
Package ‘text’
July 22, 2025

Type Package

Title Analyses of Text using Transformers Models from HuggingFace,
Natural Language Processing and Machine Learning

Version 1.6

Description Link R with Transformers from Hugging Face to transform text variables to word embed-
dings; where the word embeddings are used to statistically test the mean difference be-
tween set of texts, compute semantic similarity scores between texts, predict numerical vari-
ables, and visual statistically significant words according to various dimensions etc. For more in-
formation see <https://www.r-text.org>.

License GPL-3

URL https://r-text.org/, https://github.com/OscarKjell/text/

BugReports https://github.com/OscarKjell/text/issues/

Encoding UTF-8

Archs x64

SystemRequirements Python (>= 3.6.0)

LazyData true

BuildVignettes true

Imports topics, dplyr, tibble, stringi, tidyr, ggplot2, ggrepel,
cowplot, rlang, purrr, magrittr, parsnip, recipes (>= 0.1.16),
rsample, reticulate, tune, workflows, yardstick, future, furrr,
hardhat

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, testthat, rio, glmnet, randomForest,
overlapping, covr, xml2, ranger, utils, ggwordcloud, reactable,
osfr, vdiffr, svglite

VignetteBuilder knitr

Depends R (>= 4.00)

NeedsCompilation no

Author Oscar Kjell [aut, cre] (ORCID: <https://orcid.org/0000-0002-2728-6278>),
Salvatore Giorgi [aut] (ORCID: <https://orcid.org/0000-0001-7381-6295>),
Andrew Schwartz [aut] (ORCID: <https://orcid.org/0000-0002-6383-3339>)

1

https://www.r-text.org
https://r-text.org/
https://github.com/OscarKjell/text/
https://github.com/OscarKjell/text/issues/
https://orcid.org/0000-0002-2728-6278
https://orcid.org/0000-0001-7381-6295
https://orcid.org/0000-0002-6383-3339

2 Contents

Maintainer Oscar Kjell <oscar.kjell@psy.lu.se>

Repository CRAN

Date/Publication 2025-07-22 14:31:56 UTC

Contents
centrality_data_harmony . 3
DP_projections_HILS_SWLS_100 . 4
Language_based_assessment_data_3_100 . 5
Language_based_assessment_data_8 . 5
PC_projections_satisfactionwords_40 . 6
raw_embeddings_1 . 6
textCentrality . 7
textCentralityPlot . 8
textClean . 11
textCleanNonASCII . 12
textDescriptives . 13
textDiagnostics . 14
textDimName . 15
textDistance . 16
textDistanceMatrix . 17
textDistanceNorm . 18
textDomainCompare . 19
textEmbed . 20
textEmbedLayerAggregation . 23
textEmbedRawLayers . 24
textEmbedReduce . 27
textEmbedStatic . 28
textExamples . 29
textFindNonASCII . 31
textFineTuneDomain . 32
textFineTuneTask . 34
textGeneration . 36
textLBAM . 38
textModelLayers . 38
textModels . 39
textModelsRemove . 40
textNER . 41
textPCA . 42
textPCAPlot . 43
textPlot . 45
textPredict . 51
textPredictAll . 57
textPredictTest . 58
textProjection . 60
textProjectionPlot . 62
textQA . 67

centrality_data_harmony 3

textrpp_initialize . 68
textrpp_install . 69
textrpp_uninstall . 71
textSimilarity . 72
textSimilarityMatrix . 73
textSimilarityNorm . 74
textSum . 75
textTokenize . 76
textTokenizeAndCount . 78
textTopics . 78
textTopicsReduce . 80
textTopicsTest . 81
textTopicsTree . 82
textTopicsWordcloud . 82
textTrain . 83
textTrainLists . 84
textTrainN . 85
textTrainNPlot . 87
textTrainRandomForest . 90
textTrainRegression . 93
textTranslate . 97
textZeroShot . 99
word_embeddings_4 . 100

Index 102

centrality_data_harmony

Example data for plotting a Semantic Centrality Plot.

Description

The dataset is a shortened version of the data sets of Study 1 from Kjell, et al., 2016.

Usage

centrality_data_harmony

Format

A data frame with 2,146 and 4 variables:

words unique words

n overall word frequency

central_semantic_similarity cosine semantic similarity to the aggregated word embedding

n_percent frequency in percent

4 DP_projections_HILS_SWLS_100

Source

https://link.springer.com/article/10.1007/s11205-015-0903-z

DP_projections_HILS_SWLS_100

Data for plotting a Dot Product Projection Plot.

Description

Tibble is the output from textProjection. The dataset is a shortened version of the data sets of Study
3-5 from Kjell, Kjell, Garcia and Sikström 2018.

Usage

DP_projections_HILS_SWLS_100

Format

A data frame with 583 rows and 12 variables:

words unique words

dot.x dot product projection on the x-axes

p_values_dot.x p-value for the word in relation to the x-axes

n_g1.x frequency of the word in group 1 on the x-axes variable

n_g2.x frequency of the word in group 2 on the x-axes variable

dot.y dot product projection on the y-axes

p_values_dot.y p-value for the word in relation to the y-axes

n_g1.y frequency of the word in group 1 on the y-axes variable

n_g2.y frequency of the word in group 2 on the x-axes variable

n overall word frequency

n.percent frequency in percent

N_participant_responses number of participants (as this is needed in the analyses)

https://link.springer.com/article/10.1007/s11205-015-0903-z

Language_based_assessment_data_3_100 5

Language_based_assessment_data_3_100

Example text and numeric data.

Description

The dataset is a shortened version of the data sets of Study 3-5 from Kjell, Kjell, Garcia and Sik-
ström 2018.

Usage

Language_based_assessment_data_3_100

Format

A data frame with 100 rows and 4 variables:

harmonywords Word responses from the harmony in life word question

hilstotal total score of the Harmony In Life Scale

swlstotal total score of the Satisfaction With Life Scale

Language_based_assessment_data_8

Text and numeric data for 10 participants.

Description

The dataset is a shortened version of the data sets of Study 3-5 from Kjell et al., (2018; https://psyarxiv.com/er6t7/).

Usage

Language_based_assessment_data_8

Format

A data frame with 40 participants and 8 variables:

harmonywords descriptive words where respondents describe their harmony in life

satisfactionwords descriptive words where respondents describe their satisfaction with life

harmonytexts text where respondents describe their harmony in life

satisfactiontexts text where respondents describe their satisfaction with life

hilstotal total score of the Harmony In Life Scale

swlstotal total score of the Satisfaction With Life Scale

age respondents age in years

gender respondents gender 1=male, 2=female

6 raw_embeddings_1

Source

https://pubmed.ncbi.nlm.nih.gov/37126041/

PC_projections_satisfactionwords_40

Example data for plotting a Principle Component Projection Plot.

Description

The dataset is a shortened version of the data sets of Study 1 from Kjell, et al., 2016.

Usage

PC_projections_satisfactionwords_40

Format

A data frame.

words unique words
n overall word frequency
Dim_PC1 Principle component value for dimension 1
Dim_PC2 Principle component value for dimension 2

Source

https://link.springer.com/article/10.1007/s11205-015-0903-z

raw_embeddings_1 Word embeddings from textEmbedRawLayers function

Description

The dataset is a shortened version of the data sets of Study 3-5 from Kjell, Kjell, Garcia and Sik-
ström 2018.

Usage

raw_embeddings_1

Format

A list with token-level word embeddings for harmony words.

tokens words
layer_number layer of the transformer model
Dim1:Dim8 Word embeddings dimensions

https://pubmed.ncbi.nlm.nih.gov/37126041/
https://link.springer.com/article/10.1007/s11205-015-0903-z

textCentrality 7

textCentrality Semantic similarity score between single words’ and an aggregated
word embeddings

Description

textCentrality() computes semantic similarity score between single words’ word embeddings and
the aggregated word embedding of all words.

Usage

textCentrality(
words,
word_embeddings,
word_types_embeddings = word_types_embeddings_df,
method = "cosine",
aggregation = "mean",
min_freq_words_test = 0

)

Arguments

words (character) Word or text variable to be plotted.
word_embeddings

Word embeddings from textEmbed for the words to be plotted (i.e., the aggre-
gated word embeddings for the "words" variable).

word_types_embeddings

Word embeddings from textEmbed for individual words (i.e., the decontextual-
ized word embeddings).

method (character) Character string describing type of measure to be computed. Default
is "cosine" (see also "spearmen", "pearson" as well as measures from textDis-
tance() (which here is computed as 1 - textDistance) including "euclidean",
"maximum", "manhattan", "canberra", "binary" and "minkowski").

aggregation (character) Method to aggregate the word embeddings (default = "mean"; see
also "min", "max" or "[CLS]").

min_freq_words_test

(numeric) Option to select words that have at least occurred a specified number
of times (default = 0); when creating the semantic similarity scores.

Value

A dataframe with variables (e.g., including semantic similarity, frequencies) for the individual
words that are used as input for the plotting in the textCentralityPlot function.

See Also

See textCentralityPlot and textProjection.

8 textCentralityPlot

Examples

Computes the semantic similarity between the individual word embeddings (Iwe)
in the "harmonywords" column of the pre-installed dataset: Language_based_assessment_data_8,
and the aggregated word embedding (Awe).
The Awe can be interpreted the latent meaning of the text.

Not run:
df_for_plotting <- textCentrality(

words = Language_based_assessment_data_8["harmonywords"],
word_embeddings = word_embeddings_4$texts$harmonywords,
word_types_embeddings = word_embeddings_4$word_types

)

df_for_plotting contain variables (e.g., semantic similarity, frequencies) for
the individual words that are used for plotting by the textCentralityPlot function.

End(Not run)

textCentralityPlot Plots words from textCentrality()

Description

textCentralityPlot() plots words according to semantic similarity to the aggregated word embedding.

Usage

textCentralityPlot(
word_data,
min_freq_words_test = 1,
plot_n_word_extreme = 10,
plot_n_word_frequency = 10,
plot_n_words_middle = 10,
titles_color = "#61605e",
x_axes = "central_semantic_similarity",
title_top = "Semantic Centrality Plot",
x_axes_label = "Semantic Centrality",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
centrality_color_codes = c("#EAEAEA", "#85DB8E", "#398CF9", "#9e9d9d"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.5,
points_without_words_alpha = 0.5,

textCentralityPlot 9

legend_title = "SC",
legend_x_axes_label = "x",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
seed = 1007

)

Arguments

word_data Tibble from the textPlot function.
min_freq_words_test

Select words to significance test that have occurred at least min_freq_words_test
(default = 1).

plot_n_word_extreme

Number of words per dimension to plot with extreme Supervised Dimension
Projection value (default = 10). (i.e., even if not significant; duplicates are re-
moved).

plot_n_word_frequency

Number of words to plot according to their frequency (default = 10). (i.e., even
if not significant).

plot_n_words_middle

Number of words to plot that are in the middle in Supervised Dimension Projec-
tion score (default = 10). (i.e., even if not significant; duplicates are removed).

titles_color Color for all the titles (default: "#61605e").

x_axes Variable to be plotted on the x-axes (default: "central_semantic_similarity",
could also select "n", "n_percent").

title_top Title (default: " ").

x_axes_label Label on the x-axes (default: "Semantic Centrality").
scale_x_axes_lim

Length of the x-axes (default: NULL, which uses c(min(word_data$central_semantic_similarity)-
0.05, max(word_data$central_semantic_similarity)+0.05); change this by e.g.,
try c(-5, 5)).

scale_y_axes_lim

Length of the y-axes (default: NULL, which uses c(-1, 1); change e.g., by trying
c(-5, 5)).

word_font Type of font (default: NULL).
centrality_color_codes

(HTML color codes. type = character) Colors of the words selected as plot_n_word_extreme
(minimum values), plot_n_words_middle, plot_n_word_extreme (maximum val-
ues) and plot_n_word_frequency; the default is c("#EAEAEA", "#85DB8E",
"#398CF9", "#9e9d9d", respectively.

10 textCentralityPlot

word_size_range

Vector with minimum and maximum font size (default: c(3, 8)).
position_jitter_hight

Jitter height (default: .0).
position_jitter_width

Jitter width (default: .03).

point_size Size of the points indicating the words’ position (default: 0.5).
arrow_transparency

Transparency of the lines between each word and point (default: 0.1).
points_without_words_size

Size of the points not linked to a word (default is to not show the point; , i.e., 0).
points_without_words_alpha

Transparency of the points that are not linked to a word (default is to not show
it; i.e., 0).

legend_title Title of the color legend (default: "SCP").
legend_x_axes_label

Label on the color legend (default: "x").
legend_x_position

Position on the x coordinates of the color legend (default = 0.02).
legend_y_position

Position on the y coordinates of the color legend (default = 0.05).

legend_h_size Height of the color legend (default = 0.15).

legend_w_size Width of the color legend (default = 0.15).
legend_title_size

Font size of the title (default = 7).
legend_number_size

Font size of the values in the legend (default = 2).

seed Set different seed (default = 1007).

Value

A 1-dimensional word plot based on similarity to the aggregated word embedding, as well as tibble
with processed data used to plot.

See Also

See textCentrality and textProjection.

Examples

Plot a centrality plot from the dataframe df_for_plotting
that is returned by the textCentrality function.
Not run:
textCentralityPlot(

df_for_plotting,
min_freq_words_test = 1,

textClean 11

plot_n_word_extreme = 10,
plot_n_word_frequency = 10,
plot_n_words_middle = 10,
titles_color = "#61605e",
x_axes = "central_semantic_similarity",
title_top = "Semantic Centrality Plot",
x_axes_label = "Semantic Centrality",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
centrality_color_codes = c("#EAEAEA", "#85DB8E", "#398CF9", "#9e9d9d"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.5,
points_without_words_alpha = 0.5,
legend_title = "SC",
legend_x_axes_label = "x",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
seed = 1007

)

End(Not run)

textClean Cleans text from standard personal information

Description

The text is being cleaned from information that may identify them; however, note that this is not a
guarantee for anonymization.

Usage

textClean(
text,
replace = TRUE,
date = TRUE,
time = TRUE,
phone = TRUE,
email = TRUE,

12 textCleanNonASCII

ip = TRUE,
money = TRUE,
creditcard = TRUE,
bitcoin = TRUE,
location = TRUE,
ssn = TRUE,
at_symbol = TRUE,
url = TRUE

)

Arguments

text (character) The text to be cleaned.

replace (boolean)

date (boolean)

time (boolean)

phone (boolean)

email (boolean)

ip (boolean)

money (boolean)

creditcard (boolean)

bitcoin (boolean)

location (boolean)

ssn (boolean)

at_symbol (boolean)

url (boolean)

Value

Text cleaned from typical personal identifiable information

textCleanNonASCII Clean non-ASCII characters

Description

textCleanNonASCII() cleans all text entries with a non-ASCII character in a tibble.

Usage

textCleanNonASCII(data_tibble)

Arguments

data_tibble A tibble with character variables.

textDescriptives 13

Value

a tibble with removed ascii characters

textDescriptives Compute descriptive statistics of character variables.

Description

Compute descriptive statistics of character variables.

Usage

textDescriptives(
words,
compute_total = TRUE,
entropy_unit = "log2",
na.rm = TRUE,
locale = "en_US"

)

Arguments

words One or several character variables; if its a tibble or dataframe, all the character
variables will be selected.

compute_total Boolean. If the input (words) is a tibble/dataframe with several character vari-
ables, a total variable is computed.

entropy_unit The unit entropy is measured in. The default is to used bits (i.e., log2; see
also, "log", "log10"). If a total score for several varaibles is computed,the text
columns are combined using the dplyr unite function. For more information
about the entropy see the entropy package and specifically its entropy.plugin
function.

na.rm Option to remove NAs when computing mean, median etc (see under return).

locale (character string) Locale Identifiers for example in US-English (’en_US’) and
Australian-English (’en_AU’); see help(about_locale) in the stringi package

Value

A tibble with descriptive statistics, including variable = the variable names of input "words"; w_total
= total number of words in the variable; w_mean = mean number of words in each row of the
variable; w_median = median number of words in each row of the variable; w_range_min = smallest
number of words of all rows; w_range_max = largest number of words of all rows; w_sd = the
standard deviation of the number of words of all rows; unique_tokens = the unique number of
tokens (using the word_tokenize function from python package nltk) n_token = number of tokens
in the variable (using the word_tokenize function from python package nltk) entropy = the entropy
of the variable. It is computed as the Shannon entropy H of a discrete random variable from the
specified bin frequencies. (see library entropy and specifically the entropy.plugin function)

14 textDiagnostics

See Also

see textEmbed

Examples

Not run:
textDescriptives(Language_based_assessment_data_8[1:2])

End(Not run)

textDiagnostics Run diagnostics for the text package

Description

This function prints system and environment diagnostics useful for debugging or user support.

Usage

textDiagnostics(
include_other_envs = TRUE,
search_omp = FALSE,
full_session_info = FALSE

)

Arguments

include_other_envs

Logical; if TRUE, lists other available Python/Conda environments.

search_omp Logical; if TRUE, scans for OMP-related shared libraries.

full_session_info

Logical; if TRUE, includes full sessionInfo() output.

Value

A named list with all diagnostic information (also printed with message()).

textDimName 15

textDimName Change dimension names

Description

textDimName() changes the names of the dimensions in the word embeddings.

Usage

textDimName(word_embeddings, dim_names = TRUE, name = NULL)

Arguments

word_embeddings

List of word embeddings or a single tibble

dim_names Logical. If TRUE, the word embedding name or a custom name will be attached
to the name of each dimension. If FALSE, the attached part of the name will be
removed.

name Optional character. If provided and dim_names = TRUE, this custom name will
be attached after each column (e.g., dim1_name).

Value

Word embeddings with changed names.

See Also

textEmbed

Examples

Note that dimensions are called Dim1_harmonytexts etc.
word_embeddings_4$texts$harmonytexts

Change to just Dim
w_e_T <- textDimName(word_embeddings_4$texts["harmonytexts"],

dim_names = FALSE
)

Change back to include the original name
w_e_F <- textDimName(w_e_T, dim_names = TRUE)

Change and add a custom name
w_e_custom <- textDimName(w_e_T, dim_names = TRUE, name = "CustomName")

16 textDistance

textDistance Semantic distance

Description

textDistance() computes the semantic distance between two text variables.

