Package 'stdReg2'

July 23, 2025

Type Package

Title Regression Standardization for Causal Inference Version 1.0.3 URL https://sachsmc.github.io/stdReg2/ BugReports https://github.com/sachsmc/stdReg2/issues/ Date 2025-02-27 **Description** Contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) <doi:10.1007/s10654-016-0157-3>. Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models. **License** AGPL (>= 3) **Encoding** UTF-8 Imports data.table, drgee, generics, survival **Suggests** causaldata, AF, knitr, nnet, rmarkdown, testthat (>= 3.0.0) VignetteBuilder knitr Config/testthat/edition 3 RoxygenNote 7.3.2 **Depends** R (>= 4.1.0) NeedsCompilation no Author Michael C Sachs [aut, cre], Arvid Sjölander [aut], Erin E Gabriel [aut], Johan Sebastian Ohlendorff [aut], Adam Brand [aut] Maintainer Michael C Sachs <sachsmc@gmail.com> Repository CRAN

Date/Publication 2025-02-28 11:10:01 UTC

2 stdReg2-package

Contents

	stdReg2-package	2
	parfrailty	3
	plot.std_glm	
	plot.std_surv	6
	print.std_surv	7
	print.summary.parfrailty	
	sandwich	
	standardize	9
	standardize_coxph	12
	standardize_gee	16
	standardize_glm	19
	standardize_glm_dr	23
	standardize_level	26
	standardize_parfrailty	29
	summary.parfrailty	33
	tidy.std_custom	34
	tidy.std_glm	35
	tidy.std_surv	36
Index		37
		_
stdR	eg2-package stdReg2: Regression Standardization for Causal Inference	

stdReg2: Regression Standardization for Causal Inference

Description

Contains more modern tools for causal inference using regression standardization. Four general classes of models are implemented; generalized linear models, conditional generalized estimating equation models, Cox proportional hazards models, and shared frailty gamma-Weibull models. Methodological details are described in Sjölander, A. (2016) doi:10.1007/s1065401601573. Also includes functionality for doubly robust estimation for generalized linear models in some special cases, and the ability to implement custom models.

Author(s)

Maintainer: Michael C Sachs <sachsmc@gmail.com>

Authors:

- · Arvid Sjölander
- Erin E Gabriel
- Johan Sebastian Ohlendorff
- Adam Brand

parfrailty 3

See Also

Useful links:

- https://sachsmc.github.io/stdReg2/
- Report bugs at https://github.com/sachsmc/stdReg2/issues/

parfrailty

Fits shared frailty gamma-Weibull models

Description

parfrailty fits shared frailty gamma-Weibull models. It is specifically designed to work with the function standardize_parfrailty, which performs regression standardization in shared frailty gamma-Weibull models.

Usage

```
parfrailty(formula, data, clusterid, init)
```

Arguments

formula an object of class "formula", in the same format as accepted by the coxph func-

tıon.

data a data frame containing the variables in the model.

clusterid a string containing the name of a cluster identification variable.

init an optional vector of initial values for the model parameters.

Details

parfrailty fits the shared frailty gamma-Weibull model

$$\lambda(t_{ij}|C_{ij}) = \lambda(t_{ij}; \alpha, \eta)U_i \exp\{h(C_{ij}; \beta)\},\$$

where t_{ij} and C_{ij} are the survival time and covariate vector for subject j in cluster i, respectively. $\lambda(t; \alpha, \eta)$ is the Weibull baseline hazard function

$$nt^{\eta-1}\alpha^{-\eta}$$
.

where η is the shape parameter and α is the scale parameter. U_i is the unobserved frailty term for cluster i, which is assumed to have a gamma distribution with scale = 1/shape = ϕ . $h(X; \beta)$ is the regression function as specified by the formula argument, parameterized by a vector β . The ML estimates $\{\log(\hat{\alpha}), \log(\hat{\eta}), \log(\hat{\phi}), \hat{\beta}\}$ are obtained by maximizing the marginal (over U) likelihood.

Value

An object of class "parfrailty" which is a list containing:

est the Maximum Likelihood (ML) estimates $\{\log(\hat{\alpha}), \log(\hat{\eta}), \log(\hat{\phi}), \hat{\beta}\}.$

vcov the variance-covariance vector of the ML estimates.

score a matrix containing the cluster-specific contributions to the ML score equations.

4 parfrailty

Note

If left truncation is present, it is assumed that it is strong left truncation. This means that even if the truncation time may be subject-specific, the whole cluster is unobserved if at least one subject in the cluster dies before his/her truncation time. If all subjects in the cluster survive beyond their subject-specific truncation times, then the whole cluster is observed (Van den Berg and Drepper, 2016).

Author(s)

Arvid Sjölander and Elisabeth Dahlqwist.

References

Dahlqwist E., Pawitan Y., Sjölander A. (2019). Regression standardization and attributable fraction estimation with between-within frailty models for clustered survival data. *Statistical Methods in Medical Research* **28**(2), 462-485.

