
Package ‘textrank’
July 22, 2025

Type Package

Title Summarize Text by Ranking Sentences and Finding Keywords

Version 0.3.1

Maintainer Jan Wijffels <jwijffels@bnosac.be>

Author Jan Wijffels [aut, cre, cph],
BNOSAC [cph]

Description The 'textrank' algorithm is an extension of the 'Pagerank' algorithm for text. The algo-
rithm allows to summarize text by calculating how sentences are related to one an-
other. This is done by looking at overlapping terminology used in sentences in or-
der to set up links between sentences. The resulting sentence net-
work is next plugged into the 'Pagerank' algorithm which identifies the most important sen-
tences in your text and ranks them.
In a similar way 'textrank' can also be used to extract keywords. A word network is con-
structed by looking if words are following one another. On top of that network the 'Pagerank' al-
gorithm is applied to extract relevant words after which relevant words which are follow-
ing one another are combined to get keywords.
More information can be found in the paper from Mihalcea, Rada & Tarau, Paul (2004) <https:
//www.aclweb.org/anthology/W04-3252/>.

License MPL-2.0

URL https://github.com/bnosac/textrank

Encoding UTF-8

Imports utils, data.table (>= 1.9.6), igraph, digest

Suggests textreuse, knitr, rmarkdown, udpipe (>= 0.2)

RoxygenNote 7.1.1

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2020-10-12 11:50:02 UTC

1

https://www.aclweb.org/anthology/W04-3252/
https://www.aclweb.org/anthology/W04-3252/
https://github.com/bnosac/textrank


2 summary.textrank_sentences

Contents
joboffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
summary.textrank_sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
textrank_candidates_all . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
textrank_candidates_lsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
textrank_jaccard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
textrank_keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
textrank_sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Index 10

joboffer The text of a job offer, annotated with the package udpipe

Description

The text of a job offer, annotated with the package udpipe

Examples

data(joboffer)
str(joboffer)
unique(joboffer$sentence)

summary.textrank_sentences

Extract the most important sentences which were identified with tex-
trank_sentences

Description

Extract the most important sentences which were identified by textrank_sentences

Usage

## S3 method for class 'textrank_sentences'
summary(object, n = 3, keep.sentence.order = FALSE, ...)

Arguments

object an object of class textrank_sentences
n integer indicating to extract only the top n sentences
keep.sentence.order

logical indicating to keep the sentence order as provided in the original data
argument of the textrank_sentences function or to order it by the pagerank
score. Defaults to FALSE indicating to order by pagerank score.

... not used



textrank_candidates_all 3

Value

a character vector with the top n most important sentences which were identified by textrank_sentences

See Also

textrank_sentences

textrank_candidates_all

Get all combinations of sentences

Description

Get all combinations of sentences

Usage

textrank_candidates_all(x)

Arguments

x a character vector of sentence identifiers

Value

a data.frame with 2 columns textrank_id_1 and textrank_id_2 listing up all possible combina-
tions of x. The columns textrank_id_1 and textrank_id_2 contain identifiers of sentences given
in sentence_id. This data.frame can be used as input in the textrank_sentences algorithm.

See Also

textrank_sentences

Examples

library(udpipe)
data(joboffer)
joboffer$textrank_id <- unique_identifier(joboffer, c("doc_id", "paragraph_id", "sentence_id"))
candidates <- textrank_candidates_all(unique(joboffer$textrank_id))
head(candidates, 50)



4 textrank_candidates_lsh

textrank_candidates_lsh

Use locality-sensitive hashing to get combinations of sentences which
contain words which are in the same minhash bucket

Description

This functionality is usefull if there are a lot of sentences and most of the sentences have no overlap-
ping words in there. In order not to compute the jaccard distance among all possible combinations
of sentences as is done by using textrank_candidates_all, we can reduce the combinations of
sentences by using the Minhash algorithm. This function sets up the combinations of sentences
which are in the same Minhash bucket.

Usage

textrank_candidates_lsh(x, sentence_id, minhashFUN, bands)

Arguments

x a character vector of words or terms

sentence_id a character vector of identifiers of sentences where the words/terms provided in
x are part of the sentence. The length of sentence_id should be the same length
of x

minhashFUN a function which returns a minhash of a character vector. See the examples or
look at minhash_generator

bands integer indicating to break down the minhashes in bands number of bands. Mark
that the number of minhash signatures should always be a multiple of the number
of local sensitive hashing bands. See the example

Value

a data.frame with 2 columns textrank_id_1 and textrank_id_2 containing identifiers of sentences
sentence_id which contained terms in the same minhash bucket. This data.frame can be used as
input in the textrank_sentences algorithm.