Usage

textDistance(x, y, method = "euclidean", center = FALSE, scale = FALSE)

Arguments

x Word embeddings (from textEmbed()).

y Word embeddings (from textEmbed()).

method (character) Character string describing type of measure to be computed; de-
fault is "euclidean" (see also measures from stats:dist() including "maximum",
"manhattan", "canberra", "binary" and "minkowski". It is also possible to use
"cosine", which computes the cosine distance (i.e., 1 - cosine(x, y)).

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the embedding mean (omitting NAs) of x from each of its dimension, and if
center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing the
(centered) embedding dimensions by the standard deviation of the embedding if
center is TRUE, and the root mean square otherwise.

Value

A vector comprising semantic distance scores.

See Also

See textSimilarity and textSimilarityNorm.

Examples

Compute the semantic distance score between the embeddings
from "harmonytext" and "satisfactiontext".

Not run:
distance_scores <- textDistance(

x = word_embeddings_4$texts$harmonytext,
y = word_embeddings_4$texts$satisfactiontext

)

Show information about how distance_scores were constructed.

textDistanceMatrix 17

comment(distance_scores)

End(Not run)

textDistanceMatrix Semantic distance across multiple word embeddings

Description

textDistanceMatrix() computes semantic distance scores between all combinations in a word em-
bedding

Usage

textDistanceMatrix(x, method = "euclidean", center = FALSE, scale = FALSE)

Arguments

x Word embeddings (from textEmbed()).

method (character) Character string describing type of measure to be computed; de-
fault is "euclidean" (see also measures from stats:dist() including "maximum",
"manhattan", "canberra", "binary" and "minkowski". It is also possible to use
"cosine", which computes the cosine distance (i.e., 1 - cosine(x, y)).

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the embedding mean (omitting NAs) of x from each of its dimension, and if
center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing the
(centered) embedding dimensions by the standard deviation of the embedding if
center is TRUE, and the root mean square otherwise.

Value

A matrix of semantic distance scores

See Also

see textDistanceNorm

Examples

distance_scores <- textDistanceMatrix(word_embeddings_4$texts$harmonytext[1:3,])
round(distance_scores, 3)

18 textDistanceNorm

textDistanceNorm Semantic distance between a text variable and a word norm

Description

textDistanceNorm() computes the semantic distance between a text variable and a word norm (i.e.,
a text represented by one word embedding that represent a construct/concept).

Usage

textDistanceNorm(x, y, method = "euclidean", center = FALSE, scale = FALSE)

Arguments

x Word embeddings (from textEmbed()).

y Word embedding from textEmbed (from only one text).

method (character) Character string describing type of measure to be computed; de-
fault is "euclidean" (see also measures from stats:dist() including "maximum",
"manhattan", "canberra", "binary" and "minkowski". It is also possible to use
"cosine", which computes the cosine distance (i.e., 1 - cosine(x, y)).

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the embedding mean (omitting NAs) of x from each of its dimension, and if
center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing the
(centered) embedding dimensions by the standard deviation of the embedding if
center is TRUE, and the root mean square otherwise.

Value

A vector comprising semantic distance scores.

See Also

see textDistance

Examples

Not run:
library(dplyr)
library(tibble)
harmonynorm <- c("harmony peace ")
satisfactionnorm <- c("satisfaction achievement")

norms <- tibble::tibble(harmonynorm, satisfactionnorm)
word_embeddings <- word_embeddings_4$texts
word_embeddings_wordnorm <- textEmbed(norms)
similarity_scores <- textDistanceNorm(

textDomainCompare 19

word_embeddings$harmonytext,
word_embeddings_wordnorm$harmonynorm

)

End(Not run)

textDomainCompare Compare two language domains

Description

Compare two language domains

Usage

textDomainCompare(train_language, assess_language)

Arguments

train_language A word-frequency data frame from textTokenizeAndCount

assess_language

A word-frequency data frame from textTokenizeAndCount

Value

List with similarity scores: overlapp_percentage, test_recall_percentage and cosine_similarity

See Also

see textTokenizeAndCount

Examples

Not run:
train_language <- textTokenizeAndCount(Language_based_assessment_data_8["harmonytexts"])
assess_language <- textTokenizeAndCount(Language_based_assessment_data_8["satisfactiontexts"])
textDomainCompare(train_language, assess_language)

End(Not run)

20 textEmbed

textEmbed textEmbed() extracts layers and aggregate them to word embeddings,
for all character variables in a given dataframe.

Description

textEmbed() extracts layers and aggregate them to word embeddings, for all character variables in
a given dataframe.

Usage

textEmbed(
texts,
model = "bert-base-uncased",
layers = -2,
dim_name = TRUE,
aggregation_from_layers_to_tokens = "concatenate",
aggregation_from_tokens_to_texts = "mean",
aggregation_from_tokens_to_word_types = NULL,
keep_token_embeddings = TRUE,
batch_size = 100,
remove_non_ascii = TRUE,
tokens_select = NULL,
tokens_deselect = NULL,
decontextualize = FALSE,
model_max_length = NULL,
max_token_to_sentence = 4,
tokenizer_parallelism = FALSE,
device = "cpu",
hg_gated = FALSE,
hg_token = Sys.getenv("HUGGINGFACE_TOKEN", unset = ""),
logging_level = "error",
implementation = "original",
trust_remote_code = FALSE,
...

)

Arguments

texts A character variable or a tibble/dataframe with at least one character variable.

model Character string specifying pre-trained language model (default ’bert-base-uncased’).
For full list of options see pretrained models at HuggingFace. For example use
"bert-base-multilingual-cased", "openai-gpt", "gpt2", "ctrl", "transfo-xl-wt103",
"xlnet-base-cased", "xlm-mlm-enfr-1024", "distilbert-base-cased", "roberta-base",
or "xlm-roberta-base". Only load models that you trust from HuggingFace; load-
ing a malicious model can execute arbitrary code on your computer).

https://huggingface.co/transformers/pretrained_models.html

textEmbed 21

layers (string or numeric) Specify the layers that should be extracted (default -2 which
give the second to last layer). It is more efficient to only extract the layers that
you need (e.g., 11). You can also extract several (e.g., 11:12), or all by setting
this parameter to "all". Layer 0 is the decontextualized input layer (i.e., not
comprising hidden states) and thus should normally not be used. These layers
can then be aggregated in the textEmbedLayerAggregation function.

dim_name (boolean) If TRUE append the variable name after all variable-names in the
output. (This differentiates between word embedding dimension names; e.g.,
Dim1_text_variable_name). see textDimName to change names back and forth.

aggregation_from_layers_to_tokens

(string) Aggregated layers of each token. Method to aggregate the contextual-
ized layers (e.g., "mean", "min" or "max, which takes the minimum, maximum
or mean, respectively, across each column; or "concatenate", which links to-
gether each word embedding layer to one long row.

aggregation_from_tokens_to_texts

(string) Method to carry out the aggregation among the word embeddings for the
words/tokens, including "min", "max" and "mean" which takes the minimum,
maximum or mean across each column; or "concatenate", which links together
each layer of the word embedding to one long row (default = "mean"). If set to
NULL, embeddings are not aggregated.

aggregation_from_tokens_to_word_types

(string) Aggregates to the word type (i.e., the individual words) rather than texts.
If set to "individually", then duplicate words are not aggregated, (i.e, the context
of individual is preserved). (default = NULL).

keep_token_embeddings

(boolean) Whether to also keep token embeddings when using texts or word
types aggregation.

batch_size Number of rows in each batch
remove_non_ascii

(bolean) TRUE warns and removes non-ascii (using textFindNonASCII()).

tokens_select Option to select word embeddings linked to specific tokens such as [CLS] and
[SEP] for the context embeddings.

tokens_deselect

Option to deselect embeddings linked to specific tokens such as [CLS] and
[SEP] for the context embeddings.

decontextualize

(boolean) Provide word embeddings of single words as input to the model (these
embeddings are, e.g., used for plotting; default is to use). If using this, then set
single_context_embeddings to FALSE.

model_max_length

The maximum length (in number of tokens) for the inputs to the transformer
model (default the value stored for the associated model).

max_token_to_sentence

(numeric) Maximum number of tokens in a string to handle before switching to
embedding text sentence by sentence.

22 textEmbed

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism. Default FALSE.

device Name of device to use: ’cpu’, ’gpu’, ’gpu:k’ or ’mps’/’mps:k’ for MacOS, where
k is a specific device number such as ’mps:1’.

hg_gated Set to TRUE if the accessed model is gated.

hg_token The token needed to access the gated model. Create a token from the [’Settings’
page](https://huggingface.co/settings/tokens) of the Hugging Face website. An
an environment variable HUGGINGFACE_TOKEN can be set to avoid the need
to enter the token each time.

logging_level Set the logging level. Default: "warning". Options (ordered from less logging
to more logging): critical, error, warning, info, debug

implementation (boolean; experiments) If TRUE the text is split using the DLATK-method; this
method appears better for longer texts (but it does not return token level word
embeddings, nor word_types embeddings at this stage).

trust_remote_code

(boolean) use a model with custom code on the Huggingface Hub

... settings from textEmbedRawLayers().

Value

A tibble with tokens, a column for layer identifier and word embeddings. Note that layer 0 is the
input embedding to the transformer.

See Also

See textEmbedLayerAggregation, textEmbedRawLayers and textDimName.

Examples

Automatically transforms the characters in the example dataset:
Language_based_assessment_data_8 (included in text-package), to embeddings.
Not run:
word_embeddings <- textEmbed(Language_based_assessment_data_8[1:2, 1:2],

layers = 10:11,
aggregation_from_layers_to_tokens = "concatenate",
aggregation_from_tokens_to_texts = "mean",
aggregation_from_tokens_to_word_types = "mean"

)

Show information about how the embeddings were constructed.
comment(word_embeddings$texts$satisfactiontexts)
comment(word_embeddings$word_types)
comment(word_embeddings$tokens$satisfactiontexts)

See how the word embeddings are structured.
word_embeddings

Save the word embeddings to avoid having to embed the text again.
saveRDS(word_embeddings, "word_embeddings.rds")

textEmbedLayerAggregation 23

Retrieve the saved word embeddings.
word_embeddings <- readRDS("word_embeddings.rds")

End(Not run)

textEmbedLayerAggregation

Aggregate layers

Description

textEmbedLayerAggregation selects and aggregates layers of hidden states to form a word embed-
ding.

Usage

textEmbedLayerAggregation(
word_embeddings_layers,
layers = "all",
aggregation_from_layers_to_tokens = "concatenate",
aggregation_from_tokens_to_texts = "mean",
return_tokens = FALSE,
tokens_select = NULL,
tokens_deselect = NULL

)

Arguments

word_embeddings_layers

Layers returned by the textEmbedRawLayers function.

layers (character or numeric) The numbers of the layers to be aggregated (e.g., c(11:12)
to aggregate the eleventh and twelfth). Note that layer 0 is the input embedding
to the transformer, and should normally not be used. Selecting ’all’ thus removes
layer 0 (default = "all")

aggregation_from_layers_to_tokens

(character) Method to carry out the aggregation among the layers for each word/token,
including "min", "max" and "mean" which takes the minimum, maximum or
mean across each column; or "concatenate", which links together each layer of
the word embedding to one long row (default = "concatenate").

aggregation_from_tokens_to_texts

(character) Method to carry out the aggregation among the word embeddings
for the words/tokens, including "min", "max" and "mean" which takes the min-
imum, maximum or mean across each column; or "concatenate", which links
together each layer of the word embedding to one long row (default = "mean").

24 textEmbedRawLayers

return_tokens (boolean) If TRUE, provide the tokens used in the specified transformer model
(default = FALSE).

tokens_select (character) Option to only select embeddings linked to specific tokens in the tex-
tEmbedLayerAggregation() phase such as "[CLS]" and "[SEP]" (default NULL).

tokens_deselect

(character) Option to deselect embeddings linked to specific tokens in the tex-
tEmbedLayerAggregation() phase such as "[CLS]" and "[SEP]" (default NULL).

Value

A tibble with word embeddings. Note that layer 0 is the input embedding to the transformer, which
is normally not used.

See Also

See textEmbedRawLayers and textEmbed.

Examples

Aggregate the hidden states from textEmbedRawLayers
to create a word embedding representing the entire text.
This is achieved by concatenating layer 11 and 12.
Not run:
word_embedding <- textEmbedLayerAggregation(

imf_embeddings_11_12$context_tokens,
layers = 11:12,
aggregation_from_layers_to_tokens = "concatenate",
aggregation_from_tokens_to_texts = "mean"

)

Examine word_embedding
word_embedding

End(Not run)

textEmbedRawLayers Extract layers of hidden states

Description

textEmbedRawLayers extracts layers of hidden states (word embeddings) for all character variables
in a given dataframe.

textEmbedRawLayers 25

Usage

textEmbedRawLayers(
texts,
model = "bert-base-uncased",
layers = -2,
return_tokens = TRUE,
word_type_embeddings = FALSE,
decontextualize = FALSE,
keep_token_embeddings = TRUE,
device = "cpu",
tokenizer_parallelism = FALSE,
model_max_length = NULL,
max_token_to_sentence = 4,
hg_gated = FALSE,
hg_token = Sys.getenv("HUGGINGFACE_TOKEN", unset = ""),
trust_remote_code = FALSE,
logging_level = "error",
sort = TRUE

)

Arguments

texts A character variable or a tibble with at least one character variable.

model (character) Character string specifying pre-trained language model (default =
’bert-base-uncased’). For full list of options see pretrained models at Hugging-
Face. For example use "bert-base-multilingual-cased", "openai-gpt", "gpt2",
"ctrl", "transfo-xl-wt103", "xlnet-base-cased", "xlm-mlm-enfr-1024", "distilbert-
base-cased", "roberta-base", or "xlm-roberta-base". Only load models that you
trust from HuggingFace; loading a malicious model can execute arbitrary code
on your computer).

layers (character or numeric) Specify the layers that should be extracted (default -2,
which give the second to last layer). It is more efficient to only extract the
layers that you need (e.g., 11). You can also extract several (e.g., 11:12), or all
by setting this parameter to "all". Layer 0 is the decontextualized input layer
(i.e., not comprising hidden states) and thus should normally not be used. These
layers can then be aggregated in the textEmbedLayerAggregation function.

return_tokens (boolean) If TRUE, provide the tokens used in the specified transformer model.
(default = TRUE)

word_type_embeddings

(boolean) Wether to provide embeddings for each word/token type. (default =
FALSE)

decontextualize

(boolean) Wether to dectonextualise embeddings (i.e., embedding one word at a
time). (default = TRUE)

keep_token_embeddings

(boolean) Whether to keep token level embeddings in the output (when using
word_types aggregation). (default= TRUE)

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html

26 textEmbedRawLayers

device (character) Name of device to use: ’cpu’, ’gpu’, ’gpu:k’ or ’mps’/’mps:k’ for
MacOS, where k is a specific device number. (default = "cpu")

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism. (default = FALSE).

model_max_length

The maximum length (in number of tokens) for the inputs to the transformer
model (default the value stored for the associated model).

max_token_to_sentence

(numeric) Maximum number of tokens in a string to handle before switching to
embedding text sentence by sentence. (default= 4)

hg_gated Set to TRUE if the accessed model is gated.

hg_token The token needed to access the gated model. Create a token from the [’Settings’
page](https://huggingface.co/settings/tokens) of the Hugging Face website. An
an environment variable HUGGINGFACE_TOKEN can be set to avoid the need
to enter the token each time.

trust_remote_code

use a model with custom code on the Huggingface Hub

logging_level (character) Set the logging level. (default ="error") Options (ordered from less
logging to more logging): critical, error, warning, info, debug

sort (boolean) If TRUE sort the output to tidy format. (default = TRUE)

Value

The textEmbedRawLayers() takes text as input, and returns the hidden states for each token of the
text, including the [CLS] and the [SEP]. Note that layer 0 is the input embedding to the transformer,
and should normally not be used.

See Also

See textEmbedLayerAggregation and textEmbed.

Examples

Get hidden states of layer 11 and 12 for "I am fine".
Not run:
imf_embeddings_11_12 <- textEmbedRawLayers(

"I am fine",
layers = 11:12

)

Show hidden states of layer 11 and 12.
imf_embeddings_11_12

End(Not run)

textEmbedReduce 27

textEmbedReduce Pre-trained dimension reduction (experimental)

Description

Pre-trained dimension reduction (experimental)

Usage

textEmbedReduce(
embeddings,
n_dim = NULL,
scalar = "fb20/scalar.csv",
pca = "fb20/rpca_roberta_768_D_20.csv"

)

Arguments

embeddings (list) Embedding(s) - including, tokens, texts and/or word_types.

n_dim (numeric) Number of dimensions to reduce to.

scalar (string or matrix) Name or URL to scalar for standardizing the embeddings. If
a URL, the function first examines whether it has been downloaded before. The
string should be to a csv file containing a matrix with the pca weights for matrix
multiplication. For more information see reference below.

pca (string or matrix) Name or URL to pca weights. If a URL, the function first
examines whether it has been downlaoded before. The string should be to a csv
file containing a matrix. For more information see reference below.

Details

To use this method please see and cite:
Ganesan, A. V., Matero, M., Ravula, A. R., Vu, H., & Schwartz, H. A. (2021, June). Empirical eval-
uation of pre-trained transformers for human-level nlp: The role of sample size and dimensionality.
In Proceedings of the conference. Association for Computational Linguistics. North American
Chapter. Meeting (Vol. 2021, p. 4515). NIH Public Access.

See Git-Hub Empirical-Evaluation

Value

Returns embeddings with reduced number of dimensions.

