored and the analysis (training) set will
grow as resampling continues while the assessment (testing) set size will always remain static.

When cumulative = FALSE, the initial parameter fixes the analysis (training) set and resampling
occurs over a fixed window.

Slice
This controls which slice is returned. If slice = 1, only the most recent slice will be returned.

Value

An rsplit object that can be used with the training and testing functions to extract the data in
each split.

See Also

• time_series_cv() and rsample::rolling_origin() - Functions used to create time series
resample specifications.

Examples

library(dplyr)

DATA ----
m750 <- m4_monthly %>% dplyr::filter(id == "M750")

Get the most recent 3 years as testing, and previous 10 years as training
m750 %>%

time_series_split(initial = "10 years", assess = "3 years")

Skip the most recent 3 years
m750 %>%

time_series_split(
initial = "10 years",
assess = "3 years",
skip = "3 years",
slice = 2 # <- Returns 2nd slice, 3-years back

)

Add 1 year lag for testing overlap
m750 %>%

time_series_split(
initial = "10 years",
assess = "3 years",

tk_acf_diagnostics 127

skip = "3 years",
slice = 2,
lag = "1 year" # <- Overlaps training/testing by 1 year

)

tk_acf_diagnostics Group-wise ACF, PACF, and CCF Data Preparation

Description

The tk_acf_diagnostics() function provides a simple interface to detect Autocorrelation (ACF),
Partial Autocorrelation (PACF), and Cross Correlation (CCF) of Lagged Predictors in one tibble.
This function powers the plot_acf_diagnostics() visualization.

Usage

tk_acf_diagnostics(.data, .date_var, .value, .ccf_vars = NULL, .lags = 1000)

Arguments

.data A data frame or tibble with numeric features (values) in descending chronolog-
ical order

.date_var A column containing either date or date-time values

.value A numeric column with a value to have ACF and PACF calculations performed.

.ccf_vars Additional features to perform Lag Cross Correlations (CCFs) versus the .value.
Useful for evaluating external lagged regressors.

.lags A seqence of one or more lags to evaluate.

Details

Simplified ACF, PACF, & CCF
We are often interested in all 3 of these functions. Why not get all 3 at once? Now you can!

• ACF - Autocorrelation between a target variable and lagged versions of itself

• PACF - Partial Autocorrelation removes the dependence of lags on other lags highlighting key
seasonalities.

• CCF - Shows how lagged predictors can be used for prediction of a target variable.

Lag Specification
Lags (.lags) can either be specified as:

• A time-based phrase indicating a duraction (e.g. 2 months)

• A maximum lag (e.g. .lags = 28)

• A sequence of lags (e.g. .lags = 7:28)

128 tk_acf_diagnostics

Scales to Multiple Time Series with Groupes
The tk_acf_diagnostics() works with grouped_df’s, meaning you can group your time series
by one or more categorical columns with dplyr::group_by() and then apply tk_acf_diagnostics()
to return group-wise lag diagnostics.

Special Note on Dots (...)
Unlike other plotting utilities, the ... arguments is NOT used for group-wise analysis. Rather, it’s
used for processing Cross Correlations (CCFs).

Use dplyr::group_by() for processing multiple time series groups.

Value

A tibble or data.frame containing the autocorrelation, partial autocorrelation and cross correla-
tion data.

See Also

• Visualizing ACF, PACF, & CCF: plot_acf_diagnostics()
• Visualizing Seasonality: plot_seasonal_diagnostics()
• Visualizing Time Series: plot_time_series()

Examples

library(dplyr)

ACF, PACF, & CCF in 1 Data Frame
- Get ACF & PACF for target (adjusted)
- Get CCF between adjusted and volume and close
FANG %>%

filter(symbol == "FB") %>%
tk_acf_diagnostics(date, adjusted, # ACF & PACF

.ccf_vars = c(volume, close), # CCFs

.lags = 500)

Scale with groups using group_by()
FANG %>%

group_by(symbol) %>%
tk_acf_diagnostics(date, adjusted,

.ccf_vars = c(volume, close),

.lags = "3 months")

Apply Transformations
FANG %>%

group_by(symbol) %>%
tk_acf_diagnostics(

date, diff_vec(adjusted), # Apply differencing transformation
.lags = 0:500

)

tk_anomaly_diagnostics 129

tk_anomaly_diagnostics

Automatic group-wise Anomaly Detection by STL Decomposition

Description

tk_anomaly_diagnostics() is the preprocessor for plot_anomaly_diagnostics(). It performs
automatic anomaly detection for one or more time series groups.

Usage

tk_anomaly_diagnostics(
.data,
.date_var,
.value,
.frequency = "auto",
.trend = "auto",
.alpha = 0.05,
.max_anomalies = 0.2,
.message = TRUE

)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the
LOESS smoother, which is used to remove the remainder. Refer to tk_get_trend().

.alpha Controls the width of the "normal" range. Lower values are more conservative
while higher values are less prone to incorrectly classifying "normal" observa-
tions.

.max_anomalies The maximum percent of anomalies permitted to be identified.

.message A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).

Details

The tk_anomaly_diagnostics() method for anomaly detection that implements a 2-step process
to detect outliers in time series.

Step 1: Detrend & Remove Seasonality using STL Decomposition

130 tk_anomaly_diagnostics

The decomposition separates the "season" and "trend" components from the "observed" values leav-
ing the "remainder" for anomaly detection.

The user can control two parameters: frequency and trend.

1. .frequency: Adjusts the "season" component that is removed from the "observed" values.

2. .trend: Adjusts the trend window (t.window parameter from stats::stl() that is used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which predetermines the frequency and/or trend based on the
scale of the time series using the tk_time_scale_template().

Step 2: Anomaly Detection

Once "trend" and "season" (seasonality) is removed, anomaly detection is performed on the "re-
mainder". Anomalies are identified, and boundaries (recomposed_l1 and recomposed_l2) are de-
termined.

The Anomaly Detection Method uses an inner quartile range (IQR) of +/-25 the median.

IQR Adjustment, alpha parameter

With the default alpha = 0.05, the limits are established by expanding the 25/75 baseline by an
IQR Factor of 3 (3X). The IQR Factor = 0.15 / alpha (hence 3X with alpha = 0.05):

• To increase the IQR Factor controlling the limits, decrease the alpha, which makes it more
difficult to be an outlier.

• Increase alpha to make it easier to be an outlier.

• The IQR outlier detection method is used in forecast::tsoutliers().

• A similar outlier detection method is used by Twitter’s AnomalyDetection package.

• Both Twitter and Forecast tsoutliers methods have been implemented in Business Science’s
anomalize package.

Value

A tibble or data.frame with STL Decomposition Features (observed, season, trend, remainder,
seasadj) and Anomaly Features (remainder_l1, remainder_l2, anomaly, recomposed_l1, and recom-
posed_l2)

References

1. CLEVELAND, R. B., CLEVELAND, W. S., MCRAE, J. E., AND TERPENNING, I. STL: A
Seasonal-Trend Decomposition Procedure Based on Loess. Journal of Official Statistics, Vol.
6, No. 1 (1990), pp. 3-73.

2. Owen S. Vallis, Jordan Hochenbaum and Arun Kejariwal (2014). A Novel Technique for
Long-Term Anomaly Detection in the Cloud. Twitter Inc.

See Also

• plot_anomaly_diagnostics(): Visual anomaly detection

tk_augment_differences 131

Examples

library(dplyr)

walmart_sales_weekly %>%
filter(id %in% c("1_1", "1_3")) %>%
group_by(id) %>%
tk_anomaly_diagnostics(Date, Weekly_Sales)

tk_augment_differences

Add many differenced columns to the data

Description

A handy function for adding multiple lagged difference values to a data frame. Works with dplyr
groups too.

Usage

tk_augment_differences(
.data,
.value,
.lags = 1,
.differences = 1,
.log = FALSE,
.names = "auto"

)

Arguments

.data A tibble.

.value One or more column(s) to have a transformation applied. Usage of tidyselect
functions (e.g. contains()) can be used to select multiple columns.

.lags One or more lags for the difference(s)

.differences The number of differences to apply.

.log If TRUE, applies log-differences.

.names A vector of names for the new columns. Must be of same length as the number
of output columns. Use "auto" to automatically rename the columns.

Details

Benefits
This is a scalable function that is:

• Designed to work with grouped data using dplyr::group_by()

• Add multiple differences by adding a sequence of differences using the .lags argument (e.g.
lags = 1:20)

132 tk_augment_fourier

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

• tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features

• tk_augment_holiday_signature() - Group-wise augmentation of holiday features

• tk_augment_slidify() - Group-wise augmentation of rolling functions

• tk_augment_lags() - Group-wise augmentation of lagged data

• tk_augment_differences() - Group-wise augmentation of differenced data

• tk_augment_fourier() - Group-wise augmentation of fourier series

Underlying Function:

• diff_vec() - Underlying function that powers tk_augment_differences()

Examples

library(dplyr)

m4_monthly %>%
group_by(id) %>%
tk_augment_differences(value, .lags = 1:20)

tk_augment_fourier Add many fourier series to the data

Description

A handy function for adding multiple fourier series to a data frame. Works with dplyr groups too.

Usage

tk_augment_fourier(.data, .date_var, .periods, .K = 1, .names = "auto")

Arguments

.data A tibble.

.date_var A date or date-time column used to calculate a fourier series

.periods One or more periods for the fourier series

.K The maximum number of fourier orders.

.names A vector of names for the new columns. Must be of same length as the number
of output columns. Use "auto" to automatically rename the columns.

tk_augment_holiday 133

Details

Benefits

This is a scalable function that is:

• Designed to work with grouped data using dplyr::group_by()

• Add multiple differences by adding a sequence of differences using the .periods argument
(e.g. lags = 1:20)

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

• tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features

• tk_augment_holiday_signature() - Group-wise augmentation of holiday features

• tk_augment_slidify() - Group-wise augmentation of rolling functions

• tk_augment_lags() - Group-wise augmentation of lagged data

• tk_augment_differences() - Group-wise augmentation of differenced data

• tk_augment_fourier() - Group-wise augmentation of fourier series

Underlying Function:

• fourier_vec() - Underlying function that powers tk_augment_fourier()

Examples

library(dplyr)

m4_monthly %>%
group_by(id) %>%
tk_augment_fourier(date, .periods = c(6, 12), .K = 2)

tk_augment_holiday Add many holiday features to the data

Description

Quickly add the "holiday signature" - sets of holiday features that correspond to calendar dates.
Works with dplyr groups too.

134 tk_augment_holiday

Usage

tk_augment_holiday_signature(
.data,
.date_var = NULL,
.holiday_pattern = ".",
.locale_set = c("all", "none", "World", "US", "CA", "GB", "FR", "IT", "JP", "CH", "DE"),
.exchange_set = c("all", "none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH")

)

Arguments

.data A time-based tibble or time-series object.

.date_var A column containing either date or date-time values. If NULL, the time-based
column will interpret from the object (tibble).

.holiday_pattern

A regular expression pattern to search the "Holiday Set".

.locale_set Return binary holidays based on locale. One of: "all", "none", "World", "US",
"CA", "GB", "FR", "IT", "JP", "CH", "DE".

.exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all",
"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

Details

tk_augment_holiday_signature adds the holiday signature features. See tk_get_holiday_signature()
(powers the augment function) for a full description and examples for how to use.