Van den Berg G.J., Drepper B. (2016). Inference for shared frailty survival models with left-truncated data. *Econometric Reviews*, 35(6), 1075-1098.

```
require(survival)
# simulate data
set.seed(5)
n <- 200
m <- 3
alpha <- 1.5
eta <- 1
phi <- 0.5
beta <- 1
id \leftarrow rep(1:n, each = m)
U <- rep(rgamma(n, shape = 1 / phi, scale = phi), each = m)
X \leftarrow rnorm(n * m)
# reparameterize scale as in rweibull function
weibull.scale <- alpha / (U * exp(beta * X))^{(1 / eta)}
T <- rweibull(n * m, shape = eta, scale = weibull.scale)
# right censoring
C <- runif(n * m, 0, 10)
D <- as.numeric(T < C)
T <- pmin(T, C)
# strong left-truncation
L \leftarrow runif(n * m, 0, 2)
incl \leftarrow T > L
incl \leftarrow ave(x = incl, id, FUN = sum) == m
dd <- data.frame(L, T, D, X, id)
dd <- dd[incl, ]</pre>
```

plot.std_glm 5

```
fit <- parfrailty(formula = Surv(L, T, D) \sim X, data = dd, clusterid = "id") print(fit)
```

plot.std_glm

Plots regression standardization fit

Description

This is a plot method for class "std_glm".

Usage

```
## S3 method for class 'std_glm'
plot(
    x,
    plot_ci = TRUE,
    ci_type = "plain",
    ci_level = 0.95,
    transform = NULL,
    contrast = NULL,
    reference = NULL,
    summary_fun = "summary_std_glm",
    ...
)
```

Arguments

x	An object of class "std_glm".
plot_ci	if TRUE, add the confidence intervals to the plot.
ci_type	A string, indicating the type of confidence intervals. Either "plain", which gives untransformed intervals, or "log", which gives log-transformed intervals.
ci_level	Coverage probability of confidence intervals.
transform	If set to "log", "logit", or "odds", the standardized mean $\theta(x)$ is transformed into $\psi(x) = \log\{\theta(x)\}$, $\psi(x) = \log[\theta(x)/\{1-\theta(x)\}]$, or $\psi(x) = \theta(x)/\{1-\theta(x)\}$, respectively. If left unspecified, $\psi(x) = \theta(x)$.
contrast	If set to "difference" or "ratio", then $\psi(x)-\psi(x_0)$ or $\psi(x)/\psi(x_0)$ are constructed, where x_0 is a reference level specified by the reference argument. If not NULL, a doubly robust estimator of the standardized estimator is used.
reference	If contrast is specified, the desired reference level.
summary_fun	For internal use only. Do not change.
	Unused.

Value

None. Creates a plot as a side effect

6 plot.std_surv

Examples

```
# see standardize_glm
```

plot.std_surv

Plots regression standardization fit

Description

This is a plot method for class "std_surv".

Usage

```
## S3 method for class 'std_surv'
plot(
    x,
    plot_ci = TRUE,
    ci_type = "plain",
    ci_level = 0.95,
    transform = NULL,
    contrast = NULL,
    reference = NULL,
    legendpos = "bottomleft",
    summary_fun = "summary_std_coxph",
    ...
)
```

Arguments

х	An object of class "std_surv".
plot_ci	if TRUE, add the confidence intervals to the plot.
ci_type	A string, indicating the type of confidence intervals. Either "plain", which gives untransformed intervals, or "log", which gives log-transformed intervals.
ci_level	Coverage probability of confidence intervals.
transform	If set to "log", "logit", or "odds", the standardized mean $\theta(x)$ is transformed into $\psi(x) = \log\{\theta(x)\}$, $\psi(x) = \log[\theta(x)/\{1-\theta(x)\}]$, or $\psi(x) = \theta(x)/\{1-\theta(x)\}$, respectively. If left unspecified, $\psi(x) = \theta(x)$.
contrast	If set to "difference" or "ratio", then $\psi(x) - \psi(x_0)$ or $\psi(x)/\psi(x_0)$ are constructed, where x_0 is a reference level specified by the reference argument. If not NULL, a doubly robust estimator of the standardized estimator is used.
reference	If contrast is specified, the desired reference level.
legendpos	position of the legend; see legend.
summary_fun	For internal use only. Do not change.
	Unused.

print.std_surv 7

Value

None. Creates a plot as a side effect

print.std_surv

Prints summary of regression standardization fit

Description

Prints summary of regression standardization fit

Usage

```
## S3 method for class 'std_surv'
print(x, ...)
## S3 method for class 'std_glm'
print(x, ...)
## S3 method for class 'std_custom'
print(x, ...)
```

Arguments

```
x an object of class "std_glm", "std_surv" or "std_custom".... unused
```

Value

The object being printed, invisibly.