See Also

textrank_sentences

Examples

library(textreuse)
library(udpipe)
lsh_probability(h = 1000, b = 500, s = 0.1) # A 10 percent Jaccard overlap will be detected well

minhash <- minhash_generator(n = 1000, seed = 123456789)



textrank_jaccard 5

data(joboffer)
joboffer$textrank_id <- unique_identifier(joboffer, c("doc_id", "paragraph_id", "sentence_id"))
sentences <- unique(joboffer[, c("textrank_id", "sentence")])
terminology <- subset(joboffer, upos %in% c("NOUN", "ADJ"), select = c("textrank_id", "lemma"))
candidates <- textrank_candidates_lsh(x = terminology$lemma, sentence_id = terminology$textrank_id,

minhashFUN = minhash, bands = 500)
head(candidates)
tr <- textrank_sentences(data = sentences, terminology = terminology,

textrank_candidates = candidates)
summary(tr, n = 2)

textrank_jaccard Calculate the distance between 2 vectors based on the Jaccard dis-
tance

Description

The jaccard distance computes the percentage of terms in the 2 vectors which are overlapping.

Usage

textrank_jaccard(termsa, termsb)

Arguments

termsa a character vector of words

termsb a character vector of words

Value

The Jaccard distance distance between the 2 vectors

Examples

sentencea <- c("I", "like", "champaign")
sentenceb <- c("I", "prefer", "choco")
textrank_jaccard(termsa = sentencea, termsb = sentenceb)



6 textrank_keywords

textrank_keywords Textrank - extract relevant keywords

Description

The textrank algorithm allows to find relevant keywords in text. Where keywords are a combination
of words following each other.

In order to find relevant keywords, the textrank algorithm constructs a word network. This network
is constructed by looking which words follow one another. A link is set up between two words if
they follow one another, the link gets a higher weight if these 2 words occur more frequenctly next
to each other in the text.
On top of the resulting network the ’Pagerank’ algorithm is applied to get the importance of each
word. The top 1/3 of all these words are kept and are considered relevant. After this, a keywords
table is constructed by combining the relevant words together if they appear following one another
in the text.

Usage

textrank_keywords(
x,
relevant = rep(TRUE, length(x)),
p = 1/3,
ngram_max = 5,
sep = "-"

)

Arguments

x a character vector of words.

relevant a logical vector indicating if the word is relevant or not. In the standard textrank
algorithm, this is normally done by doing a Parts of Speech tagging and selecting
which of the words are nouns and adjectives.

p percentage (between 0 and 1) of relevant words to keep. Defaults to 1/3. Can
also be an integer which than indicates how many words to keep. Specify +Inf
if you want to keep all words.

ngram_max integer indicating to limit keywords which combine ngram_max combinations
of words which follow one another

sep character string with the separator to paste the subsequent relevant words to-
gether

Value

an object of class textrank_keywords which is a list with elements:

• terms: a character vector of words from the word network with the highest pagerank



textrank_sentences 7

• pagerank: the result of a call to page_rank on the word network

• keywords: the data.frame with keywords containing columns keyword, ngram, freq indicating
the keywords found and the frequency of occurrence

• keywords_by_ngram: data.frame with columns keyword, ngram, freq indicating the keywords
found and the frequency of occurrence at each level of ngram. The difference with keywords
being that if you have a sequence of words e.g. data science consultant, then in the key-
words_by_ngram you would still have the keywords data analysis and science consultant,
while in the keywords list element you would only have data science consultant

See Also

page_rank

Examples

data(joboffer)
keywords <- textrank_keywords(joboffer$lemma,

relevant = joboffer$upos %in% c("NOUN", "VERB", "ADJ"))
subset(keywords$keywords, ngram > 1 & freq > 1)
keywords <- textrank_keywords(joboffer$lemma,

relevant = joboffer$upos %in% c("NOUN"),
p = 1/2, sep = " ")

subset(keywords$keywords, ngram > 1)

## plotting pagerank to see the relevance of each word
barplot(sort(keywords$pagerank$vector), horiz = TRUE,

las = 2, cex.names = 0.5, col = "lightblue", xlab = "Pagerank")

textrank_sentences Textrank - extract relevant sentences

Description

The textrank algorithm is a technique to rank sentences in order of importance.