1. Individual Holidays
These are single holiday features that can be filtered using a pattern. This helps in identifying
which holidays are important to a machine learning model. This can be useful for example in
e-commerce initiatives (e.g. sales during Christmas and Thanskgiving).

2. Locale-Based Summary Sets
Locale-based holdiay sets are useful for e-commerce initiatives (e.g. sales during Christmas and
Thanskgiving). Filter on a locale to identify all holidays in that locale.

3. Stock Exchange Calendar Summary Sets
Exchange-based holdiay sets are useful for identifying non-working days. Filter on an index to
identify all holidays that are commonly non-working.

Value

Returns a tibble object describing the holiday timeseries.

See Also

Augment Operations:

• tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features

• tk_augment_holiday_signature() - Group-wise augmentation of holiday features

tk_augment_lags 135

• tk_augment_slidify() - Group-wise augmentation of rolling functions

• tk_augment_lags() - Group-wise augmentation of lagged data

• tk_augment_differences() - Group-wise augmentation of differenced data

• tk_augment_fourier() - Group-wise augmentation of fourier series

Underlying Function:

• tk_get_holiday_signature() - Underlying function that powers holiday feature generation

Examples

library(dplyr)

dates_in_2017_tbl <- tibble(index = tk_make_timeseries("2017-01-01", "2017-12-31", by = "day"))

Non-working days in US due to Holidays using NYSE stock exchange calendar
dates_in_2017_tbl %>%

tk_augment_holiday_signature(
index,
.holiday_pattern = "^$", # Returns nothing on purpose
.locale_set = "none",
.exchange_set = "NYSE")

All holidays in US
dates_in_2017_tbl %>%

tk_augment_holiday_signature(
index,
.holiday_pattern = "US_",
.locale_set = "US",
.exchange_set = "none")

All holidays for World and Italy-specific Holidays
- Note that Italy celebrates specific holidays in addition to many World Holidays
dates_in_2017_tbl %>%

tk_augment_holiday_signature(
index,
.holiday_pattern = "(World)|(IT_)",
.locale_set = c("World", "IT"),
.exchange_set = "none")

tk_augment_lags Add many lags to the data

Description

A handy function for adding multiple lagged columns to a data frame. Works with dplyr groups
too.

136 tk_augment_lags

Usage

tk_augment_lags(.data, .value, .lags = 1, .names = "auto")

tk_augment_leads(.data, .value, .lags = -1, .names = "auto")

Arguments

.data A tibble.

.value One or more column(s) to have a transformation applied. Usage of tidyselect
functions (e.g. contains()) can be used to select multiple columns.

.lags One or more lags for the difference(s)

.names A vector of names for the new columns. Must be of same length as .lags.

Details

Lags vs Leads

A negative lag is considered a lead. The tk_augment_leads() function is identical to tk_augment_lags()
with the exception that the automatic naming convetion (.names = 'auto') will convert column
names with negative lags to leads.

Benefits

This is a scalable function that is:

• Designed to work with grouped data using dplyr::group_by()

• Add multiple lags by adding a sequence of lags using the .lags argument (e.g. .lags = 1:20)

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

• tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features

• tk_augment_holiday_signature() - Group-wise augmentation of holiday features

• tk_augment_slidify() - Group-wise augmentation of rolling functions

• tk_augment_lags() - Group-wise augmentation of lagged data

• tk_augment_differences() - Group-wise augmentation of differenced data

• tk_augment_fourier() - Group-wise augmentation of fourier series

Underlying Function:

• lag_vec() - Underlying function that powers tk_augment_lags()

tk_augment_slidify 137

Examples

library(dplyr)

Lags
m4_monthly %>%

group_by(id) %>%
tk_augment_lags(contains("value"), .lags = 1:20)

Leads
m4_monthly %>%

group_by(id) %>%
tk_augment_leads(value, .lags = 1:-20)

tk_augment_slidify Add many rolling window calculations to the data

Description

Quickly use any function as a rolling function and apply to multiple .periods. Works with dplyr
groups too.

Usage

tk_augment_slidify(
.data,
.value,
.period,
.f,
...,
.align = c("center", "left", "right"),
.partial = FALSE,
.names = "auto"

)

Arguments

.data A tibble.

.value One or more column(s) to have a transformation applied. Usage of tidyselect
functions (e.g. contains()) can be used to select multiple columns.

.period One or more periods for the rolling window(s)

.f A summary [function / formula],

... Optional arguments for the summary function

.align Rolling functions generate .period - 1 fewer values than the incoming vector.
Thus, the vector needs to be aligned. Select one of "center", "left", or "right".

138 tk_augment_slidify

.partial .partial Should the moving window be allowed to return partial (incomplete)
windows instead of NA values. Set to FALSE by default, but can be switched to
TRUE to remove NA’s.

.names A vector of names for the new columns. Must be of same length as .period.
Default is "auto".

Details

tk_augment_slidify() scales the slidify_vec() function to multiple time series .periods. See
slidify_vec() for examples and usage of the core function arguments.

Value

Returns a tibble object describing the timeseries.

See Also

Augment Operations:

• tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features

• tk_augment_holiday_signature() - Group-wise augmentation of holiday features

• tk_augment_slidify() - Group-wise augmentation of rolling functions

• tk_augment_lags() - Group-wise augmentation of lagged data

• tk_augment_differences() - Group-wise augmentation of differenced data

• tk_augment_fourier() - Group-wise augmentation of fourier series

Underlying Function:

• slidify_vec() - The underlying function that powers tk_augment_slidify()

Examples

library(dplyr)

Single Column | Multiple Rolling Windows
FANG %>%

select(symbol, date, adjusted) %>%
group_by(symbol) %>%
tk_augment_slidify(

.value = contains("adjust"),
Multiple rolling windows
.period = c(10, 30, 60, 90),
.f = mean,
.partial = TRUE,
.names = stringr::str_c("MA_", c(10, 30, 60, 90))

) %>%
ungroup()

Multiple Columns | Multiple Rolling Windows
FANG %>%

tk_augment_timeseries 139

select(symbol, date, adjusted, volume) %>%
group_by(symbol) %>%
tk_augment_slidify(

.value = c(adjusted, volume),

.period = c(10, 30, 60, 90),

.f = mean,

.partial = TRUE
) %>%
ungroup()

tk_augment_timeseries Add many time series features to the data

Description

Add many time series features to the data

Usage

tk_augment_timeseries_signature(.data, .date_var = NULL)

Arguments

.data A time-based tibble or time-series object.

.date_var For tibbles, a column containing either date or date-time values. If NULL, the
time-based column will interpret from the object (tibble, xts, zoo, etc).

Details

tk_augment_timeseries_signature() adds 25+ time series features including:

• Trend in Seconds Granularity: index.num

• Yearly Seasonality: Year, Month, Quarter

• Weekly Seasonality: Week of Month, Day of Month, Day of Week, and more

• Daily Seasonality: Hour, Minute, Second

• Weekly Cyclic Patterns: 2 weeks, 3 weeks, 4 weeks

Value

Returns a tibble object describing the timeseries.

140 tk_get_frequency

See Also

Augment Operations:

• tk_augment_timeseries_signature() - Group-wise augmentation of timestamp features

• tk_augment_holiday_signature() - Group-wise augmentation of holiday features

• tk_augment_slidify() - Group-wise augmentation of rolling functions

• tk_augment_lags() - Group-wise augmentation of lagged data

• tk_augment_differences() - Group-wise augmentation of differenced data

• tk_augment_fourier() - Group-wise augmentation of fourier series

Underlying Function:

• tk_get_timeseries_signature() - Returns timeseries features from an index

Examples

library(dplyr)

m4_daily %>%
group_by(id) %>%
tk_augment_timeseries_signature(date)

tk_get_frequency Automatic frequency and trend calculation from a time series index

Description

Automatic frequency and trend calculation from a time series index

Usage

tk_get_frequency(idx, period = "auto", message = TRUE)

tk_get_trend(idx, period = "auto", message = TRUE)

Arguments

idx A date or datetime index.

period Either "auto", a time-based definition (e.g. "2 weeks"), or a numeric number of
observations per frequency (e.g. 10).

message A boolean. If message = TRUE, the frequency or trend is output as a message
along with the units in the scale of the data.

tk_get_frequency 141

Details

A frequency is loosely defined as the number of observations that comprise a cycle in a data set.
The trend is loosely defined as time span that can be aggregated across to visualize the central
tendency of the data. It’s often easiest to think of frequency and trend in terms of the time-based
units that the data is already in. This is what tk_get_frequency() and time_trend() enable:
using time-based periods to define the frequency or trend.
Frequency:

As an example, a weekly cycle is often 5-days (for working days) or 7-days (for calendar days).
Rather than specify a frequency of 5 or 7, the user can specify period = "1 week", and tk_get_frequency()
will detect the scale of the time series and return 5 or 7 based on the actual data.

The period argument has three basic options for returning a frequency. Options include:

• "auto": A target frequency is determined using a pre-defined template (see template below).
• time-based duration: (e.g. "1 week" or "2 quarters" per cycle)
• numeric number of observations: (e.g. 5 for 5 observations per cycle)

When period = "auto", the tk_time_scale_template() is used to calculate the frequency.

Trend:

As an example, the trend of daily data is often best aggregated by evaluating the moving average
over a quarter or a month span. Rather than specify the number of days in a quarter or month,
the user can specify "1 quarter" or "1 month", and the time_trend() function will return the cor-
rect number of observations per trend cycle. In addition, there is an option, period = "auto", to
auto-detect an appropriate trend span depending on the data. The template is used to define the
appropriate trend span.

Time Scale Template
The tk_time_scale_template() is a Look-Up Table used by the trend and period to find the
appropriate time scale. It contains three features: time_scale, frequency, and trend.

The algorithm will inspect the scale of the time series and select the best frequency or trend that
matches the scale and number of observations per target frequency. A frequency is then chosen on
be the best match.

The predefined template is stored in a function tk_time_scale_template(). You can modify the
template with set_tk_time_scale_template().

Value

Returns a scalar numeric value indicating the number of observations in the frequency or trend span.

See Also

• Time Scale Template Modifiers: get_tk_time_scale_template(), set_tk_time_scale_template()

Examples

library(dplyr)

idx_FB <- FANG %>%

142 tk_get_holiday

filter(symbol == "FB") %>%
pull(date)

Automated Frequency Calculation
tk_get_frequency(idx_FB, period = "auto")

Automated Trend Calculation
tk_get_trend(idx_FB, period = "auto")

Manually Override Trend
tk_get_trend(idx_FB, period = "1 year")

tk_get_holiday Get holiday features from a time-series index

Description

Get holiday features from a time-series index

Usage

tk_get_holiday_signature(
idx,
holiday_pattern = ".",
locale_set = c("all", "none", "World", "US", "CA", "GB", "FR", "IT", "JP", "CH", "DE"),
exchange_set = c("all", "none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH")

)

tk_get_holidays_by_year(years = year(today()))

Arguments

idx A time-series index that is a vector of dates or datetimes.
holiday_pattern

A regular expression pattern to search the "Holiday Set".

locale_set Return binary holidays based on locale. One of: "all", "none", "World", "US",
"CA", "GB", "FR", "IT", "JP", "CH", "DE".

exchange_set Return binary holidays based on Stock Exchange Calendars. One of: "all",
"none", "NYSE", "LONDON", "NERC", "TSX", "ZURICH".

years One or more years to collect holidays for.