Description

Print method for parametric frailty fits

Usage

```
## S3 method for class 'summary.parfrailty'
print(x, digits = max(3L, getOption("digits") - 3L), ...)
```

8 sandwich

Arguments

x An object of class "parfrailty"digits Number of digits to print

... Not used

Value

The object being printed, invisibly

sandwich

Compute the sandwich variance components from a model fit

Description

Compute the sandwich variance components from a model fit

Usage

```
sandwich(fit, data, weights, t, fit.detail)
```

Arguments

fit A fitted model object of class glm, coxph, ah, or survfit

data The data used to fit the model

weights Optional weights

t Optional fixed time point for survival objects

fit.detail For Cox models, the result of running coxph.detail on the model fit

Value

A list consisting of the Fisher information matrix (I) and the Score equations (U)

standardize 9

standardize

Get standardized estimates using the g-formula with a custom model

Description

Get standardized estimates using the g-formula with a custom model

Usage

```
standardize(
  fitter,
  arguments,
  predict_fun,
  data,
  values,
  B = NULL,
  ci_level = 0.95,
  contrasts = NULL,
  reference = NULL,
  times = NULL,
  transforms = NULL,
  progressbar = TRUE
)
```

Arguments

fitter	The function to call to fit the data
IILLEI	THE TURCHOR TO CARE TO HE HIE GATA

arguments The arguments to be used in the fitter function as a list.

predict_fun The function used to predict the means/probabilities for a new data set on the

response level. For survival data, this should be a matrix where each column is

the time, and each row the data.

data The data.

values A named list or data.frame specifying the variables and values at which marginal

means of the outcome will be estimated.

B Number of nonparametric bootstrap resamples. Default is NULL (no bootstrap).

ci_level Coverage probability of confidence intervals.

contrasts A vector of contrasts in the following format: If set to "difference" or "ratio",

then $\psi(x) - \psi(x_0)$ or $\psi(x)/\psi(x_0)$ are constructed, where x_0 is a reference level specified by the reference argument. Has to be NULL if no references are spec-

ified.

reference A vector of reference levels in the following format: If contrasts is not NULL,

the desired reference level(s). This must be a vector or list the same length as contrasts, and if not named, it is assumed that the order is as specified in

contrasts.

10 standardize

The seed to use with the nonparametric bootstrap.

times For use with survival data. Set to NULL otherwise.

transforms A vector of transforms in the following format: If set to "log", "logit", or

"odds", the standardized mean $\theta(x)$ is transformed into $\psi(x) = \log\{\theta(x)\}$, $\psi(x) = \log[\theta(x)/\{1-\theta(x)\}]$, or $\psi(x) = \theta(x)/\{1-\theta(x)\}$, respectively. If the

vector is NULL, then $\psi(x) = \theta(x)$.

progressbar Logical, if TRUE will print bootstrapping progress to the console

Details

Let Y, X, and Z be the outcome, the exposure, and a vector of covariates, respectively. standardize uses a model to estimate the standardized mean $\theta(x) = E\{E(Y|X=x,Z)\}$, where x is a specific value of X, and the outer expectation is over the marginal distribution of Z. With survival data, Y = I(T > t), and a vector of different time points times (t) can be given, where T is the uncensored survival time.

Value

An object of class std_custom. Obtain numeric results using tidy.std_custom. This is a list with the following components:

res_contrast An unnamed list with one element for each of the requested contrasts. Each element is itself a list with the elements:

B The number of bootstrap replicates

estimates Estimated counterfactual means and standard errors for each exposure level

fit_outcome The estimated regression model for the outcome

estimates_boot A list of estimates, one for each bootstrap resample

exposure_names A character vector of the exposure variable names

times The vector of times at which the calculation is done, if relevant

est_table Data.frame of the estimates of the contrast with inference

transform The transform argument used for this contrast

contrast The requested contrast type

reference The reference level of the exposure

ci_level Confidence interval level

res A named list with the elements:

B The number of bootstrap replicates

estimates Estimated counterfactual means and standard errors for each exposure level

fit_outcome The estimated regression model for the outcome

estimates boot A list of estimates, one for each bootstrap resample

exposure names A character vector of the exposure variable names

times The vector of times at which the calculation is done, if relevant

standardize 11

References

Rothman K.J., Greenland S., Lash T.L. (2008). *Modern Epidemiology*, 3rd edition. Lippincott, Williams & Wilkins.

Sjölander A. (2016). Regression standardization with the R-package stdReg. *European Journal of Epidemiology* **31**(6), 563-574.

