Title: | Fitting Survival Regression Models via 'Stan' |
Version: | 0.0.7.1 |
Description: | Parametric survival regression models under the maximum likelihood approach via 'Stan'. Implemented regression models include accelerated failure time models, proportional hazards models, proportional odds models, accelerated hazard models, Yang and Prentice models, and extended hazard models. Available baseline survival distributions include exponential, Weibull, log-normal, log-logistic, gamma, generalized gamma, rayleigh, Gompertz and fatigue (Birnbaum-Saunders) distributions. References: Lawless (2002) <ISBN:9780471372158>; Bennett (1982) <doi:10.1002/sim.4780020223>; Chen and Wang(2000) <doi:10.1080/01621459.2000.10474236>; Demarqui and Mayrink (2021) <doi:10.1214/20-BJPS471>. |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.1 |
Biarch: | true |
Depends: | R (≥ 3.4.0), survival |
Imports: | actuar (≥ 3.0.0), broom, doFuture, dplyr, extraDistr, foreach, future, generics, ggplot2, gridExtra, MASS, methods, purrr, Rcpp (≥ 0.12.0), RcppParallel (≥ 5.0.1), Rdpack, rlang, rstan (≥ 2.26.0), rstantools (≥ 2.3.1), tibble, tidyr |
RdMacros: | Rdpack |
LinkingTo: | BH (≥ 1.66.0), Rcpp (≥ 0.12.0), RcppEigen (≥ 0.3.3.3.0), RcppParallel (≥ 5.0.1), rstan (≥ 2.26.0), StanHeaders (≥ 2.26.0) |
SystemRequirements: | GNU make |
URL: | https://github.com/fndemarqui/survstan, https://fndemarqui.github.io/survstan/ |
BugReports: | https://github.com/fndemarqui/survstan/issues |
Suggests: | emmeans (≥ 1.4.2), estimability, GGally, knitr, rmarkdown, testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
VignetteBuilder: | knitr |
NeedsCompilation: | yes |
Packaged: | 2024-04-12 16:07:59 UTC; fndemarqui |
Author: | Fabio Demarqui |
Maintainer: | Fabio Demarqui <fndemarqui@est.ufmg.br> |
Repository: | CRAN |
Date/Publication: | 2024-04-12 16:50:02 UTC |
The 'survstan' package.
Description
The aim of the R package survstan is to provide a toolkit for fitting survival models using Stan. The R package survstan can be used to fit right-censored survival data under independent censoring. The implemented models allow the fitting of survival data in the presence/absence of covariates. All inferential procedures are currently based on the maximum likelihood (ML) approach.
_PACKAGE
References
Stan Development Team (2023). “RStan: the R interface to Stan.” R package version 2.21.8, https://mc-stan.org/.
Lawless JF (2002). Statistical Models and Methods for Lifetime Data, Wiley Series in Probability and Statistics, 2nd Edition edition. John Wiley and Sons. ISBN 9780471372158.
Bennett S (1983). “Analysis of survival data by the proportional odds model.” Statistics in Medicine, 2(2), 273-277. doi:10.1002/sim.4780020223.
Chen YQ, Wang M (2000). “Analysis of Accelerated Hazards Models.” Journal of the American Statistical Association, 95(450), 608-618. doi:10.1080/01621459.2000.10474236.
Demarqui FN, Mayrink VD (2021). “Yang and Prentice model with piecewise exponential baseline distribution for modeling lifetime data with crossing survival curves.” Brazilian Journal of Probability and Statistics, 35(1), 172 – 186. doi:10.1214/20-BJPS471.
Akaike information criterion
Description
Akaike information criterion
Usage
## S3 method for class 'survstan'
AIC(object, ..., k = 2)
Arguments
object |
an object of the class survstan. |
... |
further arguments passed to or from other methods. |
k |
numeric, the penalty per parameter to be used; the default k = 2 is the classical AIC. |
Value
the Akaike information criterion value when a single model is passed to the function; otherwise, a data.frame with the Akaike information criterion values and the number of parameters is returned.