Details

Feature engineering holidays can help identify critical patterns for machine learning algorithms.
tk_get_holiday_signature() helps by providing feature sets for 3 types of features:

1. Individual Holidays

tk_get_holiday 143

These are single holiday features that can be filtered using a pattern. This helps in identifying
which holidays are important to a machine learning model. This can be useful for example in
e-commerce initiatives (e.g. sales during Christmas and Thanskgiving).

2. Locale-Based Summary Sets
Locale-based holdiay sets are useful for e-commerce initiatives (e.g. sales during Christmas and
Thanskgiving). Filter on a locale to identify all holidays in that locale.

3. Stock Exchange Calendar Summary Sets
Exchange-based holdiay sets are useful for identifying non-working days. Filter on an index to
identify all holidays that are commonly non-working.

Value

Returns a tibble object describing the timeseries holidays.

See Also

• tk_augment_holiday_signature() - A quick way to add holiday features to a data.frame

• step_holiday_signature() - Preprocessing and feature engineering steps for use with recipes

Examples

library(dplyr)
library(stringr)

Works with time-based tibbles
idx <- tk_make_timeseries("2017-01-01", "2017-12-31", by = "day")

--- BASIC USAGE ----

tk_get_holiday_signature(idx)

---- FILTERING WITH PATTERNS & SETS ----

List available holidays - see patterns
tk_get_holidays_by_year(2020) %>%

filter(holiday_name %>% str_detect("US_"))

Filter using holiday patterns
- Get New Years, Christmas and Thanksgiving Features in US
tk_get_holiday_signature(

idx,
holiday_pattern = "(US_NewYears)|(US_Christmas)|(US_Thanks)",
locale_set = "none",
exchange_set = "none")

---- APPLYING FILTERS ----

Filter with locale sets - Signals all holidays in a locale
tk_get_holiday_signature(

idx,

144 tk_get_timeseries

holiday_pattern = "$^", # Matches nothing on purpose
locale_set = "US",
exchange_set = "none")

Filter with exchange sets - Signals Common Non-Business Days
tk_get_holiday_signature(

idx,
holiday_pattern = "$^", # Matches nothing on purpose
locale_set = "none",
exchange_set = "NYSE")

tk_get_timeseries Get date features from a time-series index

Description

Get date features from a time-series index

Usage

tk_get_timeseries_signature(idx)

tk_get_timeseries_summary(idx)

Arguments

idx A time-series index that is a vector of dates or datetimes.

Details

tk_get_timeseries_signature decomposes the timeseries into commonly needed features such
as numeric value, differences, year, month, day, day of week, day of month, day of year, hour,
minute, second.

tk_get_timeseries_summary returns the summary returns the start, end, units, scale, and a "sum-
mary" of the timeseries differences in seconds including the minimum, 1st quartile, median, mean,
3rd quartile, and maximum frequency. The timeseries differences give the user a better picture of
the index frequency so the user can understand the level of regularity or irregularity. A perfectly
regular time series will have equal values in seconds for each metric. However, this is not often the
case.

Important Note: These functions only work with time-based indexes in datetime, date, yearmon,
and yearqtr values. Regularized dates cannot be decomposed.

Value

Returns a tibble object describing the timeseries.

tk_get_timeseries_unit_frequency 145

See Also

tk_index(), tk_augment_timeseries_signature(), tk_make_future_timeseries()

Examples

library(dplyr)
library(lubridate)
library(zoo)

Works with time-based tibbles
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")
FB_idx <- tk_index(FB_tbl)

tk_get_timeseries_signature(FB_idx)
tk_get_timeseries_summary(FB_idx)

Works with dates in any periodicity
idx_weekly <- seq.Date(from = lubridate::ymd("2016-01-01"), by = 'week', length.out = 6)

tk_get_timeseries_signature(idx_weekly)
tk_get_timeseries_summary(idx_weekly)

Works with zoo yearmon and yearqtr classes
idx_yearmon <- seq.Date(from = lubridate::ymd("2016-01-01"),

by = "month",
length.out = 12) %>%

zoo::as.yearmon()

tk_get_timeseries_signature(idx_yearmon)
tk_get_timeseries_summary(idx_yearmon)

tk_get_timeseries_unit_frequency

Get the timeseries unit frequency for the primary time scales

Description

Get the timeseries unit frequency for the primary time scales

Usage

tk_get_timeseries_unit_frequency()

146 tk_get_timeseries_variables

Value

tk_get_timeseries_unit_frequency returns a tibble containing the timeseries frequencies in
seconds for the primary time scales including "sec", "min", "hour", "day", "week", "month", "quar-
ter", and "year".

Examples

tk_get_timeseries_unit_frequency()

tk_get_timeseries_variables

Get date or datetime variables (column names)

Description

Get date or datetime variables (column names)

Usage

tk_get_timeseries_variables(data)

Arguments

data An object of class data.frame

Details

tk_get_timeseries_variables returns the column names of date or datetime variables in a data
frame. Classes that meet criteria for return include those that inherit POSIXt, Date, zoo::yearmon,
zoo::yearqtr. Function was adapted from padr:::get_date_variables(). See padr helpers.R

Value

tk_get_timeseries_variables returns a vector containing column names of date-like classes.

Examples

library(dplyr)

FANG %>%
tk_get_timeseries_variables()

https://github.com/EdwinTh/padr/blob/master/R/helpers.R

tk_index 147

tk_index Extract an index of date or datetime from time series objects, models,
forecasts

Description

Extract an index of date or datetime from time series objects, models, forecasts

Usage

tk_index(data, timetk_idx = FALSE, silent = FALSE)

has_timetk_idx(data)

Arguments

data A time-based tibble, time-series object, time-series model, or forecast object.

timetk_idx If timetk_idx is TRUE a timetk time-based index attribute is attempted to be
returned. If FALSE the default index is returned. See discussion below for further
details.

silent Used to toggle printing of messages and warnings.

Details

tk_index() is used to extract the date or datetime index from various time series objects, models
and forecasts. The method can be used on tbl, xts, zoo, zooreg, and ts objects. The method can
additionally be used on forecast objects and a number of objects generated by modeling functions
such as Arima, ets, and HoltWinters classes to get the index of the underlying data.

The boolean timetk_idx argument is applicable to regularized time series objects such as ts and
zooreg classes that have both a regularized index and potentially a "timetk index" (a time-based
attribute). When set to FALSE the regularized index is returned. When set to TRUE the time-based
timetk index is returned if present.

has_timetk_idx() is used to determine if the object has a "timetk index" attribute and can thus
benefit from the tk_index(timetk_idx = TRUE). TRUE indicates the "timetk index" attribute is
present. FALSE indicates the "timetk index" attribute is not present. If FALSE, the tk_index()
function will return the default index for the data type.

Important Note: To gain the benefit of timetk_idx the time series must have a timetk index. Use
has_timetk_idx to determine if the object has a timetk index. This is particularly important for
ts objects, which by default do not contain a time-based index and therefore must be coerced from
time-based objects such as tbl, xts, or zoo using the tk_ts() function in order to get the "timetk
index" attribute. Refer to tk_ts() for creating persistent date / datetime index during coercion to
ts.

Value

Returns a vector of date or date times

148 tk_make_future_timeseries

See Also

tk_ts(), tk_tbl(), tk_xts(), tk_zoo(), tk_zooreg()

Examples

Create time-based tibble
data_tbl <- tibble::tibble(

date = seq.Date(from = as.Date("2000-01-01"), by = 1, length.out = 5),
x = rnorm(5) * 10,
y = 5:1

)
tk_index(data_tbl) # Returns time-based index vector

Coerce to ts using tk_ts(): Preserves time-basis
data_ts <- tk_ts(data_tbl)
tk_index(data_ts, timetk_idx = FALSE) # Returns regularized index
tk_index(data_ts, timetk_idx = TRUE) # Returns original time-based index vector

Coercing back to tbl
tk_tbl(data_ts, timetk_idx = FALSE) # Returns regularized tbl
tk_tbl(data_ts, timetk_idx = TRUE) # Returns time-based tbl

tk_make_future_timeseries

Make future time series from existing

Description

Make future time series from existing

Usage

tk_make_future_timeseries(
idx,
length_out,
inspect_weekdays = FALSE,
inspect_months = FALSE,
skip_values = NULL,
insert_values = NULL,
n_future = NULL

)

tk_make_future_timeseries 149

Arguments

idx A vector of dates

length_out Number of future observations. Can be numeric number or a phrase like "1
year".

inspect_weekdays

Uses a logistic regression algorithm to inspect whether certain weekdays (e.g.
weekends) should be excluded from the future dates. Default is FALSE.

inspect_months Uses a logistic regression algorithm to inspect whether certain days of months
(e.g. last two weeks of year or seasonal days) should be excluded from the future
dates. Default is FALSE.

skip_values A vector of same class as idx of timeseries values to skip.

insert_values A vector of same class as idx of timeseries values to insert.

n_future (DEPRECATED) Number of future observations. Can be numeric number or a
phrase like "1 year".

Details

Future Sequences

tk_make_future_timeseries returns a time series based on the input index frequency and at-
tributes.

Specifying Length of Future Observations

The argument length_out determines how many future index observations to compute. It can be
specified as:

• A numeric value - the number of future observations to return.

– The number of observations returned is always equal to the value the user inputs.
– The end date can vary based on the number of timestamps chosen.

• A time-based phrase - The duration into the future to include (e.g. "6 months" or "30 min-
utes").

– The duration defines the end date for observations.
– The end date will not change and those timestamps that fall within the end date will be

returned (e.g. a quarterly time series will return 4 quarters if length_out = "1 year").
– The number of observations will vary to fit within the end date.

Weekday and Month Inspection

The inspect_weekdays and inspect_months arguments apply to "daily" (scale = "day") data
(refer to tk_get_timeseries_summary() to get the index scale).

• The inspect_weekdays argument is useful in determining missing days of the week that oc-
cur on a weekly frequency such as every week, every other week, and so on. It’s recommended
to have at least 60 days to use this option.

• The inspect_months argument is useful in determining missing days of the month, quarter
or year; however, the algorithm can inadvertently select incorrect dates if the pattern is erratic.

150 tk_make_future_timeseries

Skipping / Inserting Values
The skip_values and insert_values arguments can be used to remove and add values into the
series of future times. The values must be the same format as the idx class.

• The skip_values argument useful for passing holidays or special index values that should be
excluded from the future time series.

• The insert_values argument is useful for adding values back that the algorithm may have
excluded.