Sjölander A. (2016). Estimation of causal effect measures with the R-package stdReg. *European Journal of Epidemiology* **33**(9), 847-858.

```
set.seed(6)
n <- 100
Z \leftarrow rnorm(n)
X \leftarrow rnorm(n, mean = Z)
Y \leftarrow rbinom(n, 1, prob = (1 + exp(X + Z))^{-1})
dd <- data.frame(Z, X, Y)</pre>
prob_predict.glm <- function(...) predict.glm(..., type = "response")</pre>
x <- standardize(</pre>
  fitter = "glm",
  arguments = list(
    formula = Y \sim X * Z,
    family = "binomial"
  ),
  predict_fun = prob_predict.glm,
  data = dd,
  values = list(X = seq(-1, 1, 0.1)),
  B = 100,
  reference = 0,
  contrasts = "difference"
)
Х
require(survival)
prob_predict.coxph <- function(object, newdata, times) {</pre>
  fit.detail <- suppressWarnings(basehaz(object))</pre>
 cum.haz <- fit.detail$hazard[sapply(times, function(x) max(which(fit.detail$time <= x)))]</pre>
  predX <- predict(object = object, newdata = newdata, type = "risk")</pre>
  res <- matrix(NA, ncol = length(times), nrow = length(predX))</pre>
  for (ti in seq_len(length(times))) {
    res[, ti] <- exp(-predX * cum.haz[ti])</pre>
  }
  res
}
set.seed(68)
n <- 500
Z \leftarrow rnorm(n)
X \leftarrow rnorm(n, mean = Z)
T \leftarrow rexp(n, rate = exp(X + Z + X * Z)) # survival time
C \leftarrow rexp(n, rate = exp(X + Z + X * Z)) \# censoring time
U <- pmin(T, C) # time at risk
```

```
D <- as.numeric(T < C) # event indicator
dd <- data.frame(Z, X, U, D)</pre>
x <- standardize(</pre>
fitter = "coxph",
 arguments = list(
    formula = Surv(U, D) \sim X + Z + X * Z,
   method = "breslow",
   x = TRUE,
   y = TRUE
 ),
 predict_fun = prob_predict.coxph,
 data = dd,
 times = 1:5,
 values = list(X = c(-1, 0, 1)),
 B = 100,
 reference = 0,
 contrasts = "difference"
)
Χ
```

standardize_coxph

Regression standardization in Cox proportional hazards models

Description

standardize_coxph performs regression standardization in Cox proportional hazards models at specified values of the exposure over the sample covariate distribution. Let T, X, and Z be the survival outcome, the exposure, and a vector of covariates, respectively. standardize_coxph fits a Cox proportional hazards model and the Breslow estimator of the baseline hazard in order to estimate the standardized survival function $\theta(t,x)=E\{S(t|X=x,Z)\}$ when measure = "survival" or the standardized restricted mean survival up to time t $\theta(t,x)=E\{\int_0^t S(u|X=x,Z)du\}$ when measure = "rmean", where t is a specific value of T, x is a specific value of X, and the expectation is over the marginal distribution of Z.

Usage

```
standardize_coxph(
  formula,
  data,
  values,
  times,
  measure = c("survival", "rmean"),
  clusterid,
  ci_level = 0.95,
  ci_type = "plain",
  contrasts = NULL,
  family = "gaussian",
  reference = NULL,
  transforms = NULL
)
```

Arguments

formula The formula which is used to fit the model for the outcome.

data The data.

values A named list or data frame specifying the variables and values at which marginal

means of the outcome will be estimated.

times A vector containing the specific values of T at which to estimate the standard-

ized survival function.

measure Either "survival" to estimate the survival function at times or "rmean" for the

restricted mean survival up to the largest of times.

clusterid An optional string containing the name of a cluster identification variable when

data are clustered.

ci_level Coverage probability of confidence intervals.

ci_type A string, indicating the type of confidence intervals. Either "plain", which gives

untransformed intervals, or "log", which gives log-transformed intervals.

contrasts A vector of contrasts in the following format: If set to "difference" or "ratio",

then $\psi(x)-\psi(x_0)$ or $\psi(x)/\psi(x_0)$ are constructed, where x_0 is a reference level specified by the reference argument. Has to be NULL if no references are spec-

ified.

family The family argument which is used to fit the glm model for the outcome.

reference A vector of reference levels in the following format: If contrasts is not NULL,

the desired reference level(s). This must be a vector or list the same length as contrasts, and if not named, it is assumed that the order is as specified in

contrasts.

transforms A vector of transforms in the following format: If set to "log", "logit", or

"odds", the standardized mean $\theta(x)$ is transformed into $\psi(x) = \log\{\theta(x)\}\$, $\psi(x) = \log[\theta(x)/\{1 - \theta(x)\}]$, or $\psi(x) = \theta(x)/\{1 - \theta(x)\}$, respectively. If the

vector is NULL, then $\psi(x) = \theta(x)$.

Details

standardize_coxph fits the Cox proportional hazards model

$$\lambda(t|X,Z) = \lambda_0(t) \exp\{h(X,Z;\beta)\}.$$

Breslow's estimator of the cumulative baseline hazard $\Lambda_0(t)=\int_0^t\lambda_0(u)du$ is used together with the partial likelihood estimate of β to obtain estimates of the survival function S(t|X=x,Z) if measure = "survival":

$$\hat{S}(t|X=x,Z) = \exp[-\hat{\Lambda}_0(t) \exp\{h(X=x,Z;\hat{\beta})\}].$$

For each t in the t argument and for each x in the x argument, these estimates are averaged across all subjects (i.e. all observed values of Z) to produce estimates

$$\hat{\theta}(t,x) = \sum_{i=1}^{n} \hat{S}(t|X=x,Z_i)/n,$$

where Z_i is the value of Z for subject i, i = 1, ..., n. The variance for $\hat{\theta}(t, x)$ is obtained by the sandwich formula.