See Also

textEmbed

https://adithya8.github.io/blog/paper/2021/04/15/Empirical-Evaluation.html

28 textEmbedStatic

Examples

Not run:
embeddings <- textEmbedReduce(word_embeddings_4$texts)

End(Not run)

textEmbedStatic Apply static word embeddings

Description

textEmbedStatic() applies word embeddings from a given decontextualized static space (such as
from Latent Semantic Analyses) to all character variables

Usage

textEmbedStatic(
df,
space,
tk_df = "null",
aggregation_from_tokens_to_texts = "mean",
dim_name = FALSE,
tolower = FALSE

)

Arguments

df dataframe that at least contains one character column.
space decontextualized/static space with a column called "words" and the semantic

representations are in columns called Dim1, Dim2 (or V1, V2, ...) and so on
(from textSpace, which is not included in the current text package).

tk_df default "null"; option to use either the "tk" of "df" space (if using textSpace,
which has not been implemented yet).

aggregation_from_tokens_to_texts

method to aggregate semantic representation when their are more than a single
word. (default is "mean"; see also "min" and "max", "concatenate" and "nor-
malize")

dim_name Boolean, if TRUE append the variable name after all variable-names in the
output. (This differentiates between word embedding dimension names; e.g.,
Dim1_text_variable_name)

tolower (boolean) Lower case input.

Value

A list with tibbles for each character variable. Each tibble comprises a column with the text, fol-
lowed by columns representing the semantic representations of the text. The tibbles are called the
same as the original variable.

textExamples 29

See Also

see textEmbed

textExamples Identify language examples.

Description

This function identifies examples based on the frequency of use of n-grams (see the topics-pacakge),
estimated topic prevalence (see the topics-pacakge), or assessment scores from textTrain() or textPre-
dict().

Usage

textExamples(
text,
x_variable,
y_variable = NULL,
type = "default",
n_tile = 4,
n_examples = 5,
jitter = NULL,
filter_words = NULL,
target_color = "darkgreen",
predictions_color = "darkblue",
error_color = "darkred",
distribution_color = c("#00508c", "#805259", "#a71200", "#0a6882", "#a4a4a4",
"#e04b39", "#19956e", "#22a567", "#5c8a59"),

figure_format = "svg",
scatter_legend_dot_size = 3,
scatter_legend_bg_dot_size = 2,
scatter_legend_dots_alpha = 0.8,
scatter_legend_bg_dots_alpha = 0.2,
scatter_show_axis_values = TRUE,
scatter_legend_regression_line_colour = NULL,
x_axis_range = NULL,
y_axis_range = NULL,
grid_legend_x_axes_label = NULL,
grid_legend_y_axes_label = NULL,
grid_legend_title = NULL,
grid_legend_number_size = 8,
grid_legend_number_color = "white",
grid_legend_title_color = "black",
grid_legend_title_size = 0,
seed = 42

)

30 textExamples

Arguments

text (string) the language that was used for prediction/assessment/classification.

x_variable (numeric) the variable used for training (y).

y_variable (numeric) the outcome from the model (i.e., y_hat).

type (string) If you are plotting errors between predicted and targeted scores, you can
set the type to "prediction_errors", to produce two extra plots: distribution of
scores and absolute error.

n_tile (integer) the n tile to split the data in (to show the most extreme tiles in different
colours).

n_examples (integer) the number of language examples to show/select in each quadrant.
When providing both x_variable and y_variable, each example is categorized
into one of nine bivariate quadrants based on its position in the scatterplot (e.g.,
low–low, high–high, center). Within each quadrant, the function selects the most
extreme examples by computing the distance to that quadrant’s corner: Corner
quadrants (1, 3, 7, 9): Examples closest to the corner points (e.g., min x & max
y) are selected using Euclidean distance. Edge quadrants (2, 4, 6, 8): Exam-
ples furthest along the relevant axis (x or y) are selected. Center quadrant (5):
Examples closest to the mean of both x and y are selected.

jitter (integer) the percentage of jitter to add to the data for the scatter plot.

filter_words (character vector) words required to be included in examples.

target_color (string)
predictions_color

(string) = "darkblue",

error_color = (string) "darkred",
distribution_color

(string) colors of the distribution plot

figure_format (string) file format of the figures.
scatter_legend_dot_size

(integer) The size of highlighted dots in the scatter legend.
scatter_legend_bg_dot_size

(integer) The size of background dots in the scatter legend.
scatter_legend_dots_alpha

(numeric) The transparency alphe level of the dots.
scatter_legend_bg_dots_alpha

(numeric) The transparency alphe level of the background dots. For example:
c(1,0,1) result in one dot in each quadrant except for the middle quadrant.

scatter_show_axis_values

(boolean) If TRUE, the estimate values are shown on the distribution plot axes.
scatter_legend_regression_line_colour

(string) If a colour string is added, a regression line will be plotted.

x_axis_range (numeric vector) range of x axis (e.g., c(1, 100)).

y_axis_range (numeric vector) range of y axis (e.g., c(1, 100)).

textFindNonASCII 31

grid_legend_x_axes_label

(string) x-axis label of the grid topic plot.

grid_legend_y_axes_label

(string) y-axis label of the grid topic plot.

grid_legend_title

(string)

grid_legend_number_size

(integer)

grid_legend_number_color

(string)

grid_legend_title_color

(string)

grid_legend_title_size

(integer)

seed (integer) The seed to set for reproducibility.

Value

A tibble including examples with descriptive variables.

textFindNonASCII Detect non-ASCII characters

Description

This function to detect non-ASCII characters in a tibble with multiple columns.

Usage

textFindNonASCII(data_tibble)

Arguments

data_tibble A character variable or a tibble including character variables.

Value

a tibble containing variable names, row numbers and text including non-acii.

32 textFineTuneDomain

textFineTuneDomain Domain Adapted Pre-Training (EXPERIMENTAL - under develop-
ment)

Description

Domain Adapted Pre-Training (EXPERIMENTAL - under development)

Usage

textFineTuneDomain(
text_data,
model_name_or_path = "bert-base-uncased",
output_dir = "./runs",
validation_proportion = 0.1,
evaluation_proportion = 0.1,
config_name = NULL,
tokenizer_name = NULL,
max_seq_length = 128L,
evaluation_strategy = "epoch",
eval_accumulation_steps = NULL,
num_train_epochs = 3,
past_index = -1,
set_seed = 2022,
...

)

Arguments

text_data A dataframe, where the first column contain text data, and the second column
the to-be-predicted variable (numeric or categorical).

model_name_or_path

(string) Path to foundation/pretrained model or model identifier from hugging-
face.co/models

output_dir (string) Path to the output directory.
validation_proportion

(Numeric) Proportion of the text_data to be used for validation.
evaluation_proportion

(Numeric) Proportion of the text_data to be used for evaluation.

config_name (String) Pretrained config name or path if not the same as model_name.

tokenizer_name (String) Pretrained tokenizer name or path if not the same as model_name

max_seq_length (Numeric) The maximum total input sequence length after tokenization. Se-
quences longer than this will be truncated, sequences shorter will be padded.

textFineTuneDomain 33

evaluation_strategy

(String or IntervalStrategy) — The evaluation strategy to adopt during training.
Possible values are: "no": No evaluation is done during training. "steps": Eval-
uation is done (and logged) every eval_steps. "epoch": Evaluation is done at the
end of each epoch.

eval_accumulation_steps

(Integer) Number of predictions steps to accumulate the output tensors for, be-
fore moving the results to the CPU. If left unset, the whole predictions are accu-
mulated on GPU/TPU before being moved to the CPU (faster but requires more
memory).

num_train_epochs

(Numeric) Total number of training epochs to perform (if not an integer, will
perform the decimal part percents of the last epoch before stopping training).

past_index (Numeric, defaults to -1) Some models like TransformerXL or XLNet can make
use of the past hidden states for their predictions. If this argument is set to a
positive int, the Trainer will use the corresponding output (usually index 2) as
the past state and feed it to the model at the next training step under the keyword
argument mems.

set_seed (Numeric) Set the seed

... Parameters related to the fine tuning, which can be seen in the text-package file
inst/python/arg2.json.

Details

Information about more parameters see inst/python/args2.json (https://github.com/OscarKjell/text/tree/master/inst/python/args2.json).
Descriptions of settings can be found in inst/python/task_finetune.py under "class ModelArgu-
ments" and "class DataTrainingArguments" as well as online at https://huggingface.co/docs/transformers/main_classes/trainer.

Value

A folder containing the pretrained model and output data. The model can then be used, for example,
by textEmbed() by providing the model parameter with a the path to the output folder.

See Also

see textEmbed, textEmbed

Examples

Not run:
textFineTuneDomain(text_data)

End(Not run)

34 textFineTuneTask

textFineTuneTask Task Adapted Pre-Training (EXPERIMENTAL - under development)

Description

Task Adapted Pre-Training (EXPERIMENTAL - under development)

Usage

textFineTuneTask(
text_outcome_data,
model_name_or_path = "bert-base-uncased",
output_dir = "./runs",
validation_proportion = 0.1,
evaluation_proportion = 0.1,
is_regression = TRUE,
config_name = NULL,
tokenizer_name = NULL,
max_seq_length = 128L,
evaluation_strategy = "epoch",
eval_accumulation_steps = NULL,
num_train_epochs = 3,
past_index = -1,
set_seed = 2022,
label_names = NULL,
pytorch_mps_high_watermark_ratio = FALSE,
tokenizer_parallelism = FALSE,
...

)

Arguments

text_outcome_data

A dataframe, where the first column contain text data, and the second column
the to-be-predicted variable (numeric or categorical).

model_name_or_path

(string) Path to foundation/pretrained model or model identifier from hugging-
face.co/models

output_dir (string) Path to the output directory.
validation_proportion

(Numeric) Proportion of the text_outcome_data to be used for validation.
evaluation_proportion

(Numeric) Proportion of the text_outcome_data to be used for evaluation.

is_regression (Boolean) TRUE for regression tasks, FALSE for classification.

config_name (String) Pretrained config name or path if not the same as model_name.

textFineTuneTask 35

tokenizer_name (String) Pretrained tokenizer name or path if not the same as model_name
max_seq_length (Numeric) The maximum total input sequence length after tokenization. Se-

quences longer than this will be truncated, sequences shorter will be padded.
evaluation_strategy

(String or IntervalStrategy) — The evaluation strategy to adopt during training.
Possible values are: "no": No evaluation is done during training. "steps": Eval-
uation is done (and logged) every eval_steps. "epoch": Evaluation is done at the
end of each epoch.

eval_accumulation_steps

(Integer) Number of predictions steps to accumulate the output tensors for, be-
fore moving the results to the CPU. If left unset, the whole predictions are accu-
mulated on GPU/TPU before being moved to the CPU (faster but requires more
memory).

num_train_epochs

(Numeric) Total number of training epochs to perform (if not an integer, will
perform the decimal part percents of the last epoch before stopping training).

past_index (Numeric, defaults to -1) Some models like TransformerXL or XLNet can make
use of the past hidden states for their predictions. If this argument is set to a
positive int, the Trainer will use the corresponding output (usually index 2) as
the past state and feed it to the model at the next training step under the keyword
argument mems.

set_seed (Numeric) Set the seed
label_names label name in case of classification; e.g., label_names = c("female", "male").
pytorch_mps_high_watermark_ratio

Set to TRUE to solve error RuntimeError: MPS backend out of memory.Use PY-
TORCH_MPS_HIGH_WATERMARK_RATIO=0.0 to disable upper limit for
memory allocations (may cause system failure). Monitor System Resources: If
you decide to adjust this setting, closely monitor your system’s resource usage
to ensure it does not become unstable.

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism. Default FALSE.
... Parameters related to the fine tuning, which can be seen in the text-package file

inst/python/arg2.json.

Details

Information about more parameters see inst/python/args2.json (https://github.com/OscarKjell/text/tree/master/inst/python/args2.json).
Descriptions of settings can be found in inst/python/task_finetune.py under "class ModelArgu-
ments" and "class DataTrainingArguments" as well as online at https://huggingface.co/docs/transformers/main_classes/trainer.

Value

A folder containing the pretrained model and output data. The model can then be used, for example,
by textEmbed() by providing the model parameter with a the path to the output folder.

See Also

see textEmbed, textEmbed

36 textGeneration

Examples

Not run:
textFineTuneTask(text_outcome_data)

End(Not run)

textGeneration Text generation

Description

textGeneration() predicts the words that will follow a specified text prompt. (experimental)

Usage

textGeneration(
x,
model = "gpt2",
device = "cpu",
tokenizer_parallelism = FALSE,
max_length = NULL,
max_new_tokens = 20,
min_length = 0,
min_new_tokens = NULL,
logging_level = "warning",
force_return_results = FALSE,
return_tensors = FALSE,
return_full_text = TRUE,
clean_up_tokenization_spaces = FALSE,
prefix = "",
handle_long_generation = NULL,
set_seed = 202208L

)

Arguments

x (string) A variable or a tibble/dataframe with at least one character variable.

model (string) Specification of a pre-trained language model that have been trained
with an autoregressive language modeling objective, which includes the uni-
directional models (e.g., gpt2).

device (string) Device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

max_length (Integer) The maximum length the generated tokens can have. Corresponds to
the length of the input prompt + ‘max_new_tokens‘. Its effect is overridden by
‘max_new_tokens‘, if also set. Defaults to NULL.

textGeneration 37

max_new_tokens (Integer) The maximum numbers of tokens to generate, ignoring the number of
tokens in the prompt. The default value is 20.

min_length (Integer) The minimum length of the sequence to be generated. Corresponds to
the length of the input prompt + ‘min_new_tokens‘. Its effect is overridden by
‘min_new_tokens‘, if also set. The default value is 0.

min_new_tokens (Integer) The minimum numbers of tokens to generate, ignoring the number of
tokens in the prompt. Default is NULL.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

force_return_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

return_tensors (boolean) Whether or not the output should include the prediction tensors (as
token indices).

return_full_text

(boolean) If FALSE only the added text is returned, otherwise the full text is
returned. (This setting is only meaningful if return_text is set to TRUE)

clean_up_tokenization_spaces

(boolean) Option to clean up the potential extra spaces in the returned text.

prefix (string) Option to add a prefix to prompt.
handle_long_generation

By default, this function does not handle long generation (those that exceed the
model maximum length).

set_seed (Integer) Set seed. (more info :https://github.com/huggingface/transformers/issues/14033#issuecomment-
948385227). This setting provides some ways to work around the problem:
None: default way, where no particular strategy is applied. "hole": Truncates
left of input, and leaves a gap that is wide enough to let generation happen. (this
might truncate a lot of the prompt and not suitable when generation exceed the
model capacity)

Value

A tibble with generated text.

See Also

see textClassify, textNER, textSum, textQA, textTranslate

Examples

generated_text <- textGeneration("The meaning of life is")
generated_text

38 textModelLayers

textLBAM The LBAM library

Description

Retrieve the Language-Based Assessment Models library (LBAM).

Usage

textLBAM(columns = NULL, construct_start = NULL, lbam_update = FALSE)

Arguments

columns (string) Select which columns to retrieve e.g., c("Name", "Path")
construct_start

(string) Select which constructs concepts and/or behaviors to retrieve.

lbam_update (boolean) TRUE downloads a new copy of the LBAM file

Value

Data frame containing information about the Language-based assessment models library (LBAM).

Examples

Not run:
library(dplyr)
test_lbam <- textLBAM(

lbam_update = TRUE
)
subset(

lbam,
substr(Construct_Concept_Behaviours, 1, 3) == "Dep",
select = c(Construct_Concept_Behaviours, Name)

)

End(Not run)

textModelLayers Number of layers

Description

This functions gets the number of layers in a given model.

textModels 39

Usage

textModelLayers(
target_model,
hg_gated = FALSE,
hg_token = Sys.getenv("HUGGINGFACE_TOKEN", unset = ""),
trust_remote_code = FALSE

)

Arguments

target_model (string) The name of the model to know the number of layers of.

hg_gated Set to TRUE if the accessed model is gated.

hg_token The token needed to access the gated model. Create a token from the [’Settings’
page](https://huggingface.co/settings/tokens) of the Hugging Face website. An
an environment variable HUGGINGFACE_TOKEN can be set to avoid the need
to enter the token each time.

trust_remote_code

use a model with custom code on the Huggingface Hub

Value

Number of layers.

See Also

see textModels

Examples

Not run:
textModelLayers(target_model = "bert-base-uncased")

End(Not run)

textModels Check downloaded, available models.

Description

Check downloaded, available models.

Usage

textModels()

Value

List of names of models and tokenizers

40 textModelsRemove

See Also

see textModelsRemove

Examples

Not run:
textModels()

End(Not run)

textModelsRemove Delete a specified model

Description

This functions delete specified mode and associated files.

Usage

textModelsRemove(target_model)

Arguments

target_model (string) The name of the model to be deleted.

Value

Confirmation whether the model has been deleted.

See Also

see textModels

Examples

Not run:
textModelsRemove("name-of-model-to-delete")

End(Not run)

textNER 41

textNER Named Entity Recognition. (experimental)

Description

Named Entity Recognition. (experimental)

Usage

textNER(
x,
model = "dslim/bert-base-NER",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "error",
force_return_results = FALSE,
set_seed = 202208L

)

Arguments

x (string) A variable or a tibble/dataframe with at least one character variable.
model (string) Specification of a pre-trained language model for token classification

that have been fine-tuned on a NER task (e.g., see "dslim/bert-base-NER"). Use
for predicting the classes of tokens in a sequence: person, organisation, location
or miscellaneous).

device (string) Device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.
logging_level (string) Set the logging level. Options (ordered from less logging to more log-

ging): critical, error, warning, info, debug
force_return_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

set_seed (Integer) Set seed.

Value

A list with tibble(s) with NER classifications for each column.

See Also

see textClassify, textGeneration, textNER, textSum, textQA, textTranslate

42 textPCA

Examples

ner_example <- textNER("Arnes plays football with Daniel")
ner_example

textPCA textPCA()

Description

textPCA() computes 2 PCA dimensions of the word embeddings for individual words.

Usage

textPCA(
words,
word_types_embeddings = word_types_embeddings_df,
to_lower_case = TRUE,
seed = 1010

)

Arguments

words Word or text variable to be plotted.
word_types_embeddings

Word embeddings from textEmbed for individual words (i.e., decontextualized
embeddings).

to_lower_case Lower case words

seed Set different seed.

Value

A dataframe with words, their frequency and two PCA dimensions from the word_embeddings for
the individual words that is used for the plotting in the textPCAPlot function.