Value

A vector containing future index of the same class as the incoming index idx

See Also

• Making Time Series: tk_make_timeseries()

• Working with Holidays & Weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(),
tk_make_weekday_sequence()

• Working with Timestamp Index: tk_index(), tk_get_timeseries_summary(), tk_get_timeseries_signature()

Examples

library(dplyr)

Basic example - By 3 seconds
idx <- tk_make_timeseries("2016-01-01 00:00:00", by = "3 sec", length_out = 3)
idx

Make next three timestamps in series
idx %>% tk_make_future_timeseries(length_out = 3)

Make next 6 seconds of timestamps from the next timestamp
idx %>% tk_make_future_timeseries(length_out = "6 sec")

Basic Example - By 1 Month
idx <- tk_make_timeseries("2016-01-01", by = "1 month",

length_out = "12 months")
idx

Make 12 months of timestamps from the next timestamp
idx %>% tk_make_future_timeseries(length_out = "12 months")

--- APPLICATION ---
- Combine holiday sequences with future sequences

Create index of days that FB stock will be traded in 2017 based on 2016 + holidays
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")

tk_make_holiday_sequence 151

holidays <- tk_make_holiday_sequence(
start_date = "2017-01-01",
end_date = "2017-12-31",
calendar = "NYSE")

Remove holidays with skip_values, and remove weekends with inspect_weekdays = TRUE
FB_tbl %>%

tk_index() %>%
tk_make_future_timeseries(length_out = "1 year",

inspect_weekdays = TRUE,
skip_values = holidays)

tk_make_holiday_sequence

Make daily Holiday and Weekend date sequences

Description

Make daily Holiday and Weekend date sequences

Usage

tk_make_holiday_sequence(
start_date,
end_date,
calendar = c("NYSE", "LONDON", "NERC", "TSX", "ZURICH"),
skip_values = NULL,
insert_values = NULL

)

tk_make_weekend_sequence(start_date, end_date)

tk_make_weekday_sequence(
start_date,
end_date,
remove_weekends = TRUE,
remove_holidays = FALSE,
calendar = c("NYSE", "LONDON", "NERC", "TSX", "ZURICH"),
skip_values = NULL,
insert_values = NULL

)

152 tk_make_holiday_sequence

Arguments

start_date Used to define the starting date for date sequence generation. Provide in "YYYY-
MM-DD" format.

end_date Used to define the ending date for date sequence generation. Provide in "YYYY-
MM-DD" format.

calendar The calendar to be used in Date Sequence calculations for Holidays from the
timeDate package. Acceptable values are: "NYSE", "LONDON", "NERC", "TSX",
"ZURICH".

skip_values A daily date sequence to skip
insert_values A daily date sequence to insert
remove_weekends

A logical value indicating whether or not to remove weekends (Saturday and
Sunday) from the date sequence

remove_holidays

A logical value indicating whether or not to remove common holidays from the
date sequence

Details

Start and End Date Specification

• Accept shorthand notation (i.e. tk_make_timeseries() specifications apply)
• Only available in Daily Periods.

Holiday Sequences
tk_make_holiday_sequence() is a wrapper for various holiday calendars from the timeDate
package, making it easy to generate holiday sequences for common business calendars:

• New York Stock Exchange: calendar = "NYSE"

• Londo Stock Exchange: "LONDON"
• North American Reliability Council: "NERC"
• Toronto Stock Exchange: "TSX"
• Zurich Stock Exchange: "ZURICH"

Weekend and Weekday Sequences
These simply populate

Value

A vector containing future dates

See Also

• Intelligent date or date-time sequence creation: tk_make_timeseries()
• Holidays and weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(),
tk_make_weekday_sequence()

• Make future index from existing: tk_make_future_timeseries()

tk_make_timeseries 153

Examples

library(dplyr)

Set max.print to 50
options_old <- options()$max.print
options(max.print = 50)

---- HOLIDAYS & WEEKENDS ----

Business Holiday Sequence
tk_make_holiday_sequence("2017-01-01", "2017-12-31", calendar = "NYSE")

tk_make_holiday_sequence("2017", calendar = "NYSE") # Same thing as above (just shorter)

Weekday Sequence
tk_make_weekday_sequence("2017", "2018", remove_holidays = TRUE)

Weekday Sequence + Removing Business Holidays
tk_make_weekday_sequence("2017", "2018", remove_holidays = TRUE)

---- COMBINE HOLIDAYS WITH MAKE FUTURE TIMESERIES FROM EXISTING ----
- A common machine learning application is creating a future time series data set
from an existing

Create index of days that FB stock will be traded in 2017 based on 2016 + holidays
FB_tbl <- FANG %>% dplyr::filter(symbol == "FB")

holidays <- tk_make_holiday_sequence(
start_date = "2016",
end_date = "2017",
calendar = "NYSE")

weekends <- tk_make_weekend_sequence(
start_date = "2016",
end_date = "2017")

Remove holidays and weekends with skip_values
We could also remove weekends with inspect_weekdays = TRUE
FB_tbl %>%

tk_index() %>%
tk_make_future_timeseries(length_out = 366,

skip_values = c(holidays, weekends))

options(max.print = options_old)

tk_make_timeseries Intelligent date and date-time sequence creation

154 tk_make_timeseries

Description

Improves on the seq.Date() and seq.POSIXt() functions by simplifying into 1 function tk_make_timeseries().
Intelligently handles character dates and logical assumptions based on user inputs.

Usage

tk_make_timeseries(
start_date,
end_date,
by,
length_out = NULL,
include_endpoints = TRUE,
skip_values = NULL,
insert_values = NULL

)

Arguments

start_date Used to define the starting date for date sequence generation. Provide in "YYYY-
MM-DD" format.

end_date Used to define the ending date for date sequence generation. Provide in "YYYY-
MM-DD" format.

by A character string, containing one of "sec", "min", "hour", "day", "week",
"month", "quarter" or "year". You can create regularly spaced sequences
using phrases like by = "10 min". See Details.

length_out Optional length of the sequence. Can be used instead of one of: start_date,
end_date, or by. Can be specified as a number or a time-based phrase.

include_endpoints

Logical. Whether or not to keep the last value when length_out is a time-based
phrase. Default is TRUE (keep last value).

skip_values A sequence to skip

insert_values A sequence to insert

Details

The tk_make_timeseries() function handles both date and date-time sequences automatically.

• Parses date and date times from character

• Intelligently guesses the sequence desired based on arguments provided

• Handles spacing intelligently

• When both by and length_out are missing, guesses either second or day sequences

• Can skip and insert values if needed.

Start and End Date Specification

Start and end dates can be specified in reduced time-based phrases:

tk_make_timeseries 155

• start_date = "2014": Is converted to "2014-01-01" (start of period)

• end_date = "2014": Is converted to "2014-12-31" (end of period)

• start_date = "2014-03": Is converted to "2014-03-01" (start of period)

• end_date = "2014-03": Is converted to "2014-03-31" (end of period)

A similar process can be used for date-times.

By: Daily Sequences
Make a daily sequence with tk_make_timeseries(by). Examples:

• Every Day: by = "day"

• Every 2-Weeks: by = "2 weeks"

• Every 6-months: by = "6 months"

If missing, will guess by = "day"

By: Sub-Daily Sequences
Make a sub-daily sequence with tk_make_timeseries(by). Examples:

• Every minute: by = "min"

• Every 30-seconds: by = "30 sec"

• Every 2-hours: by = "2 hours

If missing, will guess by = "sec" if the start or end date is a date-time specification.

Length Out
The length_out can be specified by number of observation or complex time-based expressions.
The following examples are all possible.

• length_out = 12 Creates 12 evenly spaced observations.

• length_out = "12 months" Adjusts the end date so it falls on the 12th month.

Include Endpoint
Sometimes the last date is not desired. For example, if the user specifies length_out = 12 months,
the user may want the last value to be the 12th month and not the 13th. Just toggle, include_endpoint
= FALSE to obtain this behavior.

Skip / Insert Timestamps
Skips and inserts are performed after the sequence is generated. This means that if you use the
length_out parameter, the length may differ than the length_out.

Value

A vector containing date or date-times

See Also

• Intelligent date or date-time sequence creation: tk_make_timeseries()

• Holidays and weekends: tk_make_holiday_sequence(), tk_make_weekend_sequence(),
tk_make_weekday_sequence()

• Make future index from existing: tk_make_future_timeseries()

156 tk_make_timeseries

Examples

library(dplyr)

Set max.print to 50
options_old <- options()$max.print
options(max.print = 50)

---- DATE ----

Start + End, Guesses by = "day"
tk_make_timeseries("2017-01-01", "2017-12-31")

Just Start
tk_make_timeseries("2017") # Same result

Only dates in February, 2017
tk_make_timeseries("2017-02")

Start + Length Out, Guesses by = "day"
tk_make_timeseries("2012", length_out = 6) # Guesses by = "day"

Start + By + Length Out, Spacing 6 observations by monthly interval
tk_make_timeseries("2012", by = "1 month", length_out = 6)

Start + By + Length Out, Phrase "1 year 6 months"
tk_make_timeseries("2012", by = "1 month",

length_out = "1 year 6 months", include_endpoints = FALSE)

Going in Reverse, End + Length Out
tk_make_timeseries(end_date = "2012-01-01", by = "1 month",

length_out = "1 year 6 months", include_endpoints = FALSE)

---- DATE-TIME ----

Start + End, Guesses by second
tk_make_timeseries("2016-01-01 01:01:02", "2016-01-01 01:01:04")

Date-Time Sequence - By 10 Minutes
- Converts to date-time automatically & applies 10-min interval
tk_make_timeseries("2017-01-01", "2017-01-02", by = "10 min")

--- REMOVE / INCLUDE ENDPOINTS ----

Last value in this case is desired
tk_make_timeseries("2017-01-01", by = "30 min", length_out = "6 hours")

Last value in monthly case is not wanted
tk_make_timeseries("2012-01-01", by = "1 month",

length_out = "12 months",
include_endpoints = FALSE) # Removes unnecessary last value

tk_seasonal_diagnostics 157

---- SKIP & INSERT VALUES ----

tk_make_timeseries(
"2011-01-01", length_out = 5,
skip_values = "2011-01-05",
insert_values = "2011-01-06"

)

options(max.print = options_old)

tk_seasonal_diagnostics

Group-wise Seasonality Data Preparation

Description

tk_seasonal_diagnostics() is the preprocessor for plot_seasonal_diagnostics(). It helps
by automating feature collection for time series seasonality analysis.

Usage

tk_seasonal_diagnostics(.data, .date_var, .value, .feature_set = "auto")

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.feature_set One or multiple selections to analyze for seasonality. Choices include:

• "auto" - Automatically selects features based on the time stamps and length
of the series.

• "second" - Good for analyzing seasonality by second of each minute.
• "minute" - Good for analyzing seasonality by minute of the hour
• "hour" - Good for analyzing seasonality by hour of the day
• "wday.lbl" - Labeled weekdays. Good for analyzing seasonality by day of

the week.
• "week" - Good for analyzing seasonality by week of the year.
• "month.lbl" - Labeled months. Good for analyzing seasonality by month of

the year.
• "quarter" - Good for analyzing seasonality by quarter of the year
• "year" - Good for analyzing seasonality over multiple years.

158 tk_seasonal_diagnostics

Details

Automatic Feature Selection
Internal calculations are performed to detect a sub-range of features to include useing the following
logic:

• The minimum feature is selected based on the median difference between consecutive times-
tamps

• The maximum feature is selected based on having 2 full periods.

Example: Hourly timestamp data that lasts more than 2 weeks will have the following features:
"hour", "wday.lbl", and "week".

Scalable with Grouped Data Frames
This function respects grouped data.frame and tibbles that were made with dplyr::group_by().

For grouped data, the automatic feature selection returned is a collection of all features within the
sub-groups. This means extra features are returned even though they may be meaningless for some
of the groups.