Examples
library(survstan)
fit1 <- aftreg(Surv(futime, fustat) ~ 1, data = ovarian, baseline = "weibull", init = 0)
fit2 <- aftreg(Surv(futime, fustat) ~ rx, data = ovarian, baseline = "weibull", init = 0)
fit3 <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
AIC(fit1, fit2, fit3)
The Gompertz Distribution
Description
Probability function, distribution function, quantile function and random generation for the distribution with parameters alpha and gamma.
Usage
dgompertz(x, alpha = 1, gamma = 1, log = FALSE, ...)
pgompertz(q, alpha = 1, gamma = 1, lower.tail = TRUE, log.p = FALSE, ...)
qgompertz(p, alpha = 1, gamma = 1, lower.tail = FALSE, log.p = FALSE, ...)
rgompertz(n, alpha = 1, gamma = 1, ...)
Arguments
x |
vector of (non-negative integer) quantiles. |
alpha |
shape parameter of the distribution (alpha > 0). |
gamma |
scale parameter of the distribution (gamma > 0). |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
... |
further arguments passed to other methods. |
q |
vector of quantiles. |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of random values to return. |
Details
Probability density function:
f(x|\alpha, \gamma) = \alpha\gamma \exp\{\gamma x - \alpha(e^{\gamma x} - 1)\}I_{[0, \infty)}(x),
for \alpha>0
and \gamma>0
.
Distribution function:
F(x|\alpha, \gamma) = 1 - \exp\{- \alpha(e^{\gamma x} - 1)\},
for x>0
, \alpha>0
and \gamma>0
.
Value
dgompertz gives the (log) probability function, pgompertz gives the (log) distribution function, qgompertz gives the quantile function, and rgompertz generates random deviates.
Fitting Accelerated Failure Time Models
Description
Function to fit accelerated failure time (AFT) models.
Usage
aftreg(formula, data, baseline = "weibull", dist = NULL, init = 0, ...)
Arguments
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which function is called. |
baseline |
the chosen baseline distribution; options currently available are: exponential, weibull, lognormal, loglogistic and Birnbaum-Saunders (fatigue) distributions. |
dist |
alternative way to specify the baseline distribution (for compatibility with the |
init |
initial values specification (default value is 0); see the detailed documentation for |
... |
further arguments passed to other methods. |
Value
aftreg returns an object of class "aftreg" containing the fitted model.
Examples
library(survstan)
fit <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull")
summary(fit)
Fitting Accelerated Hazard Models
Description
Function to fit accelerated hazard (AH) models.
Usage
ahreg(formula, data, baseline = "weibull", dist = NULL, init = 0, ...)
Arguments
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which function is called. |
baseline |
the chosen baseline distribution; options currently available are: exponential, weibull, lognormal, loglogistic and Birnbaum-Saunders (fatigue) distributions. |
dist |
alternative way to specify the baseline distribution (for compatibility with the |
init |
initial values specification (default value is 0); see the detailed documentation for |
... |
further arguments passed to other methods. |
Value
ahreg returns an object of class "ahreg" containing the fitted model.
Examples
library(survstan)
fit <- ahreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull")
summary(fit)
anova method for survstan models
Description
Compute analysis of variance (or deviance) tables for one or more fitted model objects.
Usage
## S3 method for class 'survstan'
anova(...)
Arguments
... |
further arguments passed to or from other methods. |
Value
the ANOVA table.
Examples
library(survstan)
fit1 <- aftreg(Surv(futime, fustat) ~ 1, data = ovarian, baseline = "weibull", init = 0)
fit2 <- aftreg(Surv(futime, fustat) ~ rx, data = ovarian, baseline = "weibull", init = 0)
fit3 <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
anova(fit1, fit2, fit3)
Estimated regression coefficients
Description
Estimated regression coefficients
Usage
## S3 method for class 'survstan'
coef(object, ...)
Arguments
object |
an object of the class survstan |
... |
further arguments passed to or from other methods |
Value
the estimated regression coefficients
Examples
library(survstan)
fit <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
coef(fit)
Confidence intervals for the regression coefficients
Description
Confidence intervals for the regression coefficients
Usage
## S3 method for class 'survstan'
confint(object, parm = NULL, level = 0.95, ...)