If measure = "rmean", then $\Lambda_0(t)=\int_0^t\lambda_0(u)du$ is used together with the partial likelihood estimate of β to obtain estimates of the restricted mean survival up to time t: $\int_0^t S(u|X=x,Z)du$ for each element of times. The estimation and inference is done using the method described in Chen and Tsiatis 2001. Currently, we can only estimate the difference in RMST for a single binary exposure. Two separate Cox models are fit for each level of the exposure, which is expected to be coded as 0/1.

Value

An object of class std_surv. Obtain numeric results by using tidy.std_surv. This is a list with the following components:

res_contrast An unnamed list with one element for each of the requested contrasts. Each element is itself a list with the elements:

call The function call

input A list with components used in the estimation

measure Either "survival" or "rmean"

est Estimated counterfactual means and standard errors for each exposure level

vcov Estimated covariance matrix of counterfactual means for each time

est table Data.frame of the estimates of the contrast with inference

times The vector of times used in the calculation

transform The transform argument used for this contrast

contrast The requested contrast type

reference The reference level of the exposure

ci_type Confidence interval type

ci_level Confidence interval level

res A named list with the elements:

call The function call

input A list with components used in the estimation

measure Either "survival" or "rmean"

est Estimated counterfactual means and standard errors for each exposure level

vcov Estimated covariance matrix of counterfactual means for each time

Note

Standardized survival functions are sometimes referred to as (direct) adjusted survival functions in the literature.

standardize_coxph/standardize_parfrailty does not currently handle time-varying exposures or covariates.

standardize_coxph/standardize_parfrailty internally loops over all values in the t argument. Therefore, the function will usually be considerably faster if length(t) is small.

The variance calculation performed by standardize_coxph does not condition on the observed covariates $\bar{Z} = (Z_1, ..., Z_n)$. To see how this matters, note that

$$var\{\hat{\theta}(t,x)\} = E[var\{\hat{\theta}(t,x)|\bar{Z}\}] + var[E\{\hat{\theta}(t,x)|\bar{Z}\}].$$

The usual parameter β in a Cox proportional hazards model does not depend on \bar{Z} . Thus, $E(\hat{\beta}|\bar{Z})$ is independent of \bar{Z} as well (since $E(\hat{\beta}|\bar{Z})=\beta$), so that the term $var[E\{\hat{\beta}|\bar{Z}\}]$ in the corresponding variance decomposition for $var(\hat{\beta})$ becomes equal to 0. However, $\theta(t,x)$ depends on \bar{Z} through the average over the sample distribution for Z, and thus the term $var[E\{\hat{\theta}(t,x)|\bar{Z}\}]$ is not 0, unless one conditions on \bar{Z} . The variance calculation by Gail and Byar (1986) ignores this term, and thus effectively conditions on \bar{Z} .

Author(s)

Arvid Sjölander, Adam Brand, Michael Sachs

References

Chang I.M., Gelman G., Pagano M. (1982). Corrected group prognostic curves and summary statistics. *Journal of Chronic Diseases* **35**, 669-674.

Gail M.H. and Byar D.P. (1986). Variance calculations for direct adjusted survival curves, with applications to testing for no treatment effect. *Biometrical Journal* **28**(5), 587-599.

Makuch R.W. (1982). Adjusted survival curve estimation using covariates. *Journal of Chronic Diseases* **35**, 437-443.

Sjölander A. (2016). Regression standardization with the R-package stdReg. *European Journal of Epidemiology* **31**(6), 563-574.

Sjölander A. (2018). Estimation of causal effect measures with the R-package stdReg. *European Journal of Epidemiology* **33**(9), 847-858.

Chen, P. Y., Tsiatis, A. A. (2001). Causal inference on the difference of the restricted mean lifetime between two groups. *Biometrics*, **57**(4), 1030-1038.

```
require(survival)
set.seed(7)
n <- 300
Z <- rnorm(n)
Zbin <- rbinom(n, 1, .3)
X <- rnorm(n, mean = Z)
T <- rexp(n, rate = exp(X + Z + X * Z)) # survival time
C <- rexp(n, rate = exp(X + Z + X * Z)) # censoring time
fact <- factor(sample(letters[1:3], n, replace = TRUE))
U <- pmin(T, C) # time at risk
D <- as.numeric(T < C) # event indicator
dd <- data.frame(Z, Zbin, X, U, D, fact)
fit.std.surv <- standardize_coxph(
  formula = Surv(U, D) ~ X + Z + X * Z,
  data = dd,</pre>
```