See Also

see textPCAPlot

Examples

Not run:
Data
df_for_plotting2d <- textPCA(

words = Language_based_assessment_data_8$harmonywords,
word_types_embeddings = word_embeddings_4$word_types

)

textPCAPlot 43

df_for_plotting2d

End(Not run)

textPCAPlot textPCAPlot

Description

textPCAPlot() plots words according to 2-D plot from 2 PCA components.

Usage

textPCAPlot(
word_data,
min_freq_words_test = 1,
plot_n_word_extreme = 5,
plot_n_word_frequency = 5,
plot_n_words_middle = 5,
titles_color = "#61605e",
title_top = "Principal Component (PC) Plot",
x_axes_label = "PC1",
y_axes_label = "PC2",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
bivariate_color_codes = c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA",

"#40DD52", "#FF0000", "#EA7467", "#85DB8E"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.2,
points_without_words_alpha = 0.2,
legend_title = "PC",
legend_x_axes_label = "PC1",
legend_y_axes_label = "PC2",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
seed = 1002

)

44 textPCAPlot

Arguments

word_data Dataframe from textPCA
min_freq_words_test

Select words to significance test that have occurred at least min_freq_words_test
(default = 1).

plot_n_word_extreme

Number of words that are extreme on Supervised Dimension Projection per di-
mension. (i.e., even if not significant; per dimensions, where duplicates are
removed).

plot_n_word_frequency

Number of words based on being most frequent. (i.e., even if not significant).
plot_n_words_middle

Number of words plotted that are in the middle in Supervised Dimension Pro-
jection score (i.e., even if not significant; per dimensions, where duplicates are
removed).

titles_color Color for all the titles (default: "#61605e")

title_top Title (default " ")

x_axes_label Label on the x-axes.

y_axes_label Label on the y-axes.
scale_x_axes_lim

Manually set the length of the x-axes (default = NULL, which uses ggplot2::scale_x_continuous(limits
= scale_x_axes_lim); change e.g., by trying c(-5, 5)).

scale_y_axes_lim

Manually set the length of the y-axes (default = NULL; which uses ggplot2::scale_y_continuous(limits
= scale_y_axes_lim); change e.g., by trying c(-5, 5)).

word_font Font type (default: NULL).
bivariate_color_codes

The different colors of the words (default: c("#398CF9", "#60A1F7", "#5dc688",
"#e07f6a", "#EAEAEA", "#40DD52", "#FF0000", "#EA7467", "#85DB8E")).

word_size_range

Vector with minimum and maximum font size (default: c(3, 8)).
position_jitter_hight

Jitter height (default: .0).
position_jitter_width

Jitter width (default: .03).

point_size Size of the points indicating the words’ position (default: 0.5).
arrow_transparency

Transparency of the lines between each word and point (default: 0.1).
points_without_words_size

Size of the points not linked with a words (default is to not show it, i.e., 0).
points_without_words_alpha

Transparency of the points not linked with a words (default is to not show it, i.e.,
0).

textPlot 45

legend_title Title on the color legend (default: "(PCA)".

legend_x_axes_label

Label on the color legend (default: "(x)".

legend_y_axes_label

Label on the color legend (default: "(y)".

legend_x_position

Position on the x coordinates of the color legend (default: 0.02).

legend_y_position

Position on the y coordinates of the color legend (default: 0.05).

legend_h_size Height of the color legend (default 0.15).

legend_w_size Width of the color legend (default 0.15).

legend_title_size

Font size (default: 7).

legend_number_size

Font size of the values in the legend (default: 2).

seed Set different seed.

Value

A 1- or 2-dimensional word plot, as well as tibble with processed data used to plot..

See Also

see textPCA

Examples

The test-data included in the package is called: DP_projections_HILS_SWLS_100

Supervised Dimension Projection Plot
principle_component_plot_projection <- textPCAPlot(PC_projections_satisfactionwords_40)
principle_component_plot_projection

names(DP_projections_HILS_SWLS_100)

textPlot Plot words

Description

textPlot() plots words from textProjection() or textWordPrediction().

46 textPlot

Usage

textPlot(
word_data,
k_n_words_to_test = FALSE,
min_freq_words_test = 1,
min_freq_words_plot = 1,
plot_n_words_square = 3,
plot_n_words_p = 5,
plot_n_word_extreme = 5,
plot_n_word_extreme_xy = 0,
plot_n_word_frequency = 5,
plot_n_words_middle = 5,
plot_n_word_random = 0,
titles_color = "#61605e",
y_axes = FALSE,
p_alpha = 0.05,
overlapping = TRUE,
p_adjust_method = "none",
projection_metric = "dot_product",
title_top = "Supervised Dimension Projection",
x_axes_label = "Supervised Dimension Projection (SDP)",
y_axes_label = "Supervised Dimension Projection (SDP)",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
bivariate_color_codes = c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA",

"#40DD52", "#FF0000", "#EA7467", "#85DB8E"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.2,
points_without_words_alpha = 0.2,
legend_title = "SDP",
legend_x_axes_label = "x",
legend_y_axes_label = "y",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,
legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
legend_number_colour = "white",
group_embeddings1 = FALSE,
group_embeddings2 = FALSE,
projection_embedding = FALSE,
aggregated_point_size = 0.8,

textPlot 47

aggregated_shape = 8,
aggregated_color_G1 = "black",
aggregated_color_G2 = "black",
projection_color = "blue",
seed = 1005,
explore_words = NULL,
explore_words_color = "#ad42f5",
explore_words_point = "ALL_1",
explore_words_aggregation = "mean",
remove_words = NULL,
n_contrast_group_color = NULL,
n_contrast_group_remove = FALSE,
space = NULL,
scaling = FALSE,
...

)

Arguments

word_data Dataframe from textProjection.
k_n_words_to_test

Select the k most frequent words to significance test (k = sqrt(100*N); N =
number of participant responses) (default = TRUE).

min_freq_words_test

Select words to significance test that have occurred at least min_freq_words_test
(default = 1).

min_freq_words_plot

Select words to plot that has occurred at least min_freq_words_plot times (de-
fault = 1).

plot_n_words_square

Select number of significant words in each square of the figure to plot. The
significant words, in each square is selected according to most frequent words
(default = 3).

plot_n_words_p Number of significant words to plot on each (positive and negative) side of the
x-axes and y-axes, (where duplicates are removed); selects first according to
lowest p-value and then according to frequency (default = 5). Hence, on a two
dimensional plot it is possible that plot_n_words_p = 1 yield 4 words.

plot_n_word_extreme

Number of words that are extreme on Supervised Dimension Projection per di-
mension. (i.e., even if not significant; per dimension, where duplicates are re-
moved).

plot_n_word_extreme_xy

Number of words that are extreme in both x and y dimensions, considering over-
all distance from the origin in the Supervised Dimension Projection space. This
selects words based on their combined extremity score, calculated as the Eu-
clidean distance from (0,0). Ensures balance across all nine squares by selecting
at least one extreme word per square if available.

48 textPlot

plot_n_word_frequency

Number of words based on being most frequent (default = 5). (i.e., even if not
significant).

plot_n_words_middle

Number of words plotted that are in the middle in Supervised Dimension Pro-
jection score (default = 5). (i.e., even if not significant; per dimensions, where
duplicates are removed).

plot_n_word_random

(numeric) select random words to plot.

titles_color Color for all the titles (default: "#61605e").

y_axes (boolean) If TRUE, also plotting on the y-axes (default = FALSE, i.e, a 1-
dimensional plot is generated). Also plotting on y-axes produces a two di-
mension 2-dimensional plot, but the textProjection function has to have had a
variable on the y-axes.

p_alpha Alpha (default = .05).

overlapping (boolean) Allow overlapping (TRUE) or disallow (FALSE) (default = TRUE).
p_adjust_method

(character) Method to adjust/correct p-values for multiple comparisons (default
= "none"; see also "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr").

projection_metric

(character) Metric to plot according to; "dot_product" or "cohens_d".

title_top Title (default " ").

x_axes_label (character) Label on the x-axes (default = "Supervised Dimension Projection
(SDP)").

y_axes_label (character) Label on the y-axes (default = "Supervised Dimension Projection
(SDP)").

scale_x_axes_lim

Manually set the length of the x-axes (default = NULL, which uses ggplot2::scale_x_continuous(limits
= scale_x_axes_lim); change e.g., by trying c(-5, 5)).

scale_y_axes_lim

Manually set the length of the y-axes (default = NULL; which uses ggplot2::scale_y_continuous(limits
= scale_y_axes_lim); change e.g., by trying c(-5, 5)).

word_font Font type (default = NULL).
bivariate_color_codes

(HTML color codes. Type = character) The different colors of the words. Note
that, at the moment, two squares should not have the exact same colour-code be-
cause the numbers within the squares of the legend will then be aggregated (and
show the same, incorrect value). (default: c("#398CF9", "#60A1F7", "#5dc688",
"#e07f6a", "#EAEAEA", "#40DD52", "#FF0000", "#EA7467", "#85DB8E")).

word_size_range

Vector with minimum and maximum font size (default: c(3, 8)).
position_jitter_hight

Jitter height (default: .0).

textPlot 49

position_jitter_width

Jitter width (default: .03).

point_size Size of the points indicating the words’ position (default: 0.5).
arrow_transparency

Transparency of the lines between each word and point (default: 0.1).
points_without_words_size

Size of the points not linked with a words (default is to not show it, i.e., 0).
points_without_words_alpha

Transparency of the points not linked with a words (default is to not show it, i.e.,
0).

legend_title Title on the color legend (default: "SDP").
legend_x_axes_label

Label on the color legend (default: "x").
legend_y_axes_label

Label on the color legend (default: "y").
legend_x_position

Position on the x coordinates of the color legend (default: 0.02).
legend_y_position

Position on the y coordinates of the color legend (default: 0.05).

legend_h_size Height of the color legend (default 0.15).

legend_w_size Width of the color legend (default 0.15).
legend_title_size

Font size (default: 7).
legend_number_size

Font size of the values in the legend (default: 2).
legend_number_colour

(string) Colour of the numbers in the box legend.
group_embeddings1

(boolean) Shows a point representing the aggregated word embedding for group
1 (default = FALSE).

group_embeddings2

(boolean) Shows a point representing the aggregated word embedding for group
2 (default = FALSE).

projection_embedding

(boolean) Shows a point representing the aggregated direction embedding (de-
fault = FALSE).

aggregated_point_size

Size of the points representing the group_embeddings1, group_embeddings2
and projection_embedding (default = 0.8).

aggregated_shape

Shape type of the points representing the group_embeddings1, group_embeddings2
and projection_embedding (default = 8).

aggregated_color_G1

Color (default = "black").

50 textPlot

aggregated_color_G2

Color (default = "black").
projection_color

Color (default = "blue").

seed (numeric) Set different seed (default = 1005)..

explore_words Explore where specific words are positioned in the embedding space. For exam-
ple, c("happy content", "sad down") (default = NULL).

explore_words_color

Specify the color(s) of the words being explored. For example c("#ad42f5",
"green") (default = "#ad42f5").

explore_words_point

Specify the names of the point for the aggregated word embeddings of all the
explored words (default = "ALL_1").

explore_words_aggregation

Specify how to aggregate the word embeddings of the explored words (default
= "mean").

remove_words Manually remove words from the plot (which is done just before the words are
plotted so that the remove_words are part of previous counts/analyses) (default
= NULL).

n_contrast_group_color

Set color to words that have higher frequency (N) on the other opposite side of
its dot product projection (default = NULL).

n_contrast_group_remove

Remove words that have higher frequency (N) on the other opposite side of its
dot product projection (default = FALSE).

space Provide a semantic space if using static embeddings and wanting to explore
words (default = NULL).

scaling Scaling word embeddings before aggregation (default = FALSE).

... Settings for textOwnWordsProjection().

Value

A 1- or 2-dimensional word plot, as well as tibble with processed data used to plot.

See Also

See textProjection.

Examples

The test-data included in the package is called: DP_projections_HILS_SWLS_100

Supervised Dimension Projection Plot
plot_projection <- textPlot(

word_data = DP_projections_HILS_SWLS_100,
k_n_words_to_test = FALSE,
min_freq_words_test = 1,

textPredict 51

plot_n_words_square = 3,
plot_n_words_p = 3,
plot_n_word_extreme = 1,
plot_n_word_frequency = 1,
plot_n_words_middle = 1,
y_axes = FALSE,
p_alpha = 0.05,
title_top = "Supervised Dimension Projection (SDP)",
x_axes_label = "Low vs. High HILS score",
y_axes_label = "Low vs. High SWLS score",
p_adjust_method = "bonferroni",
scale_y_axes_lim = NULL

)
plot_projection

names(DP_projections_HILS_SWLS_100)

textPredict textPredict, textAssess and textClassify

Description

Trained models created by e.g., textTrain() or stored on e.g., github of huggingface can be used to
predict scores or classes from embeddings or text using one of these function aliases.

Usage

textPredict(
model_info = "valence_facebook_mxbai23_eijsbroek2024",
texts = NULL,
model_type = "detect",
lbam_update = TRUE,
word_embeddings = NULL,
x_append = NULL,
append_first = TRUE,
dim_names = TRUE,
check_matching_word_embeddings = TRUE,
language_distribution = NULL,
language_distribution_min_words = "trained_distribution_min_words",
save_model = TRUE,
threshold = NULL,
show_texts = FALSE,
device = "cpu",
participant_id = NULL,
save_embeddings = TRUE,
save_dir = "wd",
save_name = "textPredict",
story_id = NULL,

52 textPredict

dataset_to_merge_assessments = NULL,
previous_sentence = FALSE,
tokenizer_parallelism = FALSE,
logging_level = "error",
force_return_results = TRUE,
return_all_scores = FALSE,
function_to_apply = NULL,
set_seed = 202208,
...

)

textAssess(
model_info = "valence_facebook_mxbai23_eijsbroek2024",
texts = NULL,
model_type = "detect",
lbam_update = TRUE,
word_embeddings = NULL,
x_append = NULL,
append_first = TRUE,
dim_names = TRUE,
check_matching_word_embeddings = TRUE,
language_distribution = NULL,
language_distribution_min_words = "trained_distribution_min_words",
save_model = TRUE,
threshold = NULL,
show_texts = FALSE,
device = "cpu",
participant_id = NULL,
save_embeddings = TRUE,
save_dir = "wd",
save_name = "textPredict",
story_id = NULL,
dataset_to_merge_assessments = NULL,
previous_sentence = FALSE,
tokenizer_parallelism = FALSE,
logging_level = "error",
force_return_results = TRUE,
return_all_scores = FALSE,
function_to_apply = NULL,
set_seed = 202208,
...

)

textClassify(
model_info = "valence_facebook_mxbai23_eijsbroek2024",
texts = NULL,
model_type = "detect",
lbam_update = TRUE,

textPredict 53

word_embeddings = NULL,
x_append = NULL,
append_first = TRUE,
dim_names = TRUE,
check_matching_word_embeddings = TRUE,
language_distribution = NULL,
language_distribution_min_words = "trained_distribution_min_words",
save_model = TRUE,
threshold = NULL,
show_texts = FALSE,
device = "cpu",
participant_id = NULL,
save_embeddings = TRUE,
save_dir = "wd",
save_name = "textPredict",
story_id = NULL,
dataset_to_merge_assessments = NULL,
previous_sentence = FALSE,
tokenizer_parallelism = FALSE,
logging_level = "error",
force_return_results = TRUE,
return_all_scores = FALSE,
function_to_apply = NULL,
set_seed = 202208,
...

)

Arguments

model_info (character or r-object) model_info has four options, including: 1: An R model
(e.g, saved output from one of the textTrain() functions). 2: The name specified
in the L-BAM Documentation. For the following settings, remember to also
set the model_type parameter: 3: Link to a text-trained model online (either in a
github repo (e.g, "https://github.com/CarlViggo/pretrained_swls_model/raw/main/trained_github_model_logistic.RDS"or
OSF https://osf.io/8fp7v) 4: Name or link to a fine-tuned model from Hugging-
face (e.g., "distilbert-base-uncased-finetuned-sst-2-english"). 5: Path to a model
stored locally (e.g, "path/to/your/model/model_name.rds").

texts (character) Text to predict. If this argument is specified, then arguments "word_embeddings"
and "premade embeddings" cannot be defined (default = NULL).

model_type (character) Specify how the function should handle the model argument. The
default is "detect" where the fucntion ttried to detect it automatically. Setting
it to "fine-tuned" or "text-trained" will apply their respective default behaviors,
while setting it to "implicit motives" will trigger specific steps tailored to these
models.

lbam_update (boolean) Updating the L-BAM file by automatically downloading it from Google
Sheet.

word_embeddings

(tibble; only for "text-trained"-model_type) Embeddings from e.g., textEmbed().

https://r-text.org/articles/LBAM.html

54 textPredict

If you’re using a pre-trained model, then texts and embeddings cannot be sub-
mitted simultaneously (default = NULL).

x_append (tibble; only for "text-trained"-model_type) Variables to be appended with the
word embeddings (x).

append_first (boolean; only for "text-trained" models) If TRUE, x_appened is added before
word embeddings.

dim_names (boolean; only for "text-trained"-models) Account for specific dimension names
from textEmbed() (rather than generic names including Dim1, Dim2 etc.). If
FALSE the models need to have been trained on word embeddings created with
dim_names FALSE, so that embeddings were only called Dim1, Dim2 etc.

check_matching_word_embeddings

(boolean) If ‘TRUE‘, the function will check whether the word embeddings
(model type and layer) match the requirement of the trained model - if a mis-
match is found the function till stop. If ‘FALSE‘, the function will not verify.

language_distribution

(character column; only for "text-trained" models) If you provide the raw lan-
guage data used for making the embeddings used for assessment, the language
distribution (i.e., a word and frequency table) will be compared with saved one
in the model object (if one exists). This enables calculating similarity scores.

language_distribution_min_words

(string or numeric; only for "text-trained" models) Default is to use the re-
moval threshold used when creating the distribution in the in the training set
("trained_distribution_min_words"). You can set it yourself with a numeric
value.

save_model (boolean; only for "text-trained"-models) The model will by default be saved
in your work-directory (default = TRUE). If the model already exists in your
work-directory, it will automatically be loaded from there.

threshold (numeric; only for "text-trained"-models) Determine threshold if you are using
a logistic model (default = 0.5).

show_texts (boolean; only for "implicit-motives"-models) Show texts together with predic-
tions (default = FALSE).

device Name of device to use: ’cpu’, ’gpu’, ’gpu:k’ or ’mps’/’mps:k’ for MacOS, where
k is a specific device number such as ’mps:1’.

participant_id (list; only for "implicit-motives"-models) Vector of participant-ids. Specify this
for getting person level scores (i.e., summed sentence probabilities to the person
level corrected for word count). (default = NULL)

save_embeddings

(boolean; only for "text-trained"-models) If set to TRUE, embeddings will be
saved with a unique identifier, and will be automatically opened next time textPre-
dict is run with the same text. (default = TRUE)

save_dir (character; only for "text-trained"-models) Directory to save embeddings. (de-
fault = "wd" (i.e, work-directory))

save_name (character; only for "text-trained"-models) Name of the saved embeddings (will
be combined with a unique identifier). (default = ""). Obs: If no save_name is
provided, and model_info is a character, then save_name will be set to model_info.

textPredict 55

story_id (vector; only for "implicit-motives"-models) Vector of story-ids. Specify this
to get story level scores (i.e., summed sentence probabilities corrected for word
count). When there is both story_id and participant_id indicated, the function
returns a list including both story level and person level prediction corrected for
word count. (default = NULL)

dataset_to_merge_assessments

(R-object, tibble; only for "implicit-motives"-models) Insert your data here to
integrate predictions to your dataset, (default = NULL).

previous_sentence

(boolean; only for "implicit-motives"-models) If set to TRUE, word-embeddings
will be averaged over the current and previous sentence per story-id. For this,
both participant-id and story-id must be specified.

tokenizer_parallelism

(boolean; only for "fine-tuned"-models) If TRUE this will turn on tokenizer par-
allelism.

logging_level (string; only for "fine-tuned"-models) Set the logging level. Options (ordered
from less logging to more logging): critical, error, warning, info, debug

force_return_results

(boolean; only for "fine-tuned"-models) Stop returning some incorrectly for-
matted/structured results. This setting does CANOT evaluate the actual results
(whether or not they make sense, exist, etc.). All it does is to ensure the re-
turned results are formatted correctly (e.g., does the question-answering dictio-
nary contain the key "answer", is sentiments from textClassify containing the
labels "positive" and "negative").

return_all_scores

(boolean; only for "fine-tuned"-models) Whether to return all prediction scores
or just the one of the predicted class.

function_to_apply

(string; only for "fine-tuned"-models) The function to apply to the model outputs
to retrieve the scores.

set_seed (Integer; only for "fine-tuned" models) Set seed.