Arguments
object |
an object of the class survstan. |
parm |
a specification of which parameters are to be given confidence intervals, either a vector of numbers or a vector of names. If missing, all parameters are considered. |
level |
the confidence level required. |
... |
further arguments passed to or from other methods. |
Value
100(1-alpha) confidence intervals for the regression coefficients.
Examples
library(survstan)
fit <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
confint(fit)
Generic S3 method cross_time
Description
Generic S3 method cross_time
Usage
cross_time(object, ...)
Arguments
object |
a fitted model object |
... |
further arguments passed to or from other methods. |
Value
the crossing survival time
Computes the crossing survival times
Description
Computes the crossing survival times
Usage
## S3 method for class 'survstan'
cross_time(
object,
newdata1,
newdata2,
conf.level = 0.95,
nboot = 1000,
cores = 1,
...
)
Arguments
object |
an object of class survstan |
newdata1 |
a data frame containing the first set of explanatory variables |
newdata2 |
a data frame containing the second set of explanatory variables |
conf.level |
level of the confidence/credible intervals |
nboot |
number of bootstrap samples (default nboot=1000). |
cores |
number of cores to be used in the bootstrap sampling; default is 1 core; |
... |
further arguments passed to or from other methods. |
Value
the crossing survival time
Examples
library(survstan)
data(ipass)
fit <- ypreg(Surv(time, status)~arm, data=ipass, baseline = "weibull")
summary(fit)
newdata1 <- data.frame(arm=0)
newdata2 <- data.frame(arm=1)
tcross <- cross_time(fit, newdata1, newdata2, nboot = 10)
tcross
Fitting Extended Hazard Models
Description
Function to fit Extended Hazard (EH) models.
Usage
ehreg(formula, data, baseline = "weibull", dist = NULL, init = 0, ...)
Arguments
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which function is called. |
baseline |
the chosen baseline distribution; options currently available are: exponential, weibull, lognormal, loglogistic and Birnbaum-Saunders (fatigue) distributions. |
dist |
alternative way to specify the baseline distribution (for compatibility with the |
init |
initial values specification (default value is 0); see the detailed documentation for |
... |
further arguments passed to other methods. |
Value
ehreg returns an object of class "ehreg" containing the fitted model.
Examples
library(survstan)
fit <- ehreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull")
summary(fit)
Support Functions for emmeans
Description
Functions required for compatibility of survstan with emmeans.
Users are not required to call these functions themselves. Instead,
they will be called automatically by the emmeans
function
of the emmeans package.
Usage
recover_data.survstan(object, ...)
recover_data.ypreg(object, term = c("short", "long"), ...)
recover_data.ehreg(object, term = c("AF", "RH"), ...)
Arguments
object |
An object of the same class as is supported by a new method. |
... |
Additional parameters that may be supported by the method. |
term |
character specifying whether AF or RH term regression coefficients are to be used. |
Parameters estimates of a survstan model
Description
Parameters estimates of a survstan model
Usage
estimates(object, ...)
Arguments
object |
an object of the class survstan. |
... |
further arguments passed to or from other methods. |
Value
the parameters estimates of a given survstan model.
Examples
library(survstan)
fit <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
estimates(fit)
Extract AIC from a Fitted Model
Description
Computes the (generalized) Akaike An Information Criterion for a fitted parametric model.
Usage
## S3 method for class 'survstan'
extractAIC(fit, scale, k = 2, ...)
Arguments
fit |
a fitted model of the class survstan |
scale |
optional numeric specifying the scale parameter of the model. Currently only used in the "lm" method, where scale specifies the estimate of the error variance, and scale = 0 indicates that it is to be estimated by maximum likelihood. |
k |
numeric specifying the ‘weight’ of the equivalent degrees of freedom part in the AIC formula. |
... |
further arguments passed to or from other methods. |
Value
the ANOVA table.