Transformations
The .value parameter respects transformations (e.g. .value = log(sales)).

Value

A tibble or data.frame with seasonal features

Examples

library(dplyr)

---- GROUPED EXAMPLES ----

Hourly Data
m4_hourly %>%

group_by(id) %>%
tk_seasonal_diagnostics(date, value)

Monthly Data
m4_monthly %>%

group_by(id) %>%
tk_seasonal_diagnostics(date, value)

---- TRANSFORMATION ----

m4_weekly %>%
group_by(id) %>%
tk_seasonal_diagnostics(date, log(value))

---- CUSTOM FEATURE SELECTION ----

m4_hourly %>%
group_by(id) %>%

tk_stl_diagnostics 159

tk_seasonal_diagnostics(date, value, .feature_set = c("hour", "week"))

tk_stl_diagnostics Group-wise STL Decomposition (Season, Trend, Remainder)

Description

tk_stl_diagnostics() is the preprocessor for plot_stl_diagnostics(). It helps by automating
frequency and trend selection.

Usage

tk_stl_diagnostics(
.data,
.date_var,
.value,
.frequency = "auto",
.trend = "auto",
.message = TRUE

)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.frequency Controls the seasonal adjustment (removal of seasonality). Input can be either
"auto", a time-based definition (e.g. "2 weeks"), or a numeric number of obser-
vations per frequency (e.g. 10). Refer to tk_get_frequency().

.trend Controls the trend component. For STL, trend controls the sensitivity of the
lowess smoother, which is used to remove the remainder.

.message A boolean. If TRUE, will output information related to automatic frequency and
trend selection (if applicable).

Details

The tk_stl_diagnostics() function generates a Seasonal-Trend-Loess decomposition. The func-
tion is "tidy" in the sense that it works on data frames and is designed to work with dplyr groups.

STL method:

The STL method implements time series decomposition using the underlying stats::stl(). The
decomposition separates the "season" and "trend" components from the "observed" values leaving
the "remainder".

Frequency & Trend Selection
The user can control two parameters: .frequency and .trend.

160 tk_summary_diagnostics

1. The .frequency parameter adjusts the "season" component that is removed from the "ob-
served" values.

2. The .trend parameter adjusts the trend window (t.window parameter from stl()) that is
used.

The user may supply both .frequency and .trend as time-based durations (e.g. "6 weeks") or
numeric values (e.g. 180) or "auto", which automatically selects the frequency and/or trend based
on the scale of the time series.

Value

A tibble or data.frame with Observed, Season, Trend, Remainder, and Seasonally-Adjusted
features

Examples

library(dplyr)

---- GROUPS & TRANSFORMATION ----
m4_daily %>%

group_by(id) %>%
tk_stl_diagnostics(date, box_cox_vec(value))

---- CUSTOM TREND ----
m4_weekly %>%

group_by(id) %>%
tk_stl_diagnostics(date, box_cox_vec(value), .trend = "2 quarters")

tk_summary_diagnostics

Group-wise Time Series Summary

Description

tk_summary_diagnostics() returns the time series summary from one or more timeseries groups
in a tibble.

Usage

tk_summary_diagnostics(.data, .date_var)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values. If missing, attempts to
auto-detect the date or date-time column.

tk_tbl 161

Details

Applies tk_get_timeseries_summary() group-wise returning the summary of one or more time
series groups.

• Respects dplyr groups

• Returns the time series summary from a time-based feature.

Value

A tibble or data.frame with timeseries summary features

Examples

library(dplyr)

---- NON-GROUPED EXAMPLES ----

Monthly Data
m4_monthly %>%

filter(id == "M750") %>%
tk_summary_diagnostics()

---- GROUPED EXAMPLES ----

Monthly Data
m4_monthly %>%

group_by(id) %>%
tk_summary_diagnostics()

tk_tbl Coerce time-series objects to tibble.

Description

Coerce time-series objects to tibble.

Usage

tk_tbl(
data,
preserve_index = TRUE,
rename_index = "index",
timetk_idx = FALSE,
silent = FALSE,
...

)

162 tk_tbl

Arguments

data A time-series object.

preserve_index Attempts to preserve a time series index. Default is TRUE.

rename_index Enables the index column to be renamed.

timetk_idx Used to return a date / datetime index for regularized objects that contain a
timetk "index" attribute. Refer to tk_index() for more information on returning
index information from regularized timeseries objects (i.e. ts).

silent Used to toggle printing of messages and warnings.

... Additional parameters passed to the tibble::as_tibble() function.

Details

tk_tbl is designed to coerce time series objects (e.g. xts, zoo, ts, timeSeries, etc) to tibble
objects. The main advantage is that the function keeps the date / date-time information from the
underlying time-series object.

When preserve_index = TRUE is specified, a new column, index, is created during object coer-
cion, and the function attempts to preserve the date or date-time information. The date / date-time
column name can be changed using the rename_index argument.

The timetk_idx argument is applicable when coercing ts objects that were created using tk_ts()
from an object that had a time base (e.g. tbl, xts, zoo). Setting timetk_idx = TRUE enables
returning the timetk "index" attribute if present, which is the original (non-regularized) time-based
index.

Value

Returns a tibble object.

See Also

tk_xts(), tk_zoo(), tk_zooreg(), tk_ts()

Examples

library(dplyr)

data_tbl <- tibble(
date = seq.Date(from = as.Date("2010-01-01"), by = 1, length.out = 5),
x = seq(100, 120, by = 5)

)

ts to tibble: Comparison between as.data.frame() and tk_tbl()
data_ts <- tk_ts(data_tbl, start = c(2010,1), freq = 365)

No index
as.data.frame(data_ts)

Defualt index returned is regularized numeric index

tk_time_series_cv_plan 163

tk_tbl(data_ts)

Original date index returned (Only possible if original data has time-based index)
tk_tbl(data_ts, timetk_idx = TRUE)

xts to tibble: Comparison between as.data.frame() and tk_tbl()
data_xts <- tk_xts(data_tbl)

Dates are character class stored in row names
as.data.frame(data_xts)

Dates are appropriate date class and within the data frame
tk_tbl(data_xts)

zooreg to tibble: Comparison between as.data.frame() and tk_tbl()
data_zooreg <- tk_zooreg(1:8, start = zoo::yearqtr(2000), frequency = 4)

Dates are character class stored in row names
as.data.frame(data_zooreg)

Dates are appropriate zoo yearqtr class within the data frame
tk_tbl(data_zooreg)

zoo to tibble: Comparison between as.data.frame() and tk_tbl()
data_zoo <- zoo::zoo(1:12, zoo::yearmon(2016 + seq(0, 11)/12))

Dates are character class stored in row names
as.data.frame(data_zoo)

Dates are appropriate zoo yearmon class within the data frame
tk_tbl(data_zoo)

tk_time_series_cv_plan

Time Series Resample Plan Data Preparation

Description

The tk_time_series_cv_plan() function provides a simple interface to prepare a time series
resample specification (rset) of either rolling_origin or time_series_cv class.

Usage

tk_time_series_cv_plan(.data)

164 tk_ts

Arguments

.data A time series resample specification of of either rolling_origin or time_series_cv
class.

Details

Resample Set

A resample set is an output of the timetk::time_series_cv() function or the rsample::rolling_origin()
function.

Value

A tibble containing the time series crossvalidation plan.

See Also

• time_series_cv() and rsample::rolling_origin() - Functions used to create time series
resample specfications.

• plot_time_series_cv_plan() - The plotting function used for visualizing the time series
resample plan.

Examples

library(dplyr)
library(rsample)

FB_tbl <- FANG %>%
filter(symbol == "FB") %>%
select(symbol, date, adjusted)

resample_spec <- time_series_cv(
FB_tbl,
initial = 150, assess = 50, skip = 50,
cumulative = FALSE,
lag = 30,
slice_limit = n())

resample_spec %>% tk_time_series_cv_plan()

tk_ts Coerce time series objects and tibbles with date/date-time columns to
ts.

Description

Coerce time series objects and tibbles with date/date-time columns to ts.

tk_ts 165

Usage

tk_ts(
data,
select = NULL,
start = 1,
end = numeric(),
frequency = 1,
deltat = 1,
ts.eps = getOption("ts.eps"),
silent = FALSE

)

tk_ts_(
data,
select = NULL,
start = 1,
end = numeric(),
frequency = 1,
deltat = 1,
ts.eps = getOption("ts.eps"),
silent = FALSE

)

Arguments

data A time-based tibble or time-series object.

select Applicable to tibbles and data frames only. The column or set of columns to
be coerced to ts class.

start the time of the first observation. Either a single number or a vector of two
numbers (the second of which is an integer), which specify a natural time unit
and a (1-based) number of samples into the time unit. See the examples for the
use of the second form.

end the time of the last observation, specified in the same way as start.

frequency the number of observations per unit of time.

deltat the fraction of the sampling period between successive observations; e.g., 1/12
for monthly data. Only one of frequency or deltat should be provided.

ts.eps time series comparison tolerance. Frequencies are considered equal if their ab-
solute difference is less than ts.eps.

silent Used to toggle printing of messages and warnings.

Details

tk_ts() is a wrapper for stats::ts() that is designed to coerce tibble objects that have a "time-
base" (meaning the values vary with time) to ts class objects. There are two main advantages:

1. Non-numeric columns get removed instead of being populated by NA’s.

166 tk_ts

2. The returned ts object retains a "timetk index" (and various other attributes) if detected. The
"timetk index" can be used to coerce between tbl, xts, zoo, and ts data types.

The select argument is used to select subsets of columns from the incoming data.frame. Only
columns containing numeric data are coerced. At a minimum, a frequency and a start should be
specified.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using
stats::ts().

tk_ts_ is a nonstandard evaluation method.

Value

Returns a ts object.

See Also

tk_index(), tk_tbl(), tk_xts(), tk_zoo(), tk_zooreg()

Examples

library(dplyr)

tibble to ts: Comparison between tk_ts() and stats::ts()
data_tbl <- tibble::tibble(

date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
x = rep("chr values", 5),
y = cumsum(1:5),
z = cumsum(11:15) * rnorm(1))

as.ts: Character columns introduce NA's; Result does not retain index
stats::ts(data_tbl[,-1], start = 2016)

tk_ts: Only numeric columns get coerced; Result retains index in numeric format
data_ts <- tk_ts(data_tbl, start = 2016)
data_ts

timetk index
tk_index(data_ts, timetk_idx = FALSE) # Regularized index returned
tk_index(data_ts, timetk_idx = TRUE) # Original date index returned

Coerce back to tibble
data_ts %>% tk_tbl(timetk_idx = TRUE)

Using select
tk_ts(data_tbl, select = y)

NSE: Enables programming
select <- "y"
tk_ts_(data_tbl, select = select)

tk_tsfeatures 167

tk_tsfeatures Time series feature matrix (Tidy)

Description

tk_tsfeatures() is a tidyverse compliant wrapper for tsfeatures::tsfeatures(). The func-
tion computes a matrix of time series features that describes the various time series. It’s designed
for groupwise analysis using dplyr groups.

Usage

tk_tsfeatures(
.data,
.date_var,
.value,
.period = "auto",
.features = c("frequency", "stl_features", "entropy", "acf_features"),
.scale = TRUE,
.trim = FALSE,
.trim_amount = 0.1,
.parallel = FALSE,
.na_action = na.pass,
.prefix = "ts_",
.silent = TRUE,
...

