Type: | Package |
Title: | Tools for Handling Extraction of Features from Time Series |
Version: | 0.8.1 |
Date: | 2025-07-10 |
Maintainer: | Trent Henderson <then6675@uni.sydney.edu.au> |
Description: | Consolidates and calculates different sets of time-series features from multiple 'R' and 'Python' packages including 'Rcatch22' Henderson, T. (2021) <doi:10.5281/zenodo.5546815>, 'feasts' O'Hara-Wild, M., Hyndman, R., and Wang, E. (2021) https://CRAN.R-project.org/package=feasts, 'tsfeatures' Hyndman, R., Kang, Y., Montero-Manso, P., Talagala, T., Wang, E., Yang, Y., and O'Hara-Wild, M. (2020) https://CRAN.R-project.org/package=tsfeatures, 'tsfresh' Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr A.W. (2018) <doi:10.1016/j.neucom.2018.03.067>, 'TSFEL' Barandas, M., et al. (2020) <doi:10.1016/j.softx.2020.100456>, and 'Kats' Facebook Infrastructure Data Science (2021) https://facebookresearch.github.io/Kats/. |
BugReports: | https://github.com/hendersontrent/theft/issues |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
LazyData: | true |
Depends: | R (≥ 3.5.0) |
Imports: | utils, stats, rlang, dplyr, tidyr, purrr, tsibble, fabletools, feasts, tsfeatures, Rcatch22, reticulate, R.matlab |
Suggests: | lifecycle, cachem, bslib, knitr, rmarkdown, pkgdown, testthat |
RoxygenNote: | 7.3.2 |
VignetteBuilder: | knitr |
URL: | https://hendersontrent.github.io/theft/ |
NeedsCompilation: | no |
Packaged: | 2025-07-10 02:30:55 UTC; trenthenderson |
Author: | Trent Henderson [cre, aut], Annie Bryant [ctb] |
Repository: | CRAN |
Date/Publication: | 2025-07-10 07:10:02 UTC |
Compute features on an input time series dataset
Description
Compute features on an input time series dataset
Usage
calculate_features(
data,
feature_set = c("catch22", "feasts", "tsfeatures", "kats", "tsfresh", "tsfel"),
features = NULL,
catch24 = FALSE,
tsfresh_cleanup = FALSE,
use_compengine = FALSE,
seed = 123
)
Arguments
data |
|
feature_set |
|
features |
named |
catch24 |
|
tsfresh_cleanup |
|
use_compengine |
|
seed |
|
Value
object of class feature_calculations
that contains the summary statistics for each feature
Author(s)
Trent Henderson
Examples
featMat <- calculate_features(data = simData,
feature_set = "catch22")
Check for presence of NAs and non-numerics in a vector
Description
Check for presence of NAs and non-numerics in a vector
Usage
check_vector_quality(x)
Arguments
x |
input |
Value
Boolean
of whether the data is good to extract features on or not
Author(s)
Trent Henderson
All features available in theft in tidy format
Description
The variables include:
Usage
feature_list
Format
A tidy data frame with 2 variables:
- feature_set
Name of the set the feature is from
- feature
Name of the feature
Communicate to R the Python virtual environment containing the relevant libraries for calculating features
Description
Communicate to R the Python virtual environment containing the relevant libraries for calculating features
Usage
init_theft(venv)
Arguments
venv |
|
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run:
install_python_pkgs("theft-test")
init_theft("theft-test")
## End(Not run)
Download and install Kats from Python into a new virtual environment
Description
Download and install Kats from Python into a new virtual environment
Usage
install_kats(venv, python)
Arguments
venv |
|
python |
|
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run:
install_kats("theft-test", "/usr/local/bin/python3.10")
## End(Not run)
Download and install tsfresh, TSFEL, and Kats from Python into a new virtual environment
Description
Download and install tsfresh, TSFEL, and Kats from Python into a new virtual environment
Usage
install_python_pkgs(venv, python)
Arguments
venv |
|
python |
|
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run:
install_python_pkgs("theft-test", "/usr/local/bin/python3.10")
## End(Not run)
Download and install TSFEL from Python into a new virtual environment
Description
Download and install TSFEL from Python into a new virtual environment
Usage
install_tsfel(venv, python)
Arguments
venv |
|
python |
|
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run:
install_tsfel("theft-test", "/usr/local/bin/python3.10")
## End(Not run)
Download and install tsfresh from Python into a new virtual environment
Description
Download and install tsfresh from Python into a new virtual environment
Usage
install_tsfresh(venv, python)
Arguments
venv |
|
python |
|
Value
no return value; called for side effects
Author(s)
Trent Henderson
Examples
## Not run:
install_tsfresh("theft-test", "/usr/local/bin/python3.10")
## End(Not run)
Load in hctsa formatted MATLAB files of time series data into a tidy format ready for feature extraction
Description
Load in hctsa formatted MATLAB files of time series data into a tidy format ready for feature extraction
Usage
process_hctsa_file(data)
Arguments
data |
|
Value
an object of class data.frame
in tidy format
Author(s)
Trent Henderson
Sample of randomly-generated time series to produce function tests and vignettes
Description
The variables include:
Usage
simData
Format
A tidy tsibble with 4 variables:
- id
Unique identifier for the time series
- timepoint
Time index
- values
Value
- process
Group label for the type of time series
Tools for Handling Extraction of Features from Time-series
Description
Tools for Handling Extraction of Features from Time-series