Examples
library(survstan)
fit1 <- aftreg(Surv(futime, fustat) ~ 1, data = ovarian, baseline = "weibull", init = 0)
fit2 <- aftreg(Surv(futime, fustat) ~ rx, data = ovarian, baseline = "weibull", init = 0)
fit3 <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
extractAIC(fit1)
extractAIC(fit2)
extractAIC(fit3)
Gastric cancer data set
Description
Data set from a clinical trial conducted by the Gastrointestinal Tumor Study Group (GTSG) in 1982. The data set refers to the survival times of patients with locally nonresectable gastric cancer. Patients were either treated with chemotherapy combined with radiation or chemotherapy alone.
Format
A data frame with 90 rows and 3 variables:
time: survival times (in days)
status: failure indicator (1 - failure; 0 - otherwise)
trt: treatments (1 - chemotherapy + radiation; 0 - chemotherapy alone)
Author(s)
Fabio N. Demarqui fndemarqui@est.ufmg.br
References
Gastrointestinal Tumor Study Group. (1982) A Comparison of Combination Chemotherapy and Combined Modality Therapy for Locally Advanced Gastric Carcinoma. Cancer 49:1771-7.
The Generalized Gamma Distribution (Prentice's alternative parametrization)
Description
Probability function, distribution function, quantile function and random generation for the distribution with parameters mu, sigma and varphi.
Usage
dggprentice(x, mu, sigma, varphi, log = FALSE)
pggprentice(q, mu = 0, sigma = 1, varphi, lower.tail = TRUE, log.p = FALSE)
qggprentice(p, mu = 0, sigma = 1, varphi, lower.tail = TRUE, log.p = FALSE)
rggprentice(n, mu = 0, sigma = 1, varphi, ...)
Arguments
x |
vector of (non-negative integer) quantiles. |
mu |
location parameter of the distribution. |
sigma |
scale parameter of the distribution (sigma > 0). |
varphi |
shape parameter of the distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
q |
vector of quantiles. |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
n |
number of random values to return. |
... |
further arguments passed to other methods. |
Details
Probability density function:
f(x | \mu, \sigma, \varphi) =
\begin{cases}
\frac{|\varphi|(\varphi^{-2})^{\varphi^{-2}}}{\sigma x\Gamma(\varphi^{-2})}\exp\{\varphi^{-2}[\varphi w - \exp(\varphi w)]\}I_{[0, \infty)}(x), & \varphi \neq 0 \\
\frac{1}{\sqrt{2\pi}x\sigma}\exp\left\{-\frac{1}{2}\left(\frac{log(x)-\mu}{\sigma}\right)^2\right\}I_{[0, \infty)}(x), & \varphi = 0
\end{cases}
where w = \frac{\log(x) - \mu}{\sigma}
, for -\infty < \mu < \infty
, \sigma>0
and -\infty < \varphi < \infty
.
Distribution function:
F(x|\mu, \sigma, \varphi) =
\begin{cases}
F_{G}(y|1/\varphi^2, 1), & \varphi > 0 \\
1-F_{G}(y|1/\varphi^2, 1), & \varphi < 0 \\
F_{LN}(x|\mu, \sigma), & \varphi = 0
\end{cases}
where y = \displaystyle\left(\frac{x}{\sigma}\right)^\varphi
,
F_{G}(\cdot|\nu, 1)
is the distribution function of
a gamma distribution with shape parameter 1/\varphi^2
and scale
parameter equals to 1, and F_{LN}(x|\mu, \sigma)
corresponds to the
distribution function of a lognormal distribution with location parameter
\mu
and scale parameter \sigma
.
Value
dggprentice gives the (log) probability function, pggprentice gives the (log) distribution function, qggprentice gives the quantile function, and rggprentice generates random deviates.
Generic S3 method ggresiduals
Description
Generic S3 method ggresiduals
Usage
ggresiduals(object, ...)
Arguments
object |
a fitted model object. |
... |
further arguments passed to or from other methods. |
Details
Generic method to plot residuals of survival models.
Value
the desired residual plot.
ggresiduals method for survstan models
Description
ggresiduals method for survstan models
Usage
## S3 method for class 'survstan'
ggresiduals(object, type = c("coxsnell", "martingale", "deviance"), ...)