... Setting from stats::predict can be called.

Value

Predictions from word-embedding or text input.

See Also

See textTrain, textTrainLists and textTrainRandomForest.

Examples

Not run:

Text data from Language_based_assessment_data_8
text_to_predict <- "I am not in harmony in my life as much as I would like to be."

56 textPredict

Example 1: (predict using pre-made embeddings and an R model-object)
prediction1 <- textPredict(

model_info = trained_model,
word_embeddings_4$texts$satisfactiontexts

)

Example 2: (predict using a pretrained github model)
prediction2 <- textPredict(

texts = text_to_predict,
model_info = "https://github.com/CarlViggo/pretrained-models/raw/main/trained_hils_model.RDS"

)

Example 3: (predict using a pretrained logistic github model and return
probabilities and classifications)
prediction3 <- textPredict(

texts = text_to_predict,
model_info = "https://github.com/CarlViggo/pretrained-models/raw/main/
trained_github_model_logistic.RDS",
type = "class_prob",
threshold = 0.7

)

Example 4: (predict from texts using a pretrained model stored in an osf project)
prediction4 <- textPredict(

texts = text_to_predict,
model_info = "https://osf.io/8fp7v"

)
Automatic implicit motive coding section

Create example dataset
implicit_motive_data <- dplyr::mutate(.data = Language_based_assessment_data_8,
participant_id = dplyr::row_number())

Code implicit motives.
implicit_motives <- textPredict(

texts = implicit_motive_data$satisfactiontexts,
model_info = "implicit_power_roberta_large_L23_v1",
participant_id = implicit_motive_data$participant_id,
dataset_to_merge_assessments = implicit_motive_data

)

Examine results
implicit_motives$sentence_predictions
implicit_motives$person_predictions

End(Not run)

Not run:
Examine the correlation between the predicted values and
the Satisfaction with life scale score (pre-included in text).

psych::corr.test(

textPredictAll 57

predictions1$word_embeddings__ypred,
Language_based_assessment_data_8$swlstotal

)

End(Not run)

textPredictAll Predict from several models, selecting the correct input

Description

Predict from several models, selecting the correct input

Usage

textPredictAll(models, word_embeddings, x_append = NULL, ...)

Arguments

models Object containing several models.

word_embeddings

List of word embeddings (if using word embeddings from more than one text-
variable use dim_names = TRUE throughout the pipeline).

x_append A tibble/dataframe with additional variables used in the training of the models
(optional).

... Settings from textPredict.

Value

A tibble with predictions.

See Also

see textPredict and textTrain

Examples

x <- Language_based_assessment_data_8[1:2, 1:2]
word_embeddings_with_layers <- textEmbedLayersOutput(x, layers = 11:12)

58 textPredictTest

textPredictTest Significance testing for model prediction performance

Description

Compares predictive performance between two models, using either a paired t-test on errors or
bootstrapped comparisons of correlation or AUC.

Usage

textPredictTest(
y1,
y2,
yhat1,
yhat2,
method = "t-test",
statistic = "correlation",
paired = TRUE,
event_level = "first",
bootstraps_times = 10000,
seed = 20250622,
...

)

Arguments

y1 The observed scores (i.e., what was used to predict when training a model).

y2 The second observed scores (default = NULL; i.e., for when comparing models
that are predicting different outcomes. In this case a bootstrap procedure is used
to create two distributions of correlations that are compared (see description
above).

yhat1 The predicted scores from model 1.

yhat2 The predicted scores from model 2 that will be compared with model 1.

method Character string specifying the comparison approach.
- "t-test": Use when comparing prediction errors from two models predicting
the same outcome (only supported when statistic = "correlation"). Performs a
paired t-test on absolute errors.
- "bootstrap_difference": Use to compare AUCs from two models predicting
either the same outcome (e.g., does Model A outperform Model B on the same
classification task) or different outcomes (e.g., mental vs physical health). Boot-
straps the difference in AUC across resamples to compute confidence intervals
and p-values.
- "bootstrap_overlap": Use when comparing predictions for different outcomes
by generating bootstrap distributions of correlation or AUC values (depending
on statistic), and testing overlap in distributions. (requires the overlapping pack-
age).

textPredictTest 59

Choose the method that aligns with your research question: error comparison on
the same outcome, AUC difference testing on the same or different outcomes,
or overlap of performance distributions across different outcomes.

statistic Character ("correlation", "auc") describing statistic to be compared in bootstrap-
ping.

paired Paired test or not in stats::t.test (default TRUE).

event_level Character "first" or "second" for computing the auc in the bootstrap.
bootstraps_times

Number of bootstraps (when providing y2).

seed Set seed.

... Settings from stats::t.test or overlapping::overlap (e.g., plot = TRUE).

Details

- If ‘method = "t-test"‘ is chosen, the function compares the absolute prediction errors (|yhat - y|)
from two models predicting the **same** outcome using a paired t-test. Only ‘y1‘, ‘yhat1‘, and
‘yhat2‘ are required.

- If ‘method = "bootstrap_difference"‘ is chosen, the function compares differences in correlation or
AUC between **two outcomes** (or the same outcome if y1 = y2), using bootstrapped resampling.
Both ‘y1‘ and ‘y2‘ must be provided (and have the same length).

- If ‘method = "bootstrap_overlap"‘ is chosen, the function generates bootstrap distributions of
correlation or AUC values for each outcome and tests the overlap of these distributions, assessing
similarity in predictive performance.

Choose the method that aligns with your research question: - Error comparison on the same out-
come - Bootstrapped difference testing on the same or different outcomes - Overlap of performance
distributions across different outcomes

Value

Comparison of correlations either a t-test or the overlap of a bootstrapped procedure (see $OV).

See Also

see textTrain textPredict

Examples

Example random data
y1 <- runif(10)
yhat1 <- runif(10)
y2 <- runif(10)
yhat2 <- runif(10)

boot_test <- textPredictTest(y1, y2, yhat1, yhat2)

60 textProjection

textProjection Supervised Dimension Projection

Description

textProjection() computes Supervised Dimension Projection and related variables for plotting words.

Usage

textProjection(
words,
word_embeddings,
word_types_embeddings,
x,
y = NULL,
pca = NULL,
aggregation = "mean",
split = "quartile",
word_weight_power = 1,
min_freq_words_test = 0,
mean_centering = FALSE,
mean_centering2 = FALSE,
Npermutations = 10000,
n_per_split = 50000,
seed = 1003

)

Arguments

words (character) Word or text variable to be plotted.
word_embeddings

Word embeddings from textEmbed for the words to be plotted (i.e., the aggre-
gated word embeddings for the "words" parameter).

word_types_embeddings

Word embeddings from textEmbed for individual words (i.e., decontextualized
embeddings).

x Numeric variable that the words should be plotted according to on the x-axes.

y Numeric variable that the words should be plotted according to on the y-axes
(default = NULL, i.e., a 1-dimensional plot is created).

pca Number of PCA dimensions applied to the word embeddings in the beginning
of the function (default = NULL). A number below 1 takes out % of variance;
An integer specify number of components to extract. (default is NULL as this
setting has not yet been evaluated).

aggregation (character) Method to aggregate the word embeddings (default = "mean"; see
also "min", "max", and "[CLS]").

textProjection 61

split (character) Method to split the axes (default = "quartile" involving selecting
lower and upper quartile; see also "mean"). However, if the variable is only
containing two different values (i.e., being dichotomous) mean split is used.

word_weight_power

Compute the power of the frequency of the words and multiply the word embed-
dings with this in the computation of aggregated word embeddings for group low
(1) and group high (2). This increases the weight of more frequent words.

min_freq_words_test

(numeric) Option to select words that have occurred a specified number of times
(default = 0); when creating the Supervised Dimension Projection line (i.e., sin-
gle words receive Supervised Dimension Projection and p-value).

mean_centering (boolean) Separately mean centering the Group 1 split aggregation embedding,
and the Group 2 split aggregation embedding

mean_centering2

(boolean) Separately mean centering the G1 and G2 split aggregation embed-
dings

Npermutations (numeric) Number of permutations in the creation of the null distribution (de-
fault = 10000).

n_per_split (numeric) Setting to split Npermutations to avoid reaching computer memory
limits; set it lower than Npermutations <- and the higher it is set the faster the
computation completes, but too high may lead to abortion (default = 50000).

seed (numeric) Set different seed (default = 1003).

Value

A dataframe with variables (e.g., including Supervised Dimension Projection, frequencies, p-values)
for the individual words that is used for the plotting in the textProjectionPlot function.

See Also

See textProjectionPlot.

Examples

Pre-processing data for plotting.
Not run:
df_for_plotting <- textProjection(

words = Language_based_assessment_data_8$harmonywords,
word_embeddings = word_embeddings_4$texts$harmonywords,
word_types_embeddings = word_embeddings_4$word_types,
x = Language_based_assessment_data_8$hilstotal,
split = "mean",
Npermutations = 10,
n_per_split = 1

)
Run df_for_plotting to examine result.
df_for_plotting

End(Not run)

62 textProjectionPlot

textProjectionPlot Plot Supervised Dimension Projection

Description

textProjectionPlot() plots words according to Supervised Dimension Projection.

Usage

textProjectionPlot(
word_data,
k_n_words_to_test = FALSE,
min_freq_words_test = 1,
min_freq_words_plot = 1,
plot_n_words_square = 3,
plot_n_words_p = 5,
plot_n_word_extreme = 5,
plot_n_word_frequency = 5,
plot_n_words_middle = 5,
plot_n_word_random = 0,
titles_color = "#61605e",
y_axes = FALSE,
p_alpha = 0.05,
overlapping = TRUE,
p_adjust_method = "none",
projection_metric = "dot_product",
title_top = "Supervised Dimension Projection",
x_axes_label = "Supervised Dimension Projection (SDP)",
y_axes_label = "Supervised Dimension Projection (SDP)",
scale_x_axes_lim = NULL,
scale_y_axes_lim = NULL,
word_font = NULL,
bivariate_color_codes = c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA",

"#40DD52", "#FF0000", "#EA7467", "#85DB8E"),
word_size_range = c(3, 8),
position_jitter_hight = 0,
position_jitter_width = 0.03,
point_size = 0.5,
arrow_transparency = 0.1,
points_without_words_size = 0.2,
points_without_words_alpha = 0.2,
legend_title = "SDP",
legend_x_axes_label = "x",
legend_y_axes_label = "y",
legend_x_position = 0.02,
legend_y_position = 0.02,
legend_h_size = 0.2,

textProjectionPlot 63

legend_w_size = 0.2,
legend_title_size = 7,
legend_number_size = 2,
legend_number_colour = "white",
group_embeddings1 = FALSE,
group_embeddings2 = FALSE,
projection_embedding = FALSE,
aggregated_point_size = 0.8,
aggregated_shape = 8,
aggregated_color_G1 = "black",
aggregated_color_G2 = "black",
projection_color = "blue",
seed = 1005,
explore_words = NULL,
explore_words_color = "#ad42f5",
explore_words_point = "ALL_1",
explore_words_aggregation = "mean",
remove_words = NULL,
n_contrast_group_color = NULL,
n_contrast_group_remove = FALSE,
space = NULL,
scaling = FALSE

)

Arguments

word_data Dataframe from textProjection
k_n_words_to_test

Select the k most frequent words to significance test (k = sqrt(100*N); N =
number of participant responses). Default = TRUE.

min_freq_words_test

Select words to significance test that have occurred at least min_freq_words_test
(default = 1).

min_freq_words_plot

Select words to plot that has occurred at least min_freq_words_plot times.
plot_n_words_square

Select number of significant words in each square of the figure to plot. The
significant words, in each square is selected according to most frequent words.

plot_n_words_p Number of significant words to plot on each(positive and negative) side of the
x-axes and y-axes, (where duplicates are removed); selects first according to
lowest p-value and then according to frequency. Hence, on a two dimensional
plot it is possible that plot_n_words_p = 1 yield 4 words.

plot_n_word_extreme

Number of words that are extreme on Supervised Dimension Projection per di-
mension. (i.e., even if not significant; per dimensions, where duplicates are
removed).

plot_n_word_frequency

Number of words based on being most frequent. (i.e., even if not significant).

64 textProjectionPlot

plot_n_words_middle

Number of words plotted that are in the middle in Supervised Dimension Pro-
jection score (i.e., even if not significant; per dimensions, where duplicates are
removed).

plot_n_word_random

(numeric) select random words to plot.

titles_color Color for all the titles (default: "#61605e")

y_axes If TRUE, also plotting on the y-axes (default is FALSE). Also plotting on y-axes
produces a two dimension 2-dimensional plot, but the textProjection function
has to have had a variable on the y-axes.

p_alpha Alpha (default = .05).

overlapping (boolean) Allow overlapping (TRUE) or disallow (FALSE) (default = TRUE).
p_adjust_method

Method to adjust/correct p-values for multiple comparisons (default = "holm";
see also "none", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr").

projection_metric

(character) Metric to plot according to; "dot_product" or "cohens_d".

title_top Title (default " ")

x_axes_label Label on the x-axes.

y_axes_label Label on the y-axes.
scale_x_axes_lim

Manually set the length of the x-axes (default = NULL, which uses ggplot2::scale_x_continuous(limits
= scale_x_axes_lim); change e.g., by trying c(-5, 5)).

scale_y_axes_lim

Manually set the length of the y-axes (default = NULL; which uses ggplot2::scale_y_continuous(limits
= scale_y_axes_lim); change e.g., by trying c(-5, 5)).

word_font Font type (default: NULL).
bivariate_color_codes

The different colors of the words. Note that, at the moment, two squares should
not have the exact same colour-code because the numbers within the squares of
the legend will then be aggregated (and show the same, incorrect value). (de-
fault: c("#398CF9", "#60A1F7", "#5dc688", "#e07f6a", "#EAEAEA", "#40DD52",
"#FF0000", "#EA7467", "#85DB8E")).

word_size_range

Vector with minimum and maximum font size (default: c(3, 8)).
position_jitter_hight

Jitter height (default: .0).
position_jitter_width

Jitter width (default: .03).

point_size Size of the points indicating the words’ position (default: 0.5).
arrow_transparency

Transparency of the lines between each word and point (default: 0.1).
points_without_words_size

Size of the points not linked with a words (default is to not show it, i.e., 0).

textProjectionPlot 65

points_without_words_alpha

Transparency of the points not linked with a words (default is to not show it, i.e.,
0).

legend_title Title on the color legend (default: "(SDP)".
legend_x_axes_label

Label on the color legend (default: "(x)".
legend_y_axes_label

Label on the color legend (default: "(y)".
legend_x_position

Position on the x coordinates of the color legend (default: 0.02).
legend_y_position

Position on the y coordinates of the color legend (default: 0.05).

legend_h_size Height of the color legend (default 0.15).

legend_w_size Width of the color legend (default 0.15).
legend_title_size

Font size (default: 7).
legend_number_size

Font size of the values in the legend (default: 2).
legend_number_colour

(string) Colour of the numbers in the box legend.
group_embeddings1

Shows a point representing the aggregated word embedding for group 1 (default
= FALSE).

group_embeddings2

Shows a point representing the aggregated word embedding for group 2 (default
= FALSE).

projection_embedding

Shows a point representing the aggregated direction embedding (default = FALSE).
aggregated_point_size

Size of the points representing the group_embeddings1, group_embeddings2
and projection_embedding

aggregated_shape

Shape type of the points representing the group_embeddings1, group_embeddings2
and projection_embeddingd

aggregated_color_G1

Color
aggregated_color_G2

Color
projection_color

Color

seed Set different seed.

explore_words Explore where specific words are positioned in the embedding space. For exam-
ple, c("happy content", "sad down").