standardize_gee

```
values = list(X = seq(-1, 1, 0.5)),
 times = 1:5
)
print(fit.std.surv)
plot(fit.std.surv)
tidy(fit.std.surv)
fit.std <- standardize_coxph(</pre>
 formula = Surv(U, D) ~ X + Zbin + X * Zbin + fact,
 data = dd,
 values = list(Zbin = 0:1),
 times = 1.5,
 measure = "rmean",
 contrast = "difference",
 reference = 0
)
print(fit.std)
tidy(fit.std)
```

standardize_gee

Regression standardization in conditional generalized estimating equations

Description

standardize_gee performs regression standardization in linear and log-linear fixed effects models, at specified values of the exposure, over the sample covariate distribution. Let Y, X, and Z be the outcome, the exposure, and a vector of covariates, respectively. It is assumed that data are clustered with a cluster indicator i. standardize_gee uses fitted fixed effects model, with cluster-specific intercept a_i (see details), to estimate the standardized mean $\theta(x) = E\{E(Y|i, X = x, Z)\}$, where x is a specific value of X, and the outer expectation is over the marginal distribution of (a_i, Z) .

Usage

```
standardize_gee(
  formula,
  link = "identity",
  data,
  values,
  clusterid,
  case_control = FALSE,
  ci_level = 0.95,
  ci_type = "plain",
  contrasts = NULL,
  family = "gaussian",
  reference = NULL,
  transforms = NULL)
```

standardize_gee 17

Arguments

formula A formula to be used with "gee" in the **drgee** package.

link The link function to be used with "gee".

data The data.

values A named list or data frame specifying the variables and values at which marginal

means of the outcome will be estimated.

clusterid An optional string containing the name of a cluster identification variable when

data are clustered.

case_control Whether the data comes from a case-control study.

ci_level Coverage probability of confidence intervals.

ci_type A string, indicating the type of confidence intervals. Either "plain", which gives

untransformed intervals, or "log", which gives log-transformed intervals.

contrasts A vector of contrasts in the following format: If set to "difference" or "ratio",

then $\psi(x) - \psi(x_0)$ or $\psi(x)/\psi(x_0)$ are constructed, where x_0 is a reference level specified by the reference argument. Has to be NULL if no references are spec-

ified.

family The family argument which is used to fit the glm model for the outcome.

reference A vector of reference levels in the following format: If contrasts is not NULL,

the desired reference level(s). This must be a vector or list the same length as contrasts, and if not named, it is assumed that the order is as specified in

contrasts.

transforms A vector of transforms in the following format: If set to "log", "logit", or

"odds", the standardized mean $\theta(x)$ is transformed into $\psi(x) = \log\{\theta(x)\}$, $\psi(x) = \log[\theta(x)/\{1-\theta(x)\}]$, or $\psi(x) = \theta(x)/\{1-\theta(x)\}$, respectively. If the

vector is NULL, then $\psi(x) = \theta(x)$.

Details

standardize_gee assumes that a fixed effects model

$$\eta\{E(Y|i,X,Z)\} = a_i + h(X,Z;\beta)$$

has been fitted. The link function η is assumed to be the identity link or the log link. The conditional generalized estimating equation (CGEE) estimate of β is used to obtain estimates of the cluster-specific means:

$$\hat{a}_i = \sum_{i=1}^{n_i} r_{ij} / n_i,$$

where

$$r_{ij} = Y_{ij} - h(X_{ij}, Z_{ij}; \hat{\beta})$$

if η is the identity link, and

$$r_{ij} = Y_{ij} \exp\{-h(X_{ij}, Z_{ij}; \hat{\beta})\}$$

if η is the log link, and (X_{ij}, Z_{ij}) is the value of (X, Z) for subject j in cluster $i, j = 1, ..., n_i, i = 1, ..., n$. The CGEE estimate of β and the estimate of a_i are used to estimate the mean E(Y|i, X = x, Z):

$$\hat{E}(Y|i, X = x, Z) = \eta^{-1} \{\hat{a}_i + h(X = x, Z; \hat{\beta})\}.$$

18 standardize_gee

For each x in the x argument, these estimates are averaged across all subjects (i.e. all observed values of Z and all estimated values of a_i) to produce estimates

$$\hat{\theta}(x) = \sum_{i=1}^{n} \sum_{j=1}^{n_i} \hat{E}(Y|i, X = x, Z_i)/N,$$

where $N = \sum_{i=1}^{n} n_i$. The variance for $\hat{\theta}(x)$ is obtained by the sandwich formula.