Arguments
object |
a fitted model object of the class survstan. |
type |
type of residuals used in the plot: coxsnell (default), martingale and deviance. |
... |
further arguments passed to or from other methods. |
Details
This function produces residuals plots of Cox-Snell residuals, martingale residuals and deviance residuals.
Value
the desired residual plot.
Examples
library(survstan)
ovarian$rx <- as.factor(ovarian$rx)
fit <- aftreg(Surv(futime, fustat) ~ age + rx, data = ovarian, baseline = "weibull", init = 0)
ggresiduals(fit, type = "coxsnell")
ggresiduals(fit, type = "martingale")
ggresiduals(fit, type = "deviance")
The Generalized Gamma Distribution (Stacy's original parametrization)
Description
Probability function, distribution function, quantile function and random generation for the distribution with parameters alpha, gamma and kappa.
Usage
dggstacy(x, alpha, gamma, kappa, log = FALSE)
pggstacy(q, alpha, gamma, kappa, log.p = FALSE, lower.tail = TRUE)
qggstacy(
p,
alpha = 1,
gamma = 1,
kappa = 1,
log.p = FALSE,
lower.tail = TRUE,
...
)
rggstacy(n, alpha = 1, gamma = 1, kappa = 1, ...)
Arguments
x |
vector of (non-negative integer) quantiles. |
alpha |
shape parameter of the distribution (alpha > 0). |
gamma |
scale parameter of the distribution (gamma > 0). |
kappa |
shape parameter of the distribution (kappa > 0). |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
q |
vector of quantiles. |
lower.tail |
logical; if TRUE (default), probabilities are |
p |
vector of probabilities. |
... |
further arguments passed to other methods. |
n |
number of random values to return. |
Details
Probability density function:
f(x|\alpha, \gamma, \kappa) = \frac{\kappa}{\gamma^{\alpha}\Gamma(\alpha/\kappa)}x^{\alpha-1}\exp\left\{-\left(\frac{x}{\gamma}\right)^{\kappa}\right\}I_{[0, \infty)}(x),
for \alpha>0
, \gamma>0
and \kappa>0
.
Distribution function:
F(t|\alpha, \gamma, \kappa) = F_{G}(x|\nu, 1),
where x = \displaystyle\left(\frac{t}{\gamma}\right)^\kappa
, and F_{G}(\cdot|\nu, 1)
corresponds to the distribution function of a gamma distribution with shape parameter \nu = \alpha/\gamma
and scale parameter equals to 1.
Value
dggstacy gives the (log) probability function, pggstacy gives the (log) distribution function, qggstacy gives the quantile function, and rggstacy generates random deviates.
IRESSA Pan-Asia Study (IPASS) data set
Description
Reconstructed IPASS clinical trial data reported in Argyropoulos and Unruh (2015). Although reconstructed, this data set preserves all features exhibited in references with full access to the observations from this clinical trial. The data base is related to the period of March 2006 to April 2008. The main purpose of the study is to compare the drug gefitinib against carboplatin/paclitaxel doublet chemotherapy as first line treatment, in terms of progression free survival (in months), to be applied to selected non-small-cell lung cancer (NSCLC) patients.
Format
A data frame with 1217 rows and 3 variables:
time: progression free survival (in months)
status: failure indicator (1 - failure; 0 - otherwise)
arm: (1 - gefitinib; 0 - carboplatin/paclitaxel doublet chemotherapy)
Author(s)
Fabio N. Demarqui fndemarqui@est.ufmg.br
References
Argyropoulos, C. and Unruh, M. L. (2015). Analysis of time to event outcomes in randomized controlled trials by generalized additive models. PLOS One 10, 1-33.
Extract Log-Likelihood from a Fitted Model
Description
Extracts the log-likelihood function for a fitted parametric model.
Usage
## S3 method for class 'survstan'
logLik(object, ...)
Arguments
object |
a fitted model of the class survstan |
... |
further arguments passed to or from other methods. |
Value
the log-likelihood value when a single model is passed to the function; otherwise, a data.frame with the log-likelihood values and the number of parameters is returned.