66 textProjectionPlot

explore_words_color

Specify the color(s) of the words being explored. For example c("#ad42f5",
"green")

explore_words_point

Specify the names of the point for the aggregated word embeddings of all the
explored words.

explore_words_aggregation

Specify how to aggregate the word embeddings of the explored words.

remove_words manually remove words from the plot (which is done just before the words are
plotted so that the remove_words are part of previous counts/analyses).

n_contrast_group_color

Set color to words that have higher frequency (N) on the other opposite side of
its dot product projection (default = NULL).

n_contrast_group_remove

Remove words that have higher frequency (N) on the other opposite side of its
dot product projection (default = FALSE).

space Provide a semantic space if using static embeddings and wanting to explore
words.

scaling Scaling word embeddings before aggregation.

Value

A 1- or 2-dimensional word plot, as well as tibble with processed data used to plot.

See Also

See textProjection.

Examples

The test-data included in the package is called: DP_projections_HILS_SWLS_100.
The dataframe created by textProjection can also be used as input-data.

Supervised Dimension Projection Plot
plot_projection <- textProjectionPlot(

word_data = DP_projections_HILS_SWLS_100,
k_n_words_to_test = FALSE,
min_freq_words_test = 1,
plot_n_words_square = 3,
plot_n_words_p = 3,
plot_n_word_extreme = 1,
plot_n_word_frequency = 1,
plot_n_words_middle = 1,
y_axes = FALSE,
p_alpha = 0.05,
title_top = "Supervised Dimension Projection (SDP)",
x_axes_label = "Low vs. High HILS score",
y_axes_label = "Low vs. High SWLS score",
p_adjust_method = "bonferroni",

textQA 67

scale_y_axes_lim = NULL
)

plot_projection

Investigate elements in DP_projections_HILS_SWLS_100.
names(DP_projections_HILS_SWLS_100)

textQA Question Answering. (experimental)

Description

Question Answering. (experimental)

Usage

textQA(
question,
context,
model = "",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "warning",
force_return_results = FALSE,
top_k = 1L,
doc_stride = 128L,
max_answer_len = 15L,
max_seq_len = 384L,
max_question_len = 64L,
handle_impossible_answer = FALSE,
set_seed = 202208L

)

Arguments

question (string) A question

context (string) The context(s) where the model will look for the answer.

model (string) HuggingFace name of a pre-trained language model that have been fine-
tuned on a question answering task.

device (string) Device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

68 textrpp_initialize

force_return_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

top_k (integer) (int) Indicates number of possible answer span(s) to get from the model
output.

doc_stride (integer) If the context is too long to fit with the question for the model, it will
be split into overlapping chunks. This setting controls the overlap size.

max_answer_len (integer) Max answer size to be extracted from the model’s output.

max_seq_len (integer) The max total sentence length (context + question) in tokens of each
chunk passed to the model. If needed, the context is split in chunks (using
doc_stride as overlap).

max_question_len

(integer) The max question length after tokenization. It will be truncated if
needed.

handle_impossible_answer

(boolean) Whether or not impossible is accepted as an answer.

set_seed (Integer) Set seed.

Value

Answers.

See Also

see textClassify, textGeneration, textNER, textSum, textQA, textTranslate

Examples

qa_examples <- textQA(question = "Which colour have trees?",
context = "Trees typically have leaves, are mostly green and like water.")

textrpp_initialize Initialize text required python packages

Description

Initialize text required python packages to call from R.

textrpp_install 69

Usage

textrpp_initialize(
python_executable = NULL,
virtualenv = NULL,
condaenv = "textrpp_condaenv",
ask = FALSE,
refresh_settings = FALSE,
save_profile = FALSE,
check_env = TRUE,
textEmbed_test = FALSE,
prompt = TRUE

)

Arguments

python_executable

the full path to the Python executable, for which text required python packages
is installed.

virtualenv set a path to the Python virtual environment with text required python packages
installed Example: virtualenv = "~/myenv"

condaenv set a path to the anaconda virtual environment with text required python pack-
ages installed Example: condalenv = "myenv"

ask logical; if FALSE, use the first text required python packages installation found;
if TRUE, list available text required python packages installations and prompt the
user for which to use. If another (e.g. python_executable) is set, then this
value will always be treated as FALSE.

refresh_settings

logical; if TRUE, text will ignore the saved settings in the profile and initiate a
search of new settings.

save_profile logical; if TRUE, the current text required python packages setting will be saved
for the future use.

check_env logical; check whether conda/virtual environment generated by textrpp_install()
exists

textEmbed_test logical; Test whether function (textEmbed) that requires python packages works.

prompt logical; asking whether user wants to set the environment as default.

textrpp_install Install text required python packages in conda or virtualenv environ-
ment

70 textrpp_install

Description

Install text required python packages (rpp) in a self-contained environment. For macOS and Linux-
based systems, this will also install Python itself via a "miniconda" environment, for textrpp_install.
Alternatively, an existing conda installation may be used, by specifying its path. The default setting
of "auto" will locate and use an existing installation automatically, or download and install one if
none exists.

For Windows, automatic installation of miniconda installation is not currently available, so the user
will need to install miniconda (or Anaconda) manually.

If you wish to install Python in a "virtualenv", use the textrpp_install_virtualenv function. It
requires that you have a python version and path to it (such as "/usr/local/bin/python3.9" for Mac
and Linux.).

Usage

textrpp_install(
conda = "auto",
update_conda = FALSE,
force_conda = FALSE,
rpp_version = "rpp_version_system_specific_defaults",
python_version = "python_version_system_specific_defaults",
envname = "textrpp_condaenv",
pip = TRUE,
python_path = NULL,
prompt = TRUE

)

textrpp_install_virtualenv(
rpp_version = c("torch==2.0.0", "transformers==4.19.2", "numpy", "pandas", "nltk"),
python_path = NULL,
pip_version = NULL,
bin = "python3",
envname = "textrpp_virtualenv",
prompt = TRUE

)

Arguments

conda character; path to conda executable. Default "auto" which automatically find the
path

update_conda Boolean; update to the latest version of Miniconda after install? (should be
combined with force_conda = TRUE)

force_conda Boolean; force re-installation if Miniconda is already installed at the requested
path?

rpp_version character; default is "rpp_version_system_specific_defaults", because diffent
systems require different combinations of python version and packages. It is also
possible to specify your own, such as c("torch==2.0.0", "transformers==4.19.2",
"numpy", "pandas", "nltk", "scikit-learn", "datasets", "evaluate").

https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html

textrpp_uninstall 71

python_version character; default is "python_version_system_specific_defaults". You can spec-
ify your Python version for the condaenv yourself. installation.

envname character; name of the conda-environment to install text required python pack-
ages. Default is "textrpp_condaenv".

pip TRUE to use pip for installing rpp If FALSE, conda package manager with conda-
forge channel will be used for installing rpp.

python_path character; path to Python only for virtualenvironment installation

prompt logical; ask whether to proceed during the installation

pip_version character;

bin character; e.g., "python", only for virtualenvironment installation

Examples

Not run:
install text required python packages in a miniconda environment (macOS and Linux)
textrpp_install(prompt = FALSE)

install text required python packages to an existing conda environment
textrpp_install(conda = "~/anaconda/bin/")

End(Not run)
Not run:
install text required python packages in a virtual environment
textrpp_install_virtualenv()

End(Not run)

textrpp_uninstall Uninstall textrpp conda environment

Description

Removes the conda environment created by textrpp_install()

Usage

textrpp_uninstall(conda = "auto", prompt = TRUE, envname = "textrpp_condaenv")

Arguments

conda path to conda executable, default to "auto" which automatically finds the path

prompt logical; ask whether to proceed during the installation

envname character; name of conda environment to remove

72 textSimilarity

textSimilarity Semantic Similarity

Description

textSimilarity() Computes the semantic similarity between two text variables.

Usage

textSimilarity(x, y, method = "cosine", center = TRUE, scale = FALSE)

Arguments

x Word embeddings from textEmbed().
y Word embeddings from textEmbed().
method (character) Character string describing type of measure to be computed. Default

is "cosine" (see also "spearmen", "pearson" as well as measures from textDis-
tance() (which here is computed as 1 - textDistance) including "euclidean",
"maximum", "manhattan", "canberra", "binary" and "minkowski").

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

Value

A vector comprising semantic similarity scores. The closer the value is to 1 when using the default
method, "cosine", the higher the semantic similarity.

See Also

See textDistance and textSimilarityNorm.

Examples

Compute the semantic similarity between the embeddings from "harmonytext" and "satisfactiontext".
Not run:
similarity_scores <- textSimilarity(

x = word_embeddings_4$texts$harmonytext,
y = word_embeddings_4$texts$satisfactiontext

)

Show information about how similarity_scores were constructed.
comment(similarity_scores)

End(Not run)

textSimilarityMatrix 73

textSimilarityMatrix Semantic similarity across multiple word embeddings

Description

textSimilarityMatrix computes semantic similarity scores between all combinations in a word em-
bedding

Usage

textSimilarityMatrix(x, method = "cosine", center = TRUE, scale = FALSE)

Arguments

x Word embeddings from textEmbed().

method (character) Character string describing type of measure to be computed. Default
is "cosine" (see also "spearmen", "pearson" as well as measures from textDis-
tance() (which here is computed as 1 - textDistance) including "euclidean",
"maximum", "manhattan", "canberra", "binary" and "minkowski").

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

Value

A matrix of semantic similarity scores

See Also

see textSimilarityNorm

Examples

similarity_scores <- textSimilarityMatrix(word_embeddings_4$texts$harmonytext[1:3,])
round(similarity_scores, 3)

74 textSimilarityNorm

textSimilarityNorm Semantic similarity between a text variable and a word norm

Description

textSimilarityNorm() computes the semantic similarity between a text variable and a word norm
(i.e., a text represented by one word embedding that represent a construct).

Usage

textSimilarityNorm(x, y, method = "cosine", center = TRUE, scale = FALSE)

Arguments

x Word embeddings from textEmbed().

y Word embedding from textEmbed (from only one text).

method (character) Character string describing type of measure to be computed. Default
is "cosine" (see also "spearmen", "pearson" as well as measures from textDis-
tance() (which here is computed as 1 - textDistance) including "euclidean",
"maximum", "manhattan", "canberra", "binary" and "minkowski").

center (boolean; from base::scale) If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns,
and if center is FALSE, no centering is done.

scale (boolean; from base::scale) If scale is TRUE then scaling is done by dividing
the (centered) columns of x by their standard deviations if center is TRUE, and
the root mean square otherwise.

Value

A vector comprising semantic similarity scores.

See Also

see textSimilarity

Examples

Not run:
library(dplyr)
library(tibble)
harmonynorm <- c("harmony peace ")
satisfactionnorm <- c("satisfaction achievement")

norms <- tibble::tibble(harmonynorm, satisfactionnorm)
word_embeddings <- word_embeddings_4$texts
word_embeddings_wordnorm <- textEmbed(norms)
similarity_scores <- textSimilarityNorm(

textSum 75

word_embeddings$harmonytext,
word_embeddings_wordnorm$harmonynorm

)

End(Not run)

textSum Summarize texts. (experimental)

Description

Summarize texts. (experimental)

Usage

textSum(
x,
min_length = 10L,
max_length = 20L,
model = "t5-small",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "warning",
force_return_results = FALSE,
return_text = TRUE,
return_tensors = FALSE,
clean_up_tokenization_spaces = FALSE,
set_seed = 202208L

)

Arguments

x (string) A variable or a tibble/dataframe with at least one character variable.

min_length (explicit integer; e.g., 10L) The minimum number of tokens in the summed
output.

max_length (explicit integer higher than min_length; e.g., 20L) The maximum number of
tokens in the summed output.

model (string) Specififcation of a pre-trained language model that have been fine-tuned
on a summarization task, such as ’bart-large-cnn’, ’t5-small’, ’t5-base’, ’t5-
large’, ’t5-3b’, ’t5-11b’.

device (string) Device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific device
number.

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

76 textTokenize

force_return_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

return_text (boolean) Whether or not the outputs should include the decoded text.
return_tensors (boolean) Whether or not the output should include the prediction tensors (as

token indices).
clean_up_tokenization_spaces

(boolean) Option to clean up the potential extra spaces in the returned text.
set_seed (Integer) Set seed.

Value

A tibble with summed text(s).

See Also

see textClassify, textGeneration, textNER, textSum, textQA, textTranslate

Examples

sum_examples <- textSum(Language_based_assessment_data_8[1:2,1:2],
min_length = 5L,
max_length = 10L)

textTokenize Tokenize text-variables

Description

textTokenize() tokenizes according to different huggingface transformers

Usage

textTokenize(
texts,
model,
max_token_to_sentence = 4,
device = "cpu",
tokenizer_parallelism = FALSE,
model_max_length = NULL,
hg_gated = FALSE,
hg_token = Sys.getenv("HUGGINGFACE_TOKEN", unset = ""),
trust_remote_code = FALSE,
logging_level = "error"

)

textTokenize 77

Arguments

texts A character variable or a tibble/dataframe with at least one character variable.

model Character string specifying pre-trained language model (default ’bert-base-uncased’).
For full list of options see pretrained models at HuggingFace. For example use
"bert-base-multilingual-cased", "openai-gpt", "gpt2", "ctrl", "transfo-xl-wt103",
"xlnet-base-cased", "xlm-mlm-enfr-1024", "distilbert-base-cased", "roberta-base",
or "xlm-roberta-base".

max_token_to_sentence

(numeric) Maximum number of tokens in a string to handle before switching to
embedding text sentence by sentence.

device Name of device to use: ’cpu’, ’gpu’, ’gpu:k’ or ’mps’/’mps:k’ for MacOS, where
k is a specific device number.

tokenizer_parallelism

If TRUE this will turn on tokenizer parallelism. Default FALSE.

model_max_length

The maximum length (in number of tokens) for the inputs to the transformer
model (default the value stored for the associated model).

hg_gated Set to TRUE if the accessed model is gated.

hg_token The token needed to access the gated model. Create a token from the [’Settings’
page](https://huggingface.co/settings/tokens) of the Hugging Face website. An
an environment variable HUGGINGFACE_TOKEN can be set to avoid the need
to enter the token each time.

trust_remote_code

use a model with custom code on the Huggingface Hub

logging_level Set the logging level. Default: "warning". Options (ordered from less logging
to more logging): critical, error, warning, info, debug

Value

Returns tokens according to specified huggingface transformer.

See Also

see textEmbed

Examples

tokens <- textTokenize("hello are you?")

https://huggingface.co/transformers/pretrained_models.html

78 textTopics

textTokenizeAndCount Tokenize and count

Description

Tokenize and count

Usage

textTokenizeAndCount(data, n_remove_threshold = 3)

Arguments

data (string) Language to tokenise and count.

n_remove_threshold

(numeric) Threshold deciding which words to remove

Value

A word-frequency data frame (can be saved to a model object or compared in textDomainCompare).

See Also

see textDomainCompare

Examples

Not run:
textTokenizeAndCount(Language_based_assessment_data_8["harmonytexts"])

End(Not run)

textTopics BERTopics

Description

textTopics creates and trains a BERTopic model (based on bertopic python packaged) on a text-
variable in a tibble/data.frame. (EXPERIMENTAL)

textTopics 79

Usage

textTopics(
data,
variable_name,
embedding_model = "distilroberta",
umap_model = "default",
hdbscan_model = "default",
vectorizer_model = "default",
representation_model = "mmr",
num_top_words = 10,
n_gram_range = c(1, 3),
stopwords = "english",
min_df = 5,
bm25_weighting = FALSE,
reduce_frequent_words = TRUE,
set_seed = 8,
save_dir

)

Arguments

data (tibble/data.frame) A tibble with a text-variable to be analysed, and optional nu-
meric/categorical variables that you might want to use for later analyses testing
the significance of topics in relation to these variables.

variable_name (string) Name of the text-variable in the data tibble that you want to perform
topic modeling on.

embedding_model

(string) Name of the embedding model to use such as "miniLM", "mpnet",
"multi-mpnet", "distilroberta".

umap_model (string) The dimension reduction algorithm, currently only "default" is sup-
ported.

hdbscan_model (string) The clustering algorithm to use, currently only "default" is supported.
vectorizer_model

(string) Name of the vectorizer model, currently only "default" is supported.
representation_model

(string) Name of the representation model used for topics, including "keybert"
or "mmr".

num_top_words (integer) Determine the number of top words presented for each topic.
n_gram_range (vector) Two-dimensional vector indicating the ngram range used for the vec-

torizer model.
stopwords (string) Name of the stopword dictionary to use.
min_df (integer) The minimum document frequency of terms.
bm25_weighting (boolean) Determine whether bm25_weighting is used for ClassTfidfTransformer.
reduce_frequent_words

(boolean) Determine whether frequent words are reduced by ClassTfidfTrans-
former.

80 textTopicsReduce

set_seed (integer) The random seed for initialization of the umap model.

save_dir (string) The directory for saving results.

Value

A folder containing the model, data, folder with terms and values for each topic, and the document-
topic matrix. Moreover the model itself is returned formatted as a data.frame together with metdata.
See textTopicsReduce textTopicsTest and textTopicsWordcloud.

textTopicsReduce textTopicsReduce (EXPERIMENTAL)

Description

textTopicsReduce (EXPERIMENTAL)

Usage

textTopicsReduce(
data,
data_var,
n_topics = 10,
load_path = "./results",
save_dir,
embedding_model = "default"

)

Arguments

data (tibble/data.frame) A tibble with a text-variable to be analysed, and optional nu-
meric/categorical variables that you might want to use for later analyses testing
the significance of topics in relation to these variables.

data_var (string) Name of the text-variable in the data tibble that you want to perform
topic modeling on.

n_topics (string) The dimension reduction algorithm, currently only "default" is sup-
ported.

load_path (string) The clustering algorithm to use, currently only "default" is supported.

save_dir (string) The directory for saving results.
embedding_model

(string) Name of the embedding model to use such as "miniLM", "mpnet",
"multi-mpnet", "distilroberta".