Value

An object of class std_glm. Obtain numeric results in a data frame with the tidy.std_glm function. This is a list with the following components:

res_contrast An unnamed list with one element for each of the requested contrasts. Each element is itself a list with the elements:

estimates Estimated counterfactual means and standard errors for each exposure level

covariance Estimated covariance matrix of counterfactual means

fit_outcome The estimated regression model for the outcome

fit_exposure The estimated exposure model

exposure_names A character vector of the exposure variable names

est_table Data.frame of the estimates of the contrast with inference

transform The transform argument used for this contrast

contrast The requested contrast type

reference The reference level of the exposure

ci_type Confidence interval type

ci level Confidence interval level

res A named list with the elements:

estimates Estimated counterfactual means and standard errors for each exposure level

covariance Estimated covariance matrix of counterfactual means

fit_outcome The estimated regression model for the outcome

fit_exposure The estimated exposure model

exposure_names A character vector of the exposure variable names

Note

The variance calculation performed by standardize_gee does not condition on the observed covariates $\bar{Z}=(Z_{11},...,Z_{nn_i})$. To see how this matters, note that

$$var\{\hat{\theta}(x)\} = E[var\{\hat{\theta}(x)|\bar{Z}\}] + var[E\{\hat{\theta}(x)|\bar{Z}\}].$$

The usual parameter β in a generalized linear model does not depend on \bar{Z} . Thus, $E(\hat{\beta}|\bar{Z})$ is independent of \bar{Z} as well (since $E(\hat{\beta}|\bar{Z})=\beta$), so that the term $var[E\{\hat{\beta}|\bar{Z}\}]$ in the corresponding variance decomposition for $var(\hat{\beta})$ becomes equal to 0. However, $\theta(x)$ depends on \bar{Z} through the average over the sample distribution for Z, and thus the term $var[E\{\hat{\theta}(x)|\bar{Z}\}]$ is not 0, unless one conditions on \bar{Z} .

Author(s)

Arvid Sjölander.

References

Goetgeluk S. and Vansteelandt S. (2008). Conditional generalized estimating equations for the analysis of clustered and longitudinal data. *Biometrics* **64**(3), 772-780.

Martin R.S. (2017). Estimation of average marginal effects in multiplicative unobserved effects panel models. *Economics Letters* **160**, 16-19.

Sjölander A. (2019). Estimation of marginal causal effects in the presence of confounding by cluster. *Biostatistics* doi: 10.1093/biostatistics/kxz054

Examples

```
require(drgee)
set.seed(4)
n <- 300
ni <- 2
id \leftarrow rep(1:n, each = ni)
ai <- rep(rnorm(n), each = ni)</pre>
Z <- rnorm(n * ni)</pre>
X \leftarrow rnorm(n * ni, mean = ai + Z)
Y <- rnorm(n * ni, mean = ai + X + Z + 0.1 * X^2)
dd <- data.frame(id, Z, X, Y)</pre>
fit.std <- standardize_gee(</pre>
  formula = Y \sim X + Z + I(X^2),
  link = "identity",
  data = dd,
  values = list(X = seq(-3, 3, 0.5)),
  clusterid = "id"
)
print(fit.std)
plot(fit.std)
```

standardize_glm

Get regression standardized estimates from a glm

Description

Get regression standardized estimates from a glm

Usage

```
standardize_glm(
  formula,
  data,
```

```
values,
  clusterid,
  matched_density_cases,
  matched_density_controls,
  matching_variable,
  p_population,
  case_control = FALSE,
  ci_level = 0.95,
  ci_type = "plain",
  contrasts = NULL,
  family = "gaussian",
  reference = NULL,
  transforms = NULL
```

Arguments

formula The formula which is used to fit the model for the outcome.

data The data.

values A named list or data frame specifying the variables and values at which marginal

means of the outcome will be estimated.

clusterid An optional string containing the name of a cluster identification variable when

data are clustered.

matched_density_cases

A function of the matching variable. The probability (or density) of the matched

variable among the cases.

matched_density_controls

A function of the matching variable. The probability (or density) of the matched

variable among the controls.

matching_variable

The matching variable extracted from the data set.

p_population Specifies the incidence in the population when case_control=TRUE.

case_control Whether the data comes from a case-control study.

ci_level Coverage probability of confidence intervals.

ci_type A string, indicating the type of confidence intervals. Either "plain", which gives

untransformed intervals, or "log", which gives log-transformed intervals.

contrasts A vector of contrasts in the following format: If set to "difference" or "ratio",

then $\psi(x)-\psi(x_0)$ or $\psi(x)/\psi(x_0)$ are constructed, where x_0 is a reference level specified by the reference argument. Has to be NULL if no references are spec-

ified.

family The family argument which is used to fit the glm model for the outcome.

reference A vector of reference levels in the following format: If contrasts is not NULL,

the desired reference level(s). This must be a vector or list the same length as contrasts, and if not named, it is assumed that the order is as specified in

contrasts.

transforms

A vector of transforms in the following format: If set to "log", "logit", or "odds", the standardized mean $\theta(x)$ is transformed into $\psi(x) = \log\{\theta(x)\}$, $\psi(x) = \log[\theta(x)/\{1-\theta(x)\}]$, or $\psi(x) = \theta(x)/\{1-\theta(x)\}$, respectively. If the vector is NULL, then $\psi(x) = \theta(x)$.

Details

standardize_glm performs regression standardization in generalized linear models, at specified values of the exposure, over the sample covariate distribution. Let Y, X, and Z be the outcome, the exposure, and a vector of covariates, respectively. standardize_glm uses a fitted generalized linear model to estimate the standardized mean $\theta(x) = E\{E(Y|X=x,Z)\}$, where x is a specific value of X, and the outer expectation is over the marginal distribution of Z.