Examples
library(survstan)
fit1 <- aftreg(Surv(futime, fustat) ~ 1, data = ovarian, baseline = "weibull", init = 0)
fit2 <- aftreg(Surv(futime, fustat) ~ rx, data = ovarian, baseline = "weibull", init = 0)
fit3 <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
logLik(fit1, fit2, fit3)
Model.matrix method for survstan models
Description
Reconstruct the model matrix for a survstan model.
Usage
## S3 method for class 'survstan'
model.matrix(object, ...)
Arguments
object |
an object of the class survstan. |
... |
further arguments passed to or from other methods. |
Value
The model matrix (or matrices) for the fit.
Examples
library(survstan)
fit <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
model.matrix(fit)
Fitting Proportional Hazards Models
Description
Function to fit proportional hazards (PH) models.
Usage
phreg(formula, data, baseline = "weibull", dist = NULL, init = 0, ...)
Arguments
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which function is called. |
baseline |
the chosen baseline distribution; options currently available are: exponential, weibull, lognormal, loglogistic and Birnbaum-Saunders (fatigue) distributions. |
dist |
alternative way to specify the baseline distribution (for compatibility with the |
init |
initial values specification (default value is 0); see the detailed documentation for |
... |
further arguments passed to other methods. |
Value
phreg returns an object of class "phreg" containing the fitted model.
Examples
library(survstan)
fit <- phreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull")
summary(fit)
Fitting Proportional Odds Models
Description
Function to fit proportional odds (PO) models.
Usage
poreg(formula, data, baseline = "weibull", dist = NULL, init = 0, ...)
Arguments
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which function is called. |
baseline |
the chosen baseline distribution; options currently available are: exponential, weibull, lognormal, loglogistic and Birnbaum-Saunders (fatigue) distributions. |
dist |
alternative way to specify the baseline distribution (for compatibility with the |
init |
initial values specification (default value is 0); see the detailed documentation for |
... |
further arguments passed to other methods. |
Value
poreg returns an object of class "poreg" containing the fitted model.
Examples
library(survstan)
fit <- poreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull")
summary(fit)
Print the summary.survstan output
Description
Produces a printed summary of a fitted survstan model.
Usage
## S3 method for class 'summary.survstan'
print(x, ...)
Arguments
x |
an object of the class summary.survstan. |
... |
further arguments passed to or from other methods. |
Value
No return value, called for side effects.
Rank a collection of survstan models
Description
Rank a collection of survstan models
Usage
rank_models(formula, data, survreg, baseline, dist = NULL, ...)
Arguments
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which function is called. |
survreg |
survival regression models to be fitted (AFT, AH, PH, PO, YP and EH). |
baseline |
baseline distributions to be fitted; options currently available are: exponential, weibull, lognormal, loglogistic and Birnbaum-Saunders (fatigue) distributions. |
dist |
alternative way to specify the baseline distributions (for compability with the |
... |
further arguments passed to other methods. |
Value
a tibble containing the fitted models ranked according to their AICs.
Examples
library(survstan)
library(dplyr)
veteran <- veteran %>%
mutate(across(c(trt, prior, celltype), as.factor))
fits <- rank_models(
formula = Surv(time, status) ~ celltype+karno,
data = veteran,
survreg = c("aftreg", "ahreg", "phreg", "poreg", "ypreg", "ehreg"),
baseline = c("exponential", "weibull", "lognormal", "loglogistic", "fatigue", "gamma", "rayleigh")
)
Objects exported from other packages
Description
These objects are imported from other packages. Follow the links below to see their documentation.
- generics
residuals method for survstan models
Description
residuals method for survstan models
Usage
## S3 method for class 'survstan'
residuals(object, type = c("coxsnell", "martingale", "deviance"), ...)
Arguments
object |
a fitted model object of the class survstan. |
type |
type of residuals desired: coxsnell (default), martingale and deviance. |
... |
further arguments passed to or from other methods. |
Details
This function extracts the residuals, martingale residuals and deviance residuals of a survstan object.
Value
a vector containing the desired residuals.