Value

A folder containing the model, data, folder with terms and values for each topic, and the document-
topic matrix. Moreover the model itself is returned formatted as a data.frame together with metdata.

textTopicsTest 81

See Also

See textTopics textTopicsTest and textTopicsWordcloud.

textTopicsTest Wrapper for topicsTest function from the topics package

Description

Wrapper for topicsTest function from the topics package

Usage

textTopicsTest(
model,
x_variable = NULL,
y_variable = NULL,
controls = c(),
test_method = "default",
p_adjust_method = "fdr",
...

)

Arguments

model (list) The trained model

x_variable (string) The x variable name to be predicted, and to be plotted (only needed for
regression or correlation)

y_variable (string) The y variable name to be predicted, and to be plotted (only needed for
regression or correlation)

controls (vector) The control variables (not supported yet)

test_method (string) The test method to use, either "correlation","t-test", "linear_regression","logistic_regression",
or "ridge_regression"

p_adjust_method

(character) Method to adjust/correct p-values for multiple comparisons (default
= "none"; see also "holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr").

... Parameter settings from topicsTest in the topics-package.

Value

A list of the test results, test method, and prediction variable

82 textTopicsWordcloud

textTopicsTree textTopicsTest (EXPERIMENTAL) to get the hierarchical topic tree

Description

textTopicsTest (EXPERIMENTAL) to get the hierarchical topic tree

Usage

textTopicsTree(topic_model, data, data_var)

Arguments

topic_model (list) The output from textTopics.
data (tibble/data.frame) A tibble with the data
data_var (string) The name of the text variable that the topic model was trained on

Value

prints a hierarchical topic tree on the console

textTopicsWordcloud Plot word clouds

Description

This function create word clouds and topic fugures

Usage

textTopicsWordcloud(model = NULL, ngrams = NULL, test = NULL, seed = 2024, ...)

Arguments

model (list) A trained topics model. For examples from topicsModel(). Should be
NULL if plotting ngrams.

ngrams (list) The output from the the topicsGram() function . Should be NULL if plot-
ting topics.

test (list) The test results; if plotting according to dimension(s) include the object
from topicsTest() function.

seed (integer) The seed to set for reproducibility; need to be the same seed number as
in in

... Parameters from the topicsPlot() function in the topics package.

Value

The function saves figures in the save_dir.

textTrain 83

textTrain Trains word embeddings

Description

textTrain() trains word embeddings to a numeric (ridge regression) or categorical (random forest)
variable.

Usage

textTrain(x, y, force_train_method = "automatic", ...)

Arguments

x Word embeddings from textEmbed (or textEmbedLayerAggreation). Can ana-
lyze several variables at the same time; but if training to several outcomes at the
same time use a tibble within the list as input rather than just a tibble input (i.e.,
keep the name of the wordembedding).

y Numeric variable to predict. Can be several; although then make sure to have
them within a tibble (this is required even if it is only one outcome but several
word embeddings variables).

force_train_method

Default is "automatic", so if y is a factor random_forest is used, and if y is
numeric ridge regression is used. This can be overridden using "regression" or
"random_forest".

... Arguments from textTrainRegression or textTrainRandomForest the textTrain
function.

Value

A correlation between predicted and observed values; as well as a tibble of predicted values (t-value,
degree of freedom (df), p-value, alternative-hypothesis, confidence interval, correlation coefficient).

See Also

See textTrainRegression, textTrainRandomForest and textTrainLists.

Examples

Examines how well the embeddings from "harmonytext" can
predict the numeric variable "hilstotal" in the pre-included
dataset "Language_based_assessment_data_8".

Not run:
trained_model <- textTrain(

x = word_embeddings_4$texts$harmonytext,
y = Language_based_assessment_data_8$hilstotal

84 textTrainLists

)

Examine results (t-value, degree of freedom (df), p-value,
alternative-hypothesis, confidence interval, correlation coefficient).

trained_model$results

End(Not run)

textTrainLists Train lists of word embeddings

Description

textTrainLists() individually trains word embeddings from several text variables to several numeric
or categorical variables.

Usage

textTrainLists(
x,
y,
force_train_method = "automatic",
save_output = "all",
method_cor = "pearson",
eval_measure = "rmse",
p_adjust_method = "holm",
...

)

Arguments

x Word embeddings from textEmbed (or textEmbedLayerAggreation). It is possi-
ble to have word embeddings from one text variable and several numeric/categorical
variables; or vice verse, word embeddings from several text variables to one nu-
meric/categorical variable. It is not possible to mix numeric and categorical
variables.

y Tibble with several numeric or categorical variables to predict. Please note that
you cannot mix numeric and categorical variables.

force_train_method

(character) Default is "automatic"; see also "regression" and "random_forest".

save_output (character) Option not to save all output; default "all". See also "only_results"
and "only_results_predictions".

method_cor (character) A character string describing type of correlation (default "Pearson").

eval_measure (character) Type of evaluative measure to assess models on (default "rmse").

textTrainN 85

p_adjust_method

Method to adjust/correct p-values for multiple comparisons. (default = "holm";
see also "none", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr").

... Arguments from textTrainRegression or textTrainRandomForest (the textTrain
function).

Value

Correlations between predicted and observed values (t-value, degree of freedom (df), p-value, con-
fidence interval, alternative hypothesis, correlation coefficient) stored in a dataframe.

See Also

See textTrain, textTrainRegression and textTrainRandomForest.

Examples

Examines how well the embeddings from Language_based_assessment_data_8 can
predict the numerical numerical variables in Language_based_assessment_data_8.
The training is done combination wise, i.e., correlations are tested pair wise,
column: 1-5,1-6,2-5,2-6, resulting in a dataframe with four rows.

Not run:
word_embeddings <- word_embeddings_4$texts[1:2]
ratings_data <- Language_based_assessment_data_8[5:6]

trained_model <- textTrainLists(
x = word_embeddings,
y = ratings_data

)

Examine results (t-value, degree of freedom (df), p-value,
alternative-hypothesis, confidence interval, correlation coefficient).

trained_model$results

End(Not run)

textTrainN Cross-validated accuracies across sample-sizes

Description

textTrainN() computes cross-validated correlations for different sample-sizes of a data set. The
cross-validation process can be repeated several times to enhance the reliability of the evaluation.

86 textTrainN

Usage

textTrainN(
x,
y,
sample_percents = c(25, 50, 75, 100),
handle_word_embeddings = "individually",
n_cross_val = 1,
sampling_strategy = "subsets",
use_same_penalty_mixture = TRUE,
model = "regression",
penalty = 10^seq(-16, 16),
mixture = c(0),
seed = 2024,
...

)

Arguments

x Word embeddings from textEmbed (or textEmbedLayerAggregation). If several
word embedding are provided in a list they will be concatenated.

y Numeric variable to predict.
sample_percents

(numeric) Numeric vector that specifies the percentages of the total number of
data points to include in each sample (default = c(25,50,75,100), i.e., correla-
tions are evaluated for 25 each new sample.

handle_word_embeddings

Determine whether to use a list of word embeddings or an individual word_embedding
(default = "individually", also "concatenate"). If a list of word embeddings are
provided, then they will be concatenated.

n_cross_val (numeric) Value that determines the number of times to repeat the cross-validation
(i.e., number of tests). (default = 1, i.e., cross-validation is only performed
once). Warning: The training process gets proportionately slower to the number
of cross-validations, resulting in a time complexity that increases with a factor
of n (n cross-validations).

sampling_strategy

Sample a "random" sample for each subset from all data or sample a "subset"
from the larger subsets (i.e., each subset contain the same data).

use_same_penalty_mixture

If TRUE it only searches the penalty and mixture search grid once, and then use
the same thereafter; if FALSE, it searches the grid every time.

model Type of model. Default is "regression"; see also "logistic" and "multinomial"
for classification.

penalty (numeric) Hyper parameter that is tuned (default = 10^seq(-16,16)).

mixture A number between 0 and 1 (inclusive) that reflects the proportion of L1 reg-
ularization (i.e. lasso) in the model (for more information see the linear_reg-
function in the parsnip-package). When mixture = 1, it is a pure lasso model

textTrainNPlot 87

while mixture = 0 indicates that ridge regression is being used (specific engines
only).

seed (numeric) Set different seed (default = 2024).

... Additional parameters from textTrainRegression.

Value

A tibble containing correlations for each sample. If n_cross_val > 1, correlations for each new
cross-validation, along with standard-deviation, mean and standard error of correlation is included
in the tibble. The information in the tibble is visualised via the textTrainNPlot function.

See Also

See textTrainNPlot.

Examples

Compute correlations for 25%, 50%, 75% and 100% of the data in word_embeddings and perform
cross-validation thrice.

Not run:
tibble_to_plot <- textTrainN(

x = word_embeddings_4$texts$harmonytext,
y = Language_based_assessment_data_8$hilstotal,
sample_percents = c(25, 50, 75, 100),
n_cross_val = 3

)

tibble_to_plot contains correlation-coefficients for each cross_validation and
standard deviation and mean value for each sample. The tibble can be plotted
using the testTrainNPlot function.

Examine tibble
tibble_to_plot

End(Not run)

textTrainNPlot Plot cross-validated accuracies across sample sizes

Description

textTrainNPlot() plots cross-validated correlation coefficients across different sample-sizes from
the object returned by the textTrainN function. If the number of cross-validations exceed one, then
error-bars will be included in the plot.

88 textTrainNPlot

Usage

textTrainNPlot(
results_data,
breaks = NULL,
x_unit = "percent",
y_range = NULL,
title = "Cross-validated correlation coefficients across sample sizes",
x_axes_label = "Sample Size (percent)",
y_axes_label = "Correlation Coefficient (r)",
point_color = "#5dc688",
error_bar = "std_err",
bar_color = "#60A1F7",
line_color = "grey",
bar_width = 1,
bar_size = 0.8,
line_size = 0.6,
line_type = "straight",
point_size = 3,
log_transform_x = FALSE

)

Arguments

results_data (list) One or several objects returned by the function textTrainN as a list (e.g,
list(object1, object2)). Also, if several models are provided, then one can add a
vector c() with settings (i.e the parameters below) for each model (make sure to
add the settings in the order as the models are ordered, if you look to keep the
original settings then write "").

breaks (numeric) Vector containing the percents of the total number of data points that
is included in each sample (default = NULL, which takes the breaks from the
percentages). If several models are provided, then one can add a vector c() with
settings for each model (make sure to add the settings in the order as the models
are ordered).

x_unit (character, "percent" or "quantity") Determines whether the x-axis-values should
represent the number of elements in each sample, or the number of percent of
the total data they represent (default = "percent").

y_range (numeric) Optional. Determines the y_range. E.g, y_range = c(1,2) sets the
y_range from 1 to 2 (default = NULL).

title (character) Determine plot title (default = "Cross-validated correlation coeffi-
cients across different sample sizes").

x_axes_label (character) Determine x-axis-label (default = "Sample Size (percent)").

y_axes_label (character) Determine y-axis-label (default = "Correlation Coefficient (r)").

point_color (character, (Hex color codes)) Determine point color (default = "#5dc688"). Can
set a vector if several results_data are provided.

error_bar Default "std_err"; see also "std", NULL. Can set a vector if several results_data
are provided.

textTrainNPlot 89

bar_color (character, (Hex color codes)) Determine error-bar color (default = "#60A1F7").
Can set a vector if several results_data are provided.

line_color (character, (Hex color codes)) Determine line color (default = "grey"). Can set
a vector if several results_data are provided.

bar_width (numeric) Determine bar-width (default = 1). Can set a vector if several re-
sults_data are provided.

bar_size (numeric) Determine bar-size (default = 1). Can set a vector if several re-
sults_data are provided.

line_size (numeric) Determine line-size (default = 1). Can set a vector if several re-
sults_data are provided.

line_type (character, either "straight" or "smooth") Determine line-type (default = "straight").
Can set a vector if several results_data are provided.

point_size (numeric) Determine points size (default = 1). Can set a vector if several re-
sults_data are provided.

log_transform_x

(boolean) Determine wether to log-transform x in case of displaying number of
samples (default = FALSE).

Value

A plot with correlation coefficient on y-axis and sample size in quantity or percent on x axis. If
number och cross-validations exceed 1, then error bars measuring standard deviations will be plot-
ted.

Plot Example

Example of a plot created by textTrainNPlot.

See Also

See textTrainN.

Examples

Plot cross-validated correlation coefficients across different sample-sizes from the object
returned by the textTrainN function.

Not run:
Plot the performance of a single model across different sample sizes
plot_object1 <- textTrainNPlot(

train_data = tibble_to_plot,
n_cross_val = 3,
x_unit = "quantity"

)

Visualize plot
plot_object1

Plot the performance of several models across different sample sizes.

90 textTrainRandomForest

plot_object2 <- textTrainNPlot(train_data = list(object1, object2, object3),
n_cross_val = c(2,1,1),

line_color = c("","","#0000FF")) # "" gives the default settings.
Visualize plot
plot_object2

End(Not run)

textTrainRandomForest Trains word embeddings usig random forest

Description

textTrainRandomForest() trains word embeddings to a categorical variable using random forest.

Usage

textTrainRandomForest(
x,
y,
x_append = NULL,
append_first = FALSE,
cv_method = "validation_split",
outside_folds = 10,
inside_folds = 3/4,
strata = "y",
outside_strata = TRUE,
outside_breaks = 4,
inside_strata = TRUE,
inside_breaks = 4,
mode_rf = "classification",
preprocess_step_center = FALSE,
preprocess_scale_center = FALSE,
preprocess_PCA = NA,
extremely_randomised_splitrule = "extratrees",
mtry = c(1, 10, 20, 40),
min_n = c(1, 10, 20, 40),
trees = c(1000),
parameter_selection_method = "lowest_mtry",
eval_measure = "bal_accuracy",
model_description = "Consider writing a description of your model here",
multi_cores = "multi_cores_sys_default",
save_output = "all",
simulate.p.value = FALSE,
seed = 2020,
...

)

textTrainRandomForest 91

Arguments

x Word embeddings from textEmbed.

y Categorical variable to predict.

x_append (optional) Variables to be appended after the word embeddings (x); if wanting
to preappend them before the word embeddings use the option first = TRUE. If
not wanting to train with word embeddings, set x_append = NULL (default =
null).

append_first (boolean) Option to add variables before or after all word embeddings (default
= FALSE).

cv_method (character) Cross-validation method to use within a pipeline of nested outer and
inner loops of folds (see nested_cv in rsample). Default is using cv_folds in
the outside folds and "validation_split" using rsample::validation_split in the
inner loop to achieve a development and assessment set (note that for vali-
dation_split the inside_folds should be a proportion, e.g., inside_folds = 3/4);
whereas "cv_folds" uses rsample::vfold_cv to achieve n-folds in both the outer
and inner loops.

outside_folds (numeric) Number of folds for the outer folds (default = 10).

inside_folds (numeric) Number of folds for the inner folds (default = 3/4).

strata (string or tibble; default "y") Variable to stratify according; if a string the vari-
able needs to be in the training set - if you want to stratify according to another
variable you can include it as a tibble (please note you can only add 1 variable
to stratify according). Can set it to NULL.

outside_strata (boolean) Whether to stratify the outside folds.

outside_breaks (numeric) The number of bins wanted to stratify a numeric stratification variable
in the outer cross-validation loop (default = 4).

inside_strata (boolean) Whether to stratify the outside folds.

inside_breaks The number of bins wanted to stratify a numeric stratification variable in the
inner cross-validation loop (default = 4).

mode_rf Default is "classification" ("regression" is not supported yet).
preprocess_step_center

(boolean) Normalizes dimensions to have a mean of zero; default is set to FALSE
For more info see (step_center in recipes).

preprocess_scale_center

(boolean) Normalizes dimensions to have a standard deviation of one; default is
set to FALSE. For more info see (step_scale in recipes).

preprocess_PCA Pre-processing threshold for PCA. Can select amount of variance to retain (e.g.,
.90 or as a grid c(0.80, 0.90)); or number of components to select (e.g., 10). (To
skip this step, set preprocess_PCA to NA) Default is "min_halving", which is a
function that selects the number of PCA components based on number of partici-
pants and feature (word embedding dimensions) in the data. The formula is: pre-
process_PCA = round(max(min(number_features/2), number_participants/2), min(50,
number_features))).

92 textTrainRandomForest

extremely_randomised_splitrule

Default is "extratrees", which thus implement a random forest; can also select:
NULL, "gini" or "hellinger"; if these are selected your mtry settings will be
overridden (see Geurts et al. (2006) Extremely randomized trees for details; and
see the ranger r-package for details on implementations).

mtry Hyper parameter that may be tuned; default: c(1, 20, 40),

min_n Hyper parameter that may be tuned; default: c(1, 20, 40)

trees Number of trees to use (default 1000).

parameter_selection_method

If several results are tied for different parameters (i.e., mtry or min_n), then
select the "lowest_mtry", "highest_mtry", "median_mtry", or "lowest_min_n",
the "highest_min_n" or the "median_min_n" order of all the tied mtry/min_n

eval_measure (character) Measure to evaluate the models in order to select the best hyperpa-
rameters default "roc_auc"; see also "accuracy", "bal_accuracy", "sens", "spec",
"precision", "kappa", "f_measure".

model_description

(character) Text to describe your model (optional; good when sharing the model
with others).

multi_cores If TRUE it enables the use of multiple cores if the computer system allows for
it (i.e., only on unix, not windows). Hence it makes the analyses considerably
faster to run. Default is "multi_cores_sys_default", where it automatically uses
TRUE for Mac and Linux and FALSE for Windows. Note that having it to TRUE
does not enable reproducable results at the moment (i.e., cannot set seed).

save_output (character) Option not to save all output; default "all". See also "only_results"
and "only_results_predictions".

simulate.p.value

(Boolean) From fisher.test: a logical indicating whether to compute p-values by
Monte Carlo simulation, in larger than 2 × 2 tables. The test can be turned off if
set to "turn_off".

seed (numeric) Set different seed (default = 2020).

... For example settings in yardstick::accuracy to set event_level (e.g., event_level
= "second").

Value

A list with roc_curve_data, roc_curve_plot, truth and predictions, preprocessing_recipe, final_model,
model_description chisq and fishers test as well as evaluation measures, e.g., including accuracy,
f_meas and roc_auc (for details on these measures see the yardstick r-package documentation).