)

Arguments

.data A tibble or data.frame with a time-based column

.date_var A column containing either date or date-time values

.value A column containing numeric values

.period The periodicity (frequency) of the time series data. Values can be provided as
follows:

• "auto" (default) Calculates using tk_get_frequency().
• "2 weeks": Would calculate the median number of observations in a 2-week

window.
• 7 (numeric): Would interpret the ts frequency as 7 observations per cycle

(common for weekly data)

.features Passed to features in the underlying tsfeatures() function. A vector of
function names that represent a feature aggregation function. Examples:

1. Use one of the function names from tsfeatures R package e.g.("lumpiness",
"stl_features").

2. Use a function name (e.g. "mean" or "median")
3. Create your own function and provide the function name

168 tk_tsfeatures

.scale If TRUE, time series are scaled to mean 0 and sd 1 before features are computed.

.trim If TRUE, time series are trimmed by trim_amount before features are computed.
Values larger than trim_amount in absolute value are set to NA.

.trim_amount Default level of trimming if trim==TRUE. Default: 0.1.

.parallel If TRUE, multiple cores (or multiple sessions) will be used. This only speeds
things up when there are a large number of time series.

When .parallel = TRUE, the multiprocess = future::multisession. This
can be adjusted by setting multiprocess parameter. See the tsfeatures::tsfeatures()
function for mor details.

.na_action A function to handle missing values. Use na.interp to estimate missing values.

.prefix A prefix to prefix the feature columns. Default: "ts_".

.silent Whether or not to show messages and warnings.

... Other arguments get passed to the feature functions.

Details

The timetk::tk_tsfeatures() function implements the tsfeatures package for computing ag-
gregated feature matrix for time series that is useful in many types of analysis such as clustering
time series.

The timetk version ports the tsfeatures::tsfeatures() function to a tidyverse-compliant
format that uses a tidy data frame containing grouping columns (optional), a date column, and a
value column. Other columns are ignored.

It then becomes easy to summarize each time series by group-wise application of .features, which
are simply functions that evaluate a time series and return single aggregated value. (Example:
"mean" would return the mean of the time series (note that values are scaled to mean 1 and sd 0
first))

Function Internals:

Internally, the time series are converted to ts class using tk_ts(.period) where the period is the
frequency of the time series. Values can be provided for .period, which will be used prior to
convertion to ts class.

The function then leverages tsfeatures::tsfeatures() to compute the feature matrix of sum-
marized feature values.

Value

A tibble or data.frame with aggregated features that describe each time series.

References

1. Rob Hyndman, Yanfei Kang, Pablo Montero-Manso, Thiyanga Talagala, Earo Wang, Yangzhuo-
ran Yang, Mitchell O’Hara-Wild: tsfeatures R package

tk_xts 169

Examples

library(dplyr)

walmart_sales_weekly %>%
group_by(id) %>%
tk_tsfeatures(

.date_var = Date,

.value = Weekly_Sales,

.period = 52,

.features = c("frequency", "stl_features", "entropy", "acf_features", "mean"),

.scale = TRUE,

.prefix = "ts_"
)

tk_xts Coerce time series objects and tibbles with date/date-time columns to
xts.

Description

Coerce time series objects and tibbles with date/date-time columns to xts.

Usage

tk_xts(data, select = NULL, date_var = NULL, silent = FALSE, ...)

tk_xts_(data, select = NULL, date_var = NULL, silent = FALSE, ...)

Arguments

data A time-based tibble or time-series object.

select Applicable to tibbles and data frames only. The column or set of columns to
be coerced to ts class.

date_var Applicable to tibbles and data frames only. Column name to be used to
order.by. NULL by default. If NULL, function will find the date or date-time
column.

silent Used to toggle printing of messages and warnings.

... Additional parameters to be passed to xts::xts(). Refer to xts::xts().

Details

tk_xts is a wrapper for xts::xts() that is designed to coerce tibble objects that have a "time-
base" (meaning the values vary with time) to xts class objects. There are three main advantages:

1. Non-numeric columns that are not removed via select are dropped and the user is warned.
This prevents an error or coercion issue from occurring.

170 tk_xts

2. The date column is auto-detected if not specified by date_var. This takes the effort off the
user to assign a date vector during coercion.

3. ts objects are automatically coerced if a "timetk index" is present. Refer to tk_ts().

The select argument can be used to select subsets of columns from the incoming data.frame. Only
columns containing numeric data are coerced. The date_var can be used to specify the column
with the date index. If date_var = NULL, the date / date-time column is interpreted. Optionally, the
order.by argument from the underlying xts::xts() function can be used. The user must pass a
vector of dates or date-times if order.by is used.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using
xts::xts().

tk_xts_ is a nonstandard evaluation method.

Value

Returns a xts object.

See Also

tk_tbl(), tk_zoo(), tk_zooreg(), tk_ts()

Examples

library(dplyr)

tibble to xts: Comparison between tk_xts() and xts::xts()
data_tbl <- tibble::tibble(

date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
x = rep("chr values", 5),
y = cumsum(1:5),
z = cumsum(11:15) * rnorm(1))

xts: Character columns cause coercion issues; order.by must be passed a vector of dates
xts::xts(data_tbl[,-1], order.by = data_tbl$date)

tk_xts: Non-numeric columns automatically dropped; No need to specify date column
tk_xts(data_tbl)

ts can be coerced back to xts
data_tbl %>%

tk_ts(start = 2016, freq = 365) %>%
tk_xts()

Using select and date_var
tk_xts(data_tbl, select = y, date_var = date)

NSE: Enables programming
date_var <- "date"
select <- "y"
tk_xts_(data_tbl, select = select, date_var = date_var)

tk_zoo 171

tk_zoo Coerce time series objects and tibbles with date/date-time columns to
xts.

Description

Coerce time series objects and tibbles with date/date-time columns to xts.

Usage

tk_zoo(data, select = NULL, date_var = NULL, silent = FALSE, ...)

tk_zoo_(data, select = NULL, date_var = NULL, silent = FALSE, ...)

Arguments

data A time-based tibble or time-series object.
select Applicable to tibbles and data frames only. The column or set of columns to

be coerced to ts class.
date_var Applicable to tibbles and data frames only. Column name to be used to

order.by. NULL by default. If NULL, function will find the date or date-time
column.

silent Used to toggle printing of messages and warnings.
... Additional parameters to be passed to xts::xts(). Refer to xts::xts().

Details

tk_zoo is a wrapper for zoo::zoo() that is designed to coerce tibble objects that have a "time-
base" (meaning the values vary with time) to zoo class objects. There are three main advantages:

1. Non-numeric columns that are not removed via select are dropped and the user is warned.
This prevents an error or coercion issue from occurring.

2. The date column is auto-detected if not specified by date_var. This takes the effort off the
user to assign a date vector during coercion.

3. ts objects are automatically coerced if a "timetk index" is present. Refer to tk_ts().

The select argument can be used to select subsets of columns from the incoming data.frame. Only
columns containing numeric data are coerced. The date_var can be used to specify the column
with the date index. If date_var = NULL, the date / date-time column is interpreted. Optionally, the
order.by argument from the underlying zoo::zoo() function can be used. The user must pass a
vector of dates or date-times if order.by is used. Important Note: The ... arguments are passed
to xts::xts(), which enables additional information (e.g. time zone) to be an attribute of the zoo
object.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using
zoo::zoo().

tk_zoo_ is a nonstandard evaluation method.

172 tk_zooreg

Value

Returns a zoo object.

See Also

tk_tbl(), tk_xts(), tk_zooreg(), tk_ts()

Examples

library(dplyr)

tibble to zoo: Comparison between tk_zoo() and zoo::zoo()
data_tbl <- dplyr::tibble(

date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
x = rep("chr values", 5),
y = cumsum(1:5),
z = cumsum(11:15) * rnorm(1))

zoo: Characters will cause error; order.by must be passed a vector of dates
zoo::zoo(data_tbl[,-c(1,2)], order.by = data_tbl$date)

tk_zoo: Character columns dropped with a warning; No need to specify dates (auto detected)
tk_zoo(data_tbl)

ts can be coerced back to zoo
data_tbl %>%

tk_ts(start = 2016, freq = 365) %>%
tk_zoo()

Using select and date_var
tk_zoo(data_tbl, select = y, date_var = date)

NSE: Enables programming
date_var <- "date"
select <- "y"
tk_zoo_(data_tbl, select = select, date_var = date_var)

tk_zooreg Coerce time series objects and tibbles with date/date-time columns to
ts.

Description

Coerce time series objects and tibbles with date/date-time columns to ts.

tk_zooreg 173

Usage

tk_zooreg(
data,
select = NULL,
date_var = NULL,
start = 1,
end = numeric(),
frequency = 1,
deltat = 1,
ts.eps = getOption("ts.eps"),
order.by = NULL,
silent = FALSE

)

tk_zooreg_(
data,
select = NULL,
date_var = NULL,
start = 1,
end = numeric(),
frequency = 1,
deltat = 1,
ts.eps = getOption("ts.eps"),
order.by = NULL,
silent = FALSE

)

Arguments

data A time-based tibble or time-series object.
select Applicable to tibbles and data frames only. The column or set of columns to

be coerced to zooreg class.
date_var Applicable to tibbles and data frames only. Column name to be used to

order.by. NULL by default. If NULL, function will find the date or date-time
column.

start the time of the first observation. Either a single number or a vector of two
integers, which specify a natural time unit and a (1-based) number of samples
into the time unit.

end the time of the last observation, specified in the same way as start.
frequency the number of observations per unit of time.
deltat the fraction of the sampling period between successive observations; e.g., 1/12

for monthly data. Only one of frequency or deltat should be provided.
ts.eps time series comparison tolerance. Frequencies are considered equal if their ab-

solute difference is less than ts.eps.
order.by a vector by which the observations in x are ordered. If this is specified the

arguments start and end are ignored and zoo(data, order.by, frequency)
is called. See zoo for more information.

174 tk_zooreg

silent Used to toggle printing of messages and warnings.

Details

tk_zooreg() is a wrapper for zoo::zooreg() that is designed to coerce tibble objects that have
a "time-base" (meaning the values vary with time) to zooreg class objects. There are two main
advantages:

1. Non-numeric columns get removed instead causing coercion issues.

2. If an index is present, the returned zooreg object retains an index retrievable using tk_index().

The select argument is used to select subsets of columns from the incoming data.frame. The
date_var can be used to specify the column with the date index. If date_var = NULL, the date /
date-time column is interpreted. Optionally, the order.by argument from the underlying xts::xts()
function can be used. The user must pass a vector of dates or date-times if order.by is used. Only
columns containing numeric data are coerced. At a minimum, a frequency and a start should be
specified.

For non-data.frame object classes (e.g. xts, zoo, timeSeries, etc) the objects are coerced using
zoo::zooreg().

tk_zooreg_ is a nonstandard evaluation method.

Value

Returns a zooreg object.