Examples
library(survstan)
ovarian$rx <- as.factor(ovarian$rx)
fit <- aftreg(Surv(futime, fustat) ~ age + rx, data = ovarian, baseline = "weibull", init = 0)
residuals(fit, type = "coxsnell")
residuals(fit, type = "martingale")
residuals(fit, type = "deviance")
Generic S3 method se
Description
Generic S3 method se
Usage
se(object, ...)
Arguments
object |
a fitted model object. |
... |
further arguments passed to or from other methods. |
Value
the standard errors associated with a set of parameter estimators for a given model.
Estimated standard errors
Description
Estimated standard errors
Usage
## S3 method for class 'survstan'
se(object, ...)
Arguments
object |
an object of the class survstan. |
... |
further arguments passed to or from other methods. |
Value
a vector with the standard errors.
Examples
library(survstan)
fit <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
se(fit)
Summary for a survstan object
Description
Summary for a survstan object
Usage
## S3 method for class 'survstan'
summary(object, conf.level = 0.95, ...)
Arguments
object |
the result of a call to summary.survstan |
conf.level |
the confidence level required. |
... |
further arguments passed to or from other methods. |
Value
an object of the class summary.survstan containing a summary of the fitted model.
survfit method for survstan models
Description
Computes the predicted survivor function for a phpe model.
Usage
## S3 method for class 'survstan'
survfit(formula, newdata = NULL, ...)
Arguments
formula |
an object of the class survstan |
newdata |
a data frame containing the set of explanatory variables; if NULL, a data.frame with the observed failure times and their corresponding estimated baseline survivals is returned. |
... |
further arguments passed to or from other methods. |
Value
a data.frame containing the estimated survival probabilities.
Examples
library(survstan)
library(ggplot2)
data(ipass)
ipass$arm <- as.factor(ipass$arm)
fit <- ypreg(Surv(time, status)~arm, data=ipass, baseline = "weibull")
summary(fit)
newdata <- data.frame(arm=as.factor(0:1))
surv <- survfit(fit, newdata)
ggplot(surv, aes(x=time, y=surv, color = arm)) +
geom_line()
Tidy a survstan object
Description
Tidy a survstan object
Usage
## S3 method for class 'survstan'
tidy(x, conf.int = FALSE, conf.level = 0.95, ...)
Arguments
x |
a fitted model object. |
conf.int |
Logical indicating whether or not to include a confidence interval in the tidied output. Defaults to FALSE. |
conf.level |
the confidence level required. |
... |
further arguments passed to or from other methods. |
Details
Convert a fitted model into a tibble.
Value
a tibble with a summary of the fit.
Examples
library(survstan)
fit <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull")
tidy(fit)
Variance-covariance matrix
Description
This function extracts and returns the variance-covariance matrix associated with the regression coefficients when the maximum likelihood estimation approach is used in the model fitting.
Usage
## S3 method for class 'survstan'
vcov(object, all = FALSE, ...)
Arguments
object |
an object of the class survstan. |
all |
logical; if FALSE (default), only covariance matrix associated with regression coefficients is returned; if TRUE, the full covariance matrix is returned. |
... |
further arguments passed to or from other methods. |
Value
the variance-covariance matrix associated with the parameters estimators.
Examples
library(survstan)
fit <- aftreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull", init = 0)
vcov(fit)
Fitting Yang and Prentice Models
Description
Function to fit Yang and Prentice (YP) models.
Usage
ypreg(formula, data, baseline = "weibull", dist = NULL, init = 0, ...)
Arguments
formula |
an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. |
data |
data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which function is called. |
baseline |
the chosen baseline distribution; options currently available are: exponential, weibull, lognormal, loglogistic and Birnbaum-Saunders (fatigue) distributions. |
dist |
alternative way to specify the baseline distribution (for compatibility with the |
init |
initial values specification (default value is 0); see the detailed documentation for |
... |
further arguments passed to other methods. |
Value
ypreg returns an object of class "ypreg" containing the fitted model.
Examples
library(survstan)
fit <- ypreg(Surv(futime, fustat) ~ ecog.ps + rx, data = ovarian, baseline = "weibull")
summary(fit)