In order to find relevant sentences, the textrank algorithm needs 2 inputs: a data.frame (data) with
sentences and a data.frame (terminology) containing tokens which are part of each sentence.
Based on these 2 datasets, it calculates the pairwise distance between each sentence by computing
how many terms are overlapping (Jaccard distance, implemented in textrank_jaccard). These
pairwise distances among the sentences are next passed on to Google’s pagerank algorithm to iden-
tify the most relevant sentences.

If data contains many sentences, it makes sense not to compute all pairwise sentence distances
but instead limiting the calculation of the Jaccard distance to only sentence combinations which
are limited by the Minhash algorithm. This is implemented in textrank_candidates_lsh and an
example is show below.



8 textrank_sentences

Usage

textrank_sentences(
data,
terminology,
textrank_dist = textrank_jaccard,
textrank_candidates = textrank_candidates_all(data$textrank_id),
max = 1000,
options_pagerank = list(directed = FALSE),
...

)

Arguments

data a data.frame with 1 row per sentence where the first column is an identifier of a
sentence (e.g. textrank_id) and the second column is the raw sentence. See the
example.

terminology a data.frame with with one row per token indicating which token is part of each
sentence. The first column in this data.frame is the identifier which corresponds
to the first column of data and the second column indicates the token which
is part of the sentence which will be passed on to textrank_dist. See the
example.

textrank_dist a function which calculates the distance between 2 sentences which are repre-
sented by a vectors of tokens. The first 2 arguments of the function are the to-
kens in sentence1 and sentence2. The function should return a numeric value of
length one. The larger the value, the larger the connection between the 2 vectors
indicating more strength. Defaults to the jaccard distance (textrank_jaccard),
indicating the percent of common tokens.

textrank_candidates

a data.frame of candidate sentence to sentence comparisons with columns tex-
trank_id_1 and textrank_id_2 indicating for which combination of sentences we
want to compute the Jaccard distance or the distance function as provided in
textrank_dist. See for example textrank_candidates_all or textrank_candidates_lsh.

max integer indicating to reduce the number of sentence to sentence combinations
to compute. In case provided, we take only this max amount of rows from
textrank_candidates

options_pagerank

a list of arguments passed on to page_rank

... arguments passed on to textrank_dist

Value

an object of class textrank_sentences which is a list with elements:

• sentences: a data.frame with columns textrank_id, sentence and textrank where the textrank is
the Google Pagerank importance metric of the sentence

• sentences_dist: a data.frame with columns textrank_id_1, textrank_id_2 (the sentence id) and
weight which is the result of the computed distance between the 2 sentences

• pagerank: the result of a call to page_rank



textrank_sentences 9

See Also

page_rank, textrank_candidates_all, textrank_candidates_lsh, textrank_jaccard

Examples

library(udpipe)
data(joboffer)
head(joboffer)
joboffer$textrank_id <- unique_identifier(joboffer, c("doc_id", "paragraph_id", "sentence_id"))
sentences <- unique(joboffer[, c("textrank_id", "sentence")])
cat(sentences$sentence)
terminology <- subset(joboffer, upos %in% c("NOUN", "ADJ"), select = c("textrank_id", "lemma"))
head(terminology)

## Textrank for finding the most relevant sentences
tr <- textrank_sentences(data = sentences, terminology = terminology)
summary(tr, n = 2)
summary(tr, n = 5, keep.sentence.order = TRUE)

## Not run:
## Using minhash to reduce sentence combinations - relevant if you have a lot of sentences
library(textreuse)
minhash <- minhash_generator(n = 1000, seed = 123456789)
candidates <- textrank_candidates_lsh(x = terminology$lemma, sentence_id = terminology$textrank_id,

minhashFUN = minhash, bands = 500)
tr <- textrank_sentences(data = sentences, terminology = terminology,

textrank_candidates = candidates)
summary(tr, n = 2)

## End(Not run)
## You can also reduce the number of sentence combinations by sampling
tr <- textrank_sentences(data = sentences, terminology = terminology, max = 100)
tr
summary(tr, n = 2)



Index

joboffer, 2

minhash_generator, 4

page_rank, 7–9

summary.textrank_sentences, 2

textrank_candidates_all, 3, 4, 8, 9
textrank_candidates_lsh, 4, 7–9
textrank_jaccard, 5, 7–9
textrank_keywords, 6
textrank_sentences, 2–4, 7

10


	joboffer
	summary.textrank_sentences
	textrank_candidates_all
	textrank_candidates_lsh
	textrank_jaccard
	textrank_keywords
	textrank_sentences
	Index