See Also

tk_tbl(), tk_xts(), tk_zoo(), tk_ts()

Examples

tibble to zooreg: Comparison between tk_zooreg() and zoo::zooreg()
data_tbl <- tibble::tibble(

date = seq.Date(as.Date("2016-01-01"), by = 1, length.out = 5),
x = rep("chr values", 5),
y = cumsum(1:5),
z = cumsum(11:15) * rnorm(1))

zoo::zooreg: Values coerced to character; Result does not retain index
data_zooreg <- zoo::zooreg(data_tbl[,-1], start = 2016, freq = 365)
data_zooreg # Numeric values coerced to character
rownames(data_zooreg) # NULL, no dates retained

tk_zooreg: Only numeric columns get coerced; Result retains index as rownames
data_tk_zooreg <- tk_zooreg(data_tbl, start = 2016, freq = 365)
data_tk_zooreg # No inadvertent coercion to character class

timetk index
tk_index(data_tk_zooreg, timetk_idx = FALSE) # Regularized index returned
tk_index(data_tk_zooreg, timetk_idx = TRUE) # Original date index returned

ts_clean_vec 175

Using select and date_var
tk_zooreg(data_tbl, select = y, date_var = date, start = 2016, freq = 365)

NSE: Enables programming
select <- "y"
date_var <- "date"
tk_zooreg_(data_tbl, select = select, date_var = date_var, start = 2016, freq = 365)

ts_clean_vec Replace Outliers & Missing Values in a Time Series

Description

This is mainly a wrapper for the outlier cleaning function, tsclean(), from the forecast R pack-
age. The ts_clean_vec() function includes arguments for applying seasonality to numeric vector
(non-ts) via the period argument.

Usage

ts_clean_vec(x, period = 1, lambda = NULL)

Arguments

x A numeric vector.

period A seasonal period to use during the transformation. If period = 1, seasonality
is not included and supsmu() is used to fit a trend. If period > 1, a robust
STL decomposition is first performed and a linear interpolation is applied to the
seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto", performs automated
lambda selection.

Details

Cleaning Outliers

1. Non-Seasonal (period = 1): Uses stats::supsmu()

2. Seasonal (period > 1): Uses forecast::mstl() with robust = TRUE (robust STL decompo-
sition) for seasonal series.

To estimate missing values and outlier replacements, linear interpolation is used on the (possibly
seasonally adjusted) series. See forecast::tsoutliers() for the outlier detection method.

Box Cox Transformation
In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative
meaning the variance grows exponentially. A Box Cox transformation can be automated by setting
lambda = "auto" or can be specified by setting lambda = numeric value.

176 ts_clean_vec

Value

A numeric vector with the missing values and/or anomalies transformed to imputed values.

References

• Forecast R Package

• Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation for Time Series: ts_impute_vec()

• Outlier Cleaning for Time Series: ts_clean_vec()

Examples

library(dplyr)

--- VECTOR ----

values <- c(1,2,3, 4*2, 5,6,7, NA, 9,10,11, 12*2)
values

Linear interpolation + Outlier Cleansing
ts_clean_vec(values, period = 1, lambda = NULL)

Seasonal Interpolation: set period = 4
ts_clean_vec(values, period = 4, lambda = NULL)

Seasonal Interpolation with Box Cox Transformation (internal)
ts_clean_vec(values, period = 4, lambda = "auto")

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/missing-outliers.html

ts_impute_vec 177

ts_impute_vec Missing Value Imputation for Time Series

Description

This is mainly a wrapper for the Seasonally Adjusted Missing Value using Linear Interpolation
function, na.interp(), from the forecast R package. The ts_impute_vec() function includes
arguments for applying seasonality to numeric vector (non-ts) via the period argument.

Usage

ts_impute_vec(x, period = 1, lambda = NULL)

Arguments

x A numeric vector.

period A seasonal period to use during the transformation. If period = 1, linear in-
terpolation is performed. If period > 1, a robust STL decomposition is first
performed and a linear interpolation is applied to the seasonally adjusted data.

lambda A box cox transformation parameter. If set to "auto", performs automated
lambda selection.

Details

Imputation using Linear Interpolation

Three circumstances cause strictly linear interpolation:

1. Period is 1: With period = 1, a seasonality cannot be interpreted and therefore linear is used.

2. Number of Non-Missing Values is less than 2-Periods: Insufficient values exist to detect
seasonality.

3. Number of Total Values is less than 3-Periods: Insufficient values exist to detect seasonality.

Seasonal Imputation using Linear Interpolation

For seasonal series with period > 1, a robust Seasonal Trend Loess (STL) decomposition is first
computed. Then a linear interpolation is applied to the seasonally adjusted data, and the seasonal
component is added back.

Box Cox Transformation

In many circumstances, a Box Cox transformation can help. Especially if the series is multiplicative
meaning the variance grows exponentially. A Box Cox transformation can be automated by setting
lambda = "auto" or can be specified by setting lambda = numeric value.

Value

A numeric vector with the missing values imputed.

178 walmart_sales_weekly

References

• Forecast R Package

• Forecasting Principles & Practices: Dealing with missing values and outliers

See Also

• Box Cox Transformation: box_cox_vec()

• Lag Transformation: lag_vec()

• Differencing Transformation: diff_vec()

• Rolling Window Transformation: slidify_vec()

• Loess Smoothing Transformation: smooth_vec()

• Fourier Series: fourier_vec()

• Missing Value Imputation for Time Series: ts_impute_vec()

Examples

library(dplyr)

--- VECTOR ----

values <- c(1,2,3, 4*2, 5,6,7, NA, 9,10,11, 12*2)
values

Linear interpolation
ts_impute_vec(values, period = 1, lambda = NULL)

Seasonal Interpolation: set period = 4
ts_impute_vec(values, period = 4, lambda = NULL)

Seasonal Interpolation with Box Cox Transformation (internal)
ts_impute_vec(values, period = 4, lambda = "auto")

walmart_sales_weekly Sample Time Series Retail Data from the Walmart Recruiting Store
Sales Forecasting Competition

Description

The Kaggle "Walmart Recruiting - Store Sales Forecasting" Competition used retail data for com-
binations of stores and departments within each store. The competition began February 20th, 2014
and ended May 5th, 2014. The competition included data from 45 retail stores located in different
regions. The dataset included various external features including Holiday information, Tempera-
ture, Fuel Price, and Markdown. This dataset includes a Sample of 7 departments from the Store
ID 1 (7 total time series).

https://github.com/robjhyndman/forecast
https://otexts.com/fpp2/missing-outliers.html

walmart_sales_weekly 179

Usage

walmart_sales_weekly

Format

A tibble: 9,743 x 3

• id Factor. Unique series identifier (4 total)

• Store Numeric. Store ID.

• Dept Numeric. Department ID.

• Date Date. Weekly timestamp.

• Weekly_Sales Numeric. Sales for the given department in the given store.

• IsHoliday Logical. Whether the week is a "special" holiday for the store.

• Type Character. Type identifier of the store.

• Size Numeric. Store square-footage

• Temperature Numeric. Average temperature in the region.

• Fuel_Price Numeric. Cost of fuel in the region.

• MarkDown1, MarkDown2, MarkDown3, MarkDown4, MarkDown5 Numeric. Anonymized data
related to promotional markdowns that Walmart is running. MarkDown data is only available
after Nov 2011, and is not available for all stores all the time. Any missing value is marked
with an NA.

• CPI Numeric. The consumer price index.

• Unemployment Numeric. The unemployment rate in the region.

Details

This is a sample of 7 Weekly data sets from the Kaggle Walmart Recruiting Store Sales Forecasting
competition.

Holiday Features
The four holidays fall within the following weeks in the dataset (not all holidays are in the data):

• Super Bowl: 12-Feb-10, 11-Feb-11, 10-Feb-12, 8-Feb-13

• Labor Day: 10-Sep-10, 9-Sep-11, 7-Sep-12, 6-Sep-13

• Thanksgiving: 26-Nov-10, 25-Nov-11, 23-Nov-12, 29-Nov-13

• Christmas: 31-Dec-10, 30-Dec-11, 28-Dec-12, 27-Dec-13

Source

• Kaggle Competition Website

Examples

walmart_sales_weekly

https://www.kaggle.com/c/walmart-recruiting-store-sales-forecasting

180 wikipedia_traffic_daily

wikipedia_traffic_daily

Sample Daily Time Series Data from the Web Traffic Forecasting
(Wikipedia) Competition

Description

The Kaggle "Web Traffic Forecasting" (Wikipedia) Competition used Google Analytics Web Traf-
fic Data for 145,000 websites. Each of these time series represent a number of daily views of a
different Wikipedia articles. The competition began July 13th, 2017 and ended November 15th,
2017. This dataset includes a Sample of 10 article pages (10 total time series).

Usage

wikipedia_traffic_daily

Format

A tibble: 9,743 x 3

• Page Character. Page information.

• date Date. Daily timestamp.

• value Numeric. Daily views of the wikipedia article.

Details

This is a sample of 10 Daily data sets from the Kaggle Web Traffic Forecasting (Wikipedia) Com-
petition

Source

• Kaggle Competition Website

Examples

wikipedia_traffic_daily

https://www.kaggle.com/c/web-traffic-time-series-forecasting

Index

∗ datagen
step_fourier, 87
step_holiday_signature, 90
step_slidify, 96
step_slidify_augment, 99
step_smooth, 102

∗ datasets
bike_sharing_daily, 9
FANG, 16
m4_daily, 29
m4_hourly, 30
m4_monthly, 31
m4_quarterly, 32
m4_weekly, 32
m4_yearly, 33
taylor_30_min, 119
walmart_sales_weekly, 178
wikipedia_traffic_daily, 180

∗ dates
step_fourier, 87
step_holiday_signature, 90
step_ts_pad, 114

∗ model_specification
step_fourier, 87
step_holiday_signature, 90
step_ts_pad, 114

∗ moving_windows
step_slidify, 96
step_slidify_augment, 99
step_smooth, 102

∗ preprocessing
step_fourier, 87
step_holiday_signature, 90
step_slidify, 96
step_slidify_augment, 99
step_smooth, 102
step_ts_pad, 114

∗ variable_encodings
step_fourier, 87

step_holiday_signature, 90
%+time% (time_arithmetic), 120
%-time% (time_arithmetic), 120

add_time (time_arithmetic), 120
anomalize, 4
anydate(), 40
anytime(), 40
auto_lambda (box_cox_vec), 10

between_time, 7
between_time(), 8, 13, 18, 20, 35, 39, 71,

118, 120
bike_sharing_daily, 9
box_cox_inv_vec (box_cox_vec), 10
box_cox_vec, 10
box_cox_vec(), 11, 15, 22, 27, 29, 36, 77, 80,

82, 176, 178

condense_period, 12
condense_period(), 8, 13, 18, 20, 35, 39, 71,

118
cor(), 118
cov(), 118

diff_inv_vec (diff_vec), 14
diff_vec, 14
diff_vec(), 11, 15, 22, 27, 29, 36, 77, 80, 82,