See Also

See textEmbedLayerAggregation, textTrainLists and textTrainRegression.

textTrainRegression 93

Examples

Examines how well the embeddings from column "harmonywords" in
Language_based_assessment_data_8 can binarily classify gender.

Not run:
trained_model <- textTrainRandomForest(

x = word_embeddings_4$texts$harmonywords,
y = as.factor(Language_based_assessment_data_8$gender),
trees = c(1000, 1500),
mtry = c(1), # this is short because of testing
min_n = c(1), # this is short because of testing
multi_cores = FALSE # This is FALSE due to CRAN testing and Windows machines.

)

Examine results (t-value, degree of freedom (df), p-value,
alternative-hypothesis, confidence interval, correlation coefficient).

trained_model$results

End(Not run)

textTrainRegression Train word embeddings to a numeric variable.

Description

textTrainRegression() trains word embeddings to a numeric or a factor variable.

Usage

textTrainRegression(
x,
y,
x_append = NULL,
append_first = FALSE,
cv_method = "validation_split",
id_variable = NULL,
outside_folds = 10,
inside_folds = 3/4,
strata = "y",
outside_strata = TRUE,
outside_breaks = 4,
inside_strata = TRUE,
inside_breaks = 4,
model = "regression",
eval_measure = "default",
save_aggregated_word_embedding = FALSE,

94 textTrainRegression

language_distribution = NULL,
language_distribution_min_words = 3,
preprocess_step_center = TRUE,
preprocess_step_scale = TRUE,
preprocess_PCA = NA,
penalty = 10^seq(-6, 6),
parameter_selection_method = "lowest_penalty",
mixture = c(0),
first_n_predictors = NA,
impute_missing = FALSE,
method_cor = "pearson",
model_description = "Consider writing a description of your model here.",
multi_cores = "multi_cores_sys_default",
save_output = "all",
simulate.p.value = FALSE,
seed = 2020,
weights = NULL,
...

)

Arguments

x Word embeddings from textEmbed (or textEmbedLayerAggregation). If several
word embedding are provided in a list they will be concatenated.

y Numeric variable to predict.

x_append (optional) Variables to be appended after the word embeddings (x); if wanting
to preappend them before the word embeddings use the option first = TRUE. If
not wanting to train with word embeddings, set x = NULL (default = NULL).

append_first (boolean) Option to add variables before or after all word embeddings (default
= False).

cv_method (character) Cross-validation method to use within a pipeline of nested outer and
inner loops of folds (see nested_cv in rsample). Default is using "cv_folds"
in the outside folds and "validation_split" using rsample::validation_split in the
inner loop to achieve a development and assessment set (note that for "valida-
tion_split" the inside_folds should be a proportion, e.g., inside_folds = 3/4);
whereas "cv_folds" uses rsample::vfold_cv to achieve n-folds in both the outer
and inner loops. Use "group_cv" to ensure that all cases with the same ID re-
main in the same fold. (it uses rsample::group_vfold_cv uses to ensure that all
cases with the same ID remain in the same fold. group_vfold_cv cannot handle
stratification, so if that is requested, it tries to approximate stratification while
preserving group integrity.

id_variable (variable) If specifying cv_method = "group_cv", you need to submit an id vari-
able here.

outside_folds (numeric) Number of folds for the outer folds (default = 10).

inside_folds (numeric) The proportion of data to be used for modeling/analysis; (default pro-
portion = 3/4). For more information see validation_split in rsample.

textTrainRegression 95

strata (string or tibble; default "y") Variable to stratify according; if a string the vari-
able needs to be in the training set - if you want to stratify according to another
variable you can include it as a tibble (please note you can only add 1 variable
to stratify according). Can set it to NULL.

outside_strata (boolean) Whether to stratify the outside folds.

outside_breaks (numeric) The number of bins wanted to stratify a numeric stratification variable
in the outer cross-validation loop (default = 4).

inside_strata Whether to stratify the outside folds.

inside_breaks The number of bins wanted to stratify a numeric stratification variable in the
inner cross-validation loop (default = 4).

model Type of model. Default is "regression"; see also "logistic" and "multinomial"
for classification.

eval_measure (character) Type of evaluative measure to select models from. Default = "rmse"
for regression, "weighted_correlations for weighted regression and "bal_accuracy"
for logistic. For regression use "rsq" or "rmse"; and for classification use "ac-
curacy", "bal_accuracy", "sens", "spec", "precision", "kappa", "f_measure", or
"roc_auc", (for more details see the yardstick package). See also the method_cor
setting below.

save_aggregated_word_embedding

(boolean) If TRUE, the aggregated word embeddings (mean, min, and max) are
saved for comparison with other language input when the model is applied to
other types of data.

language_distribution

(Character column) If you provide the raw language data used for making the
embeddings, the language distribution (i.e., a word and frequency table) will
be saved to the model object. This enables calculating similarity scores when
the model is being applied to new language domains. Note that this saves the
individual words, which, if you are analyzing sensitive data, can be problematic
from a privacy perspective; to some extent this can be mitigated by increasing
the number of words needed to be saved.

language_distribution_min_words

(numeric) Minimum number a words need to occur in the data set to be saved to
the language distribution.

preprocess_step_center

(boolean) Normalizes dimensions to have a mean of zero; default is set to TRUE.
For more info see (step_center in recipes).

preprocess_step_scale

(boolean) Normalize dimensions to have a standard deviation of one; default is
set to TRUE. For more info see (step_scale in recipes).

preprocess_PCA Pre-processing threshold for PCA (to skip this step set it to NA). Can select
amount of variance to retain (e.g., .90 or as a grid c(0.80, 0.90)); or number of
components to select (e.g., 10). Default is "min_halving", which is a function
that selects the number of PCA components based on number of participants
and feature (word embedding dimensions) in the data. The formula is: prepro-
cess_PCA = round(max(min(number_features/2), number_participants/2), min(50,
number_features))).

96 textTrainRegression

penalty (numeric) Hyper parameter that is tuned (default = 10^seq(-16,16)).
parameter_selection_method

If several results are tied for different parameters (i.e., penalty or mixture),
then select the "lowest_penalty", "highest_penalty", "median_penalty", or "low-
est_mixture", the "highest_mixture" or the "median_mixture" order of all the
tied penalties/mixtures.

mixture A number between 0 and 1 (inclusive) that reflects the proportion of L1 reg-
ularization (i.e. lasso) in the model (for more information see the linear_reg-
function in the parsnip-package). When mixture = 1, it is a pure lasso model
while mixture = 0 indicates that ridge regression is being used (specific engines
only).

first_n_predictors

By default this setting is turned off (i.e., NA). To use this method, set it to the
highest number of predictors you want to test. Then the X first dimensions are
used in training, using a sequence from Kjell et al., 2019 paper in Psychological
Methods. Adding 1, then multiplying by 1.3 and finally rounding to the nearest
integer (e.g., 1, 3, 5, 8). This option is currently only possible for one embedding
at the time.

impute_missing Default FALSE (can be set to TRUE if something else than word_embeddings
are trained).

method_cor Type of correlation used in final model estimation evaluation (default "pearson";
can set to "spearman" or "kendall").

model_description

(character) Text to describe your model (optional; good when sharing the model
with others).

multi_cores If TRUE it enables the use of multiple cores if the computer system allows for
it (i.e., only on unix, not windows). Hence it makes the analyses considerably
faster to run. Default is "multi_cores_sys_default", where it automatically uses
TRUE for Mac and Linux and FALSE for Windows.

save_output (character) Option not to save all output; default = "all". see also "no_plot",
"only_results", and "only_results_predictions". Note that "no_plot" is good
when wanting to save a logistic or multnomial regression, since the lot makes
the saved object bloated when being saved.

simulate.p.value

(Boolean or string) From fisher.test: a logical indicating whether to compute p-
values by Monte Carlo simulation, in larger than 2 * 2 tables. The test can be
turned off if set to "turn_off".

seed (numeric) Set different seed (default = 2020).
weights Optional vector containing weights (default = NULL); for details see impor-

tance_weights hardhat. For now only working for model = "regression".
... For example settings in yardstick::accuracy to set event_level (e.g., event_level

= "second").

Details

By default, NAs are treated as follows: 1. rows with NAs in word embeddings are removed. 2.
rows with NAs in y are removed 3. rows with NAs in x_append are removed; if impute_missing is

textTranslate 97

set to TRUE, missing values will be imputed using k-nearest neighbours. When rows are omitted,
the user will get a warning. The CV predictions will include NAs with the same length as the input.

Value

A (one-sided) correlation test between predicted and observed values; tibble of predicted val-
ues (t-value, degree of freedom (df), p-value, alternative-hypothesis, confidence interval, corre-
lation coefficient), as well as information about the model (preprossing_recipe, final_model and
model_description).

See Also

See textEmbedLayerAggregation, textTrainLists and textTrainRandomForest.

Examples

Examines how well the embeddings from the column "harmonytext" can
predict the numerical values in the column "hilstotal".

Not run:
trained_model <- textTrainRegression(

x = word_embeddings_4$texts$harmonytext,
y = Language_based_assessment_data_8$hilstotal,
multi_cores = FALSE # This is FALSE due to CRAN testing and Windows machines.

)

Examine results (t-value, degree of freedom (df), p-value, alternative-hypothesis,
confidence interval, correlation coefficient).

trained_model$results

End(Not run)

textTranslate Translation. (experimental)

Description

Translation. (experimental)

Usage

textTranslate(
x,
source_lang = "",
target_lang = "",
model = "xlm-roberta-base",
device = "cpu",
tokenizer_parallelism = FALSE,

98 textTranslate

logging_level = "warning",
force_return_results = FALSE,
return_tensors = FALSE,
return_text = TRUE,
clean_up_tokenization_spaces = FALSE,
set_seed = 202208L,
max_length = 400

)

Arguments

x (string) The text to be translated.

source_lang (string) The input language. Might be needed for multilingual models (it will
not have any effect for single pair translation models). using ISO 639-1 Code,
such as: "en", "zh", "es", "fr", "de", "it", "sv", "da", "nn".

target_lang (string) The desired language output. Might be required for multilingual models
(will not have any effect for single pair translation models).

model (string) Specify a pre-trained language model that have been fine-tuned on a
translation task.

device (string) Name of device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific
device number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

force_return_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

return_tensors (boolean) Whether or not to include the predictions’ tensors as token indices in
the outputs.

return_text (boolean) Whether or not to also output the decoded texts.
clean_up_tokenization_spaces

(boolean) Whether or not to clean the output from potential extra spaces.

set_seed (Integer) Set seed.

max_length Set max length of text to be translated

Value

A tibble with transalted text.

See Also

see textClassify, textGeneration, textNER, textSum, and textQA

textZeroShot 99

Examples

translation_example <- text::textTranslate(
Language_based_assessment_data_8[1,1:2],
source_lang = "en",
target_lang = "fr",
model = "t5-base")

textZeroShot Zero Shot Classification (Experimental)

Description

Zero Shot Classification (Experimental)

Usage

textZeroShot(
sequences,
candidate_labels,
hypothesis_template = "This example is {}.",
multi_label = FALSE,
model = "",
device = "cpu",
tokenizer_parallelism = FALSE,
logging_level = "error",
force_return_results = FALSE,
set_seed = 202208L

)

Arguments

sequences (string) The sequence(s) to classify (not that they will be truncated if the model
input is too large).

candidate_labels

(string) The set of class labels that is possible in the to classification of each
sequence. It may be a single label, a string of comma-separated labels, or a list
of labels.

hypothesis_template

(string; optional) The template that is used for turning each of the label into an
NLI-style hypothesis. This template must include a "" or similar syntax so that
the candidate label can be inserted into the template. For example, the default
template is "This example is ." With the candidate label "sports", this would
be fed into the model like "<cls> sequence to classify <sep> This example is
sports . <sep>". The default template works well in many cases, but it may be
worthwhile to experiment with different templates depending on the task setting
(see https://huggingface.co/docs/transformers/).

100 word_embeddings_4

multi_label (boolean; optional) It indicates whether multiple candidate labels can be true. If
FALSE, the scores are normalized such that the sum of the label likelihoods for
each sequence is 1. If TRUE, the labels are considered independent and proba-
bilities are normalized for each candidate by doing a softmax of the entailment
score vs. the contradiction score.

model (string) Specify a pre-trained language model that have been fine-tuned on a
translation task.

device (string) Name of device to use: ’cpu’, ’gpu’, or ’gpu:k’ where k is a specific
device number

tokenizer_parallelism

(boolean) If TRUE this will turn on tokenizer parallelism.

logging_level (string) Set the logging level. Options (ordered from less logging to more log-
ging): critical, error, warning, info, debug

force_return_results

(boolean) Stop returning some incorrectly formatted/structured results. This set-
ting does CANOT evaluate the actual results (whether or not they make sense,
exist, etc.). All it does is to ensure the returned results are formatted correctly
(e.g., does the question-answering dictionary contain the key "answer", is senti-
ments from textClassify containing the labels "positive" and "negative").

set_seed (Integer) Set seed.

Value

A tibble with the result with the following keys: sequence (string) The imputed sequence. labels
(string) The labels sorted in the order of likelihood. scores (numeric) The probabilities for each of
the labels.

See Also

see textClassify, textGeneration, textNER, textSum, textQA, textTranslate

Examples

ZeroShot_example <- text::textZeroShot(sequences = c("I play football",
"The forest is wonderful"),
candidate_labels = c("sport", "nature", "research"),
model = "facebook/bart-large-mnli")

word_embeddings_4 Word embeddings for 4 text variables for 40 participants

Description

The dataset is a shortened version of the data sets of Study 3-5 from Kjell, Kjell, Garcia and Sik-
ström 2018.

word_embeddings_4 101

Usage

word_embeddings_4

Format

A list with word embeddings for harmony words, satisfaction words, harmony text, satisfaction text
and decontextualized word embeddings. BERT-base embeddings based on mean aggregation of
layer 11 and 12.

words words

n word frequency

Dim1:Dim768 Word embeddings dimensions

Index

∗ datasets
centrality_data_harmony, 3
DP_projections_HILS_SWLS_100, 4
Language_based_assessment_data_3_100,

5
Language_based_assessment_data_8,

5
PC_projections_satisfactionwords_40,

6
raw_embeddings_1, 6
word_embeddings_4, 100

centrality_data_harmony, 3

DP_projections_HILS_SWLS_100, 4

Language_based_assessment_data_3_100,
5

Language_based_assessment_data_8, 5

PC_projections_satisfactionwords_40, 6

raw_embeddings_1, 6

textAssess (textPredict), 51
textCentrality, 7, 10
textCentralityPlot, 7, 8
textClassify, 37, 41, 68, 76, 98, 100
textClassify (textPredict), 51
textClean, 11
textCleanNonASCII, 12
textDescriptives, 13
textDiagnostics, 14
textDimName, 15, 21, 22
textDistance, 16, 18, 72
textDistanceMatrix, 17
textDistanceNorm, 17, 18
textDomainCompare, 19, 78
textEmbed, 14, 15, 20, 24, 26, 27, 29, 33, 35,

77

textEmbedLayerAggregation, 22, 23, 26, 92,
97

textEmbedRawLayers, 22, 24, 24
textEmbedReduce, 27
textEmbedStatic, 28
textExamples, 29
textFindNonASCII, 31
textFineTuneDomain, 32
textFineTuneTask, 34
textGeneration, 36, 41, 68, 76, 98, 100
textLBAM, 38
textModelLayers, 38
textModels, 39, 39, 40
textModelsRemove, 40, 40
textNER, 37, 41, 41, 68, 76, 98, 100
textPCA, 42, 45
textPCAPlot, 42, 43
textPlot, 45
textPredict, 51, 57, 59
textPredictAll, 57
textPredictTest, 58
textProjection, 7, 10, 50, 60, 66
textProjectionPlot, 61, 62
textQA, 37, 41, 67, 68, 76, 98, 100
textrpp_initialize, 68
textrpp_install, 69
textrpp_install_virtualenv

(textrpp_install), 69
textrpp_uninstall, 71
textSimilarity, 16, 72, 74
textSimilarityMatrix, 73
textSimilarityNorm, 16, 72, 73, 74
textSum, 37, 41, 68, 75, 76, 98, 100
textTokenize, 76
textTokenizeAndCount, 19, 78
textTopics, 78, 81
textTopicsReduce, 80, 80
textTopicsTest, 80, 81, 81
textTopicsTree, 82

102

INDEX 103

textTopicsWordcloud, 80, 81, 82
textTrain, 55, 57, 59, 83, 85
textTrainLists, 55, 83, 84, 92, 97
textTrainN, 85, 89
textTrainNPlot, 87, 87
textTrainRandomForest, 55, 83, 85, 90, 97
textTrainRegression, 83, 85, 92, 93
textTranslate, 37, 41, 68, 76, 97, 100
textZeroShot, 99

word_embeddings_4, 100

	centrality_data_harmony
	DP_projections_HILS_SWLS_100
	Language_based_assessment_data_3_100
	Language_based_assessment_data_8
	PC_projections_satisfactionwords_40
	raw_embeddings_1
	textCentrality
	textCentralityPlot
	textClean
	textCleanNonASCII
	textDescriptives
	textDiagnostics
	textDimName
	textDistance
	textDistanceMatrix
	textDistanceNorm
	textDomainCompare
	textEmbed
	textEmbedLayerAggregation
	textEmbedRawLayers
	textEmbedReduce
	textEmbedStatic
	textExamples
	textFindNonASCII
	textFineTuneDomain
	textFineTuneTask
	textGeneration
	textLBAM
	textModelLayers
	textModels
	textModelsRemove
	textNER
	textPCA
	textPCAPlot
	textPlot
	textPredict
	textPredictAll
	textPredictTest
	textProjection
	textProjectionPlot
	textQA
	textrpp_initialize
	textrpp_install
	textrpp_uninstall
	textSimilarity
	textSimilarityMatrix
	textSimilarityNorm
	textSum
	textTokenize
	textTokenizeAndCount
	textTopics
	textTopicsReduce
	textTopicsTest
	textTopicsTree
	textTopicsWordcloud
	textTrain
	textTrainLists
	textTrainN
	textTrainNPlot
	textTrainRandomForest
	textTrainRegression
	textTranslate
	textZeroShot
	word_embeddings_4
	Index