132, 176, 178
dplyr::mutate(), 73

FANG, 16
filter_by_time, 17
filter_by_time(), 7, 8, 13, 18–20, 35, 39,

71, 118
filter_period, 19
filter_period(), 8, 13, 17, 18, 20, 35, 39,

71, 118
fourier_vec, 20
fourier_vec(), 11, 15, 22, 27, 29, 36, 77, 80,

82, 133, 176, 178

181

182 INDEX

future_frame, 23

get_tk_time_scale_template
(set_tk_time_scale_template),
69

get_tk_time_scale_template(), 141

has_timetk_idx (tk_index), 147

is_date_class, 25

lag_vec, 26
lag_vec(), 11, 15, 22, 27, 29, 36, 77, 80, 82,

136, 176, 178
lead_vec (lag_vec), 26
log_interval_inv_vec

(log_interval_vec), 28
log_interval_vec, 28
log_interval_vec(), 95
lubridate::period(), 120

m4_daily, 29
m4_hourly, 30
m4_monthly, 31
m4_quarterly, 32
m4_weekly, 32
m4_yearly, 33
max(), 118
mean(), 118
median(), 118
min(), 118
mutate_by_time, 34
mutate_by_time(), 8, 13, 18, 20, 35, 39, 71,

118

normalize_inv_vec (normalize_vec), 36
normalize_vec, 36
normalize_vec(), 36, 82

pad_by_time, 37
pad_by_time(), 8, 13, 18, 20, 35, 39, 71, 118
parse_date2, 40
parse_datetime2 (parse_date2), 40
plot_acf_diagnostics, 41
plot_acf_diagnostics(), 44, 127, 128
plot_anomalies, 44
plot_anomalies_cleaned

(plot_anomalies), 44
plot_anomalies_decomp (plot_anomalies),

44

plot_anomaly_diagnostics, 48
plot_anomaly_diagnostics(), 130
plot_seasonal_diagnostics, 52
plot_seasonal_diagnostics(), 44, 128
plot_stl_diagnostics, 54
plot_time_series, 57
plot_time_series(), 44, 66, 68, 128
plot_time_series_boxplot, 61
plot_time_series_cv_plan, 65
plot_time_series_cv_plan(), 66, 123, 164
plot_time_series_regression, 67
purrr::map(), 73

recipes::selections(), 88, 91, 92, 96, 100,
103, 107, 114

recipes::step_lag(), 27, 86
recipes::step_naomit(), 87
recipes::step_normalize(), 107
recipes::step_rm(), 89, 92, 107
rsample::rolling_origin(), 66, 123, 126,

164

sd(), 118
selections(), 83, 86, 94, 109, 112
set_tk_time_scale_template, 69
set_tk_time_scale_template(), 141
slice_period, 70
slice_period(), 8, 13, 18, 20, 35, 39, 71
slidify, 72
slidify(), 8, 13, 18, 20, 35, 39, 71, 77, 118
slidify_vec, 76
slidify_vec(), 11, 15, 22, 27, 29, 36, 73, 77,

80, 82, 138, 176, 178
smooth_vec, 79
smooth_vec(), 11, 15, 22, 27, 29, 36, 58, 62,

63, 66, 77, 80, 82, 176, 178
standardize_inv_vec (standardize_vec),

81
standardize_vec, 81
standardize_vec(), 36, 82
stats::lm(), 67, 68
stats::stl(), 6, 51, 56, 130, 159
step_box_cox, 83
step_box_cox(), 84, 86, 89, 92, 98, 102, 104,

107, 110, 113, 115
step_diff, 85
step_diff(), 15, 84, 86, 89, 92, 95, 98, 101,

104, 107, 110, 113, 115
step_fourier, 87

INDEX 183

step_fourier(), 22, 84, 86, 89, 92, 95, 98,
101, 104, 107, 110, 113, 115

step_holiday_signature, 90
step_holiday_signature(), 84, 86, 89, 92,

95, 98, 101, 104, 107, 110, 113, 115,
143

step_log_interval, 93
step_log_interval(), 95
step_naomit(), 85
step_slidify, 96
step_slidify(), 77, 84, 86, 89, 92, 95, 98,

101, 104, 107, 110, 113, 115
step_slidify_augment, 99
step_smooth, 102
step_smooth(), 80, 84, 86, 89, 92, 95, 98,

101, 104, 107, 110, 113, 115
step_timeseries_signature, 106
step_timeseries_signature(), 84, 86, 89,

92, 95, 98, 101, 104, 107, 110, 113,
115

step_ts_clean, 108
step_ts_clean(), 84, 87, 89, 92, 95, 98, 102,

104, 107, 110, 113, 115
step_ts_impute, 111
step_ts_impute(), 84, 87, 89, 92, 95, 98,

102, 104, 107, 110, 113, 115
step_ts_pad, 114
step_ts_pad(), 84, 87, 89, 92, 95, 98, 102,

104, 107, 110, 113, 115
subtract_time (time_arithmetic), 120
sum(), 118
summarise_by_time, 116
summarise_by_time(), 8, 13, 18, 20, 35, 38,

71, 118
summarize_by_time (summarise_by_time),

116

taylor_30_min, 119
tibble::as_tibble(), 162
tidy.step_box_cox (step_box_cox), 83
tidy.step_diff (step_diff), 85
tidy.step_fourier (step_fourier), 87
tidy.step_holiday_signature

(step_holiday_signature), 90
tidy.step_log_interval

(step_log_interval), 93
tidy.step_slidify (step_slidify), 96
tidy.step_slidify_augment

(step_slidify_augment), 99

tidy.step_smooth (step_smooth), 102
tidy.step_timeseries_signature

(step_timeseries_signature),
106

tidy.step_ts_clean (step_ts_clean), 108
tidy.step_ts_impute (step_ts_impute),

111
tidy.step_ts_pad (step_ts_pad), 114
time_arithmetic, 120
time_series_cv, 121, 125
time_series_cv(), 66, 123, 124, 126, 164
time_series_split, 124
time_series_split(), 123
timetk (timetk-package), 4
timetk-package, 4
tk_acf_diagnostics, 127
tk_anomaly_diagnostics, 129
tk_anomaly_diagnostics(), 51
tk_augment_differences, 131
tk_augment_differences(), 15, 132, 133,

135, 136, 138, 140
tk_augment_fourier, 132
tk_augment_fourier(), 22, 132, 133, 135,

136, 138, 140
tk_augment_holiday, 133
tk_augment_holiday_signature

(tk_augment_holiday), 133
tk_augment_holiday_signature(),

132–134, 136, 138, 140, 143
tk_augment_lags, 135
tk_augment_lags(), 27, 132, 133, 135, 136,

138, 140
tk_augment_leads (tk_augment_lags), 135
tk_augment_slidify, 137
tk_augment_slidify(), 73, 77, 132, 133,

135, 136, 138, 140
tk_augment_timeseries, 139
tk_augment_timeseries_signature

(tk_augment_timeseries), 139
tk_augment_timeseries_signature(),

132–134, 136, 138, 140, 145
tk_get_frequency, 140
tk_get_frequency(), 5, 49, 55, 70, 129, 159
tk_get_holiday, 142
tk_get_holiday_signature

(tk_get_holiday), 142
tk_get_holiday_signature(), 134, 135
tk_get_holidays_by_year

184 INDEX

(tk_get_holiday), 142
tk_get_timeseries, 144
tk_get_timeseries_signature

(tk_get_timeseries), 144
tk_get_timeseries_signature(), 140, 150
tk_get_timeseries_summary

(tk_get_timeseries), 144
tk_get_timeseries_summary(), 150, 161
tk_get_timeseries_unit_frequency, 145
tk_get_timeseries_variables, 146
tk_get_trend (tk_get_frequency), 140
tk_get_trend(), 5, 49, 70, 129
tk_index, 147
tk_index(), 145, 150, 162, 166, 174
tk_make_future_timeseries, 148
tk_make_future_timeseries(), 23, 25, 145,

152, 155
tk_make_holiday_sequence, 151
tk_make_holiday_sequence(), 150, 152,

155
tk_make_timeseries, 153
tk_make_timeseries(), 150, 152, 155
tk_make_weekday_sequence

(tk_make_holiday_sequence), 151
tk_make_weekday_sequence(), 150, 152,

155
tk_make_weekend_sequence

(tk_make_holiday_sequence), 151
tk_make_weekend_sequence(), 150, 152,

155
tk_seasonal_diagnostics, 157
tk_stl_diagnostics, 159
tk_summary_diagnostics, 160
tk_tbl, 161
tk_tbl(), 148, 166, 170, 172, 174
tk_time_scale_template

(set_tk_time_scale_template),
69

tk_time_scale_template(), 6, 51, 130
tk_time_series_cv_plan, 163
tk_time_series_cv_plan(), 66
tk_ts, 164
tk_ts(), 147, 148, 162, 170–172, 174
tk_ts_ (tk_ts), 164
tk_tsfeatures, 167
tk_xts, 169
tk_xts(), 148, 162, 166, 172, 174
tk_xts_ (tk_xts), 169

tk_zoo, 171
tk_zoo(), 148, 162, 166, 170, 174
tk_zoo_ (tk_zoo), 171
tk_zooreg, 172
tk_zooreg(), 148, 162, 166, 170, 172
tk_zooreg_ (tk_zooreg), 172
ts_clean_vec, 175
ts_clean_vec(), 11, 15, 22, 27, 29, 36, 82,

176
ts_impute_vec, 177
ts_impute_vec(), 11, 15, 22, 27, 29, 36, 38,

77, 80, 82, 176, 178

var(), 118

walmart_sales_weekly, 178
wikipedia_traffic_daily, 180

zoo, 173

	timetk-package
	anomalize
	between_time
	bike_sharing_daily
	box_cox_vec
	condense_period
	diff_vec
	FANG
	filter_by_time
	filter_period
	fourier_vec
	future_frame
	is_date_class
	lag_vec
	log_interval_vec
	m4_daily
	m4_hourly
	m4_monthly
	m4_quarterly
	m4_weekly
	m4_yearly
	mutate_by_time
	normalize_vec
	pad_by_time
	parse_date2
	plot_acf_diagnostics
	plot_anomalies
	plot_anomaly_diagnostics
	plot_seasonal_diagnostics
	plot_stl_diagnostics
	plot_time_series
	plot_time_series_boxplot
	plot_time_series_cv_plan
	plot_time_series_regression
	set_tk_time_scale_template
	slice_period
	slidify
	slidify_vec
	smooth_vec
	standardize_vec
	step_box_cox
	step_diff
	step_fourier
	step_holiday_signature
	step_log_interval
	step_slidify
	step_slidify_augment
	step_smooth
	step_timeseries_signature
	step_ts_clean
	step_ts_impute
	step_ts_pad
	summarise_by_time
	taylor_30_min
	time_arithmetic
	time_series_cv
	time_series_split
	tk_acf_diagnostics
	tk_anomaly_diagnostics
	tk_augment_differences
	tk_augment_fourier
	tk_augment_holiday
	tk_augment_lags
	tk_augment_slidify
	tk_augment_timeseries
	tk_get_frequency
	tk_get_holiday
	tk_get_timeseries
	tk_get_timeseries_unit_frequency
	tk_get_timeseries_variables
	tk_index
	tk_make_future_timeseries
	tk_make_holiday_sequence
	tk_make_timeseries
	tk_seasonal_diagnostics
	tk_stl_diagnostics
	tk_summary_diagnostics
	tk_tbl
	tk_time_series_cv_plan
	tk_ts
	tk_tsfeatures
	tk_xts
	tk_zoo
	tk_zooreg
	ts_clean_vec
	ts_impute_vec
	walmart_sales_weekly
	wikipedia_traffic_daily
	Index