Value

An object of class std_glm. Obtain numeric results in a data frame with the tidy.std_glm function. This is a list with the following components:

res_contrast An unnamed list with one element for each of the requested contrasts. Each element is itself a list with the elements:

estimates Estimated counterfactual means and standard errors for each exposure level

covariance Estimated covariance matrix of counterfactual means

fit_outcome The estimated regression model for the outcome

fit_exposure The estimated exposure model

exposure_names A character vector of the exposure variable names

est_table Data.frame of the estimates of the contrast with inference

transform The transform argument used for this contrast

contrast The requested contrast type

reference The reference level of the exposure

ci_type Confidence interval type

ci_level Confidence interval level

res A named list with the elements:

estimates Estimated counterfactual means and standard errors for each exposure level

covariance Estimated covariance matrix of counterfactual means

fit_outcome The estimated regression model for the outcome

fit_exposure The estimated exposure model

exposure_names A character vector of the exposure variable names

References

Rothman K.J., Greenland S., Lash T.L. (2008). *Modern Epidemiology*, 3rd edition. Lippincott, Williams & Wilkins.

Sjölander A. (2016). Regression standardization with the R-package stdReg. *European Journal of Epidemiology* **31**(6), 563-574.

Sjölander A. (2016). Estimation of causal effect measures with the R-package stdReg. *European Journal of Epidemiology* **33**(9), 847-858.

```
# basic example
# needs to correctly specify the outcome model and no unmeasered confounders
# (+ standard causal assunmptions)
set.seed(6)
n <- 100
Z \leftarrow rnorm(n)
X <- cut(rnorm(n, mean = Z), breaks = c(-Inf, 0, Inf), labels = c("low", "high"))</pre>
Y \leftarrow rbinom(n, 1, prob = (1 + exp(as.numeric(X) + Z))^(-1))
dd <- data.frame(Z, X, Y)</pre>
x <- standardize_glm(</pre>
  formula = Y \sim X * Z,
  family = "binomial",
  data = dd,
  values = list(X = c("low", "high")),
  contrasts = c("difference", "ratio"),
  reference = "low"
)
# different transformations of causal effects
# example from Sjölander (2016) with case-control data
# here the matching variable needs to be passed as an argument
singapore <- AF::singapore</pre>
Mi <- singapore$Age
m <- mean(Mi)</pre>
s \leftarrow sd(Mi)
d <- 5
standardize_glm(
  formula = Oesophagealcancer ~ (Everhotbev + Age + Dial + Samsu + Cigs)^2,
  family = binomial, data = singapore,
  values = list(Everhotbev = 0:1), clusterid = "Set",
  case_control = TRUE,
  matched_density_cases = function(x) dnorm(x, m, s),
  matched\_density\_controls = function(x) dnorm(x, m - d, s),
  matching_variable = Mi,
  p_population = 19.3 / 100000
)
# multiple exposures
set.seed(7)
n <- 100
Z <- rnorm(n)</pre>
X1 <- rnorm(n, mean = Z)
X2 <- rnorm(n)
Y \leftarrow rbinom(n, 1, prob = (1 + exp(X1 + X2 + Z))^{(-1)})
dd <- data.frame(Z, X1, X2, Y)</pre>
x <- standardize_glm(</pre>
  formula = Y \sim X1 + X2 + Z,
  family = "binomial",
  data = dd, values = list(X1 = 0:1, X2 = 0:1),
  contrasts = c("difference", "ratio"),
```

```
reference = c(X1 = 0, X2 = 0)
)
Х
tidy(x)
# continuous exposure
set.seed(2)
n <- 100
Z <- rnorm(n)</pre>
X <- rnorm(n, mean = Z)</pre>
Y <- rnorm(n, mean = X + Z + 0.1 * X^2)
dd <- data.frame(Z, X, Y)</pre>
x <- standardize_glm(</pre>
  formula = Y \sim X * Z,
  family = "gaussian",
  data = dd,
  values = list(X = seq(-1, 1, 0.1))
)
\# plot standardized mean as a function of x
plot(x)
\# plot standardized mean - standardized mean at x = 0 as a function of x
plot(x, contrast = "difference", reference = 0)
```

standardize_glm_dr

Get regression standardized doubly-robust estimates from a glm

Description

Get regression standardized doubly-robust estimates from a glm

Usage

```
standardize_glm_dr(
  formula_outcome,
  formula_exposure,
  data,
  values,
  ci_level = 0.95,
  ci_type = "plain",
  contrasts = NULL,
  family_outcome = "gaussian",
  family_exposure = "binomial",
  reference = NULL,
  transforms = NULL
)
```

Arguments

formula_outcome

The formula which is used to fit the glm model for the outcome.

formula_exposure

The formula which is used to fit the glm model for the exposure. If not NULL, a

doubly robust estimator of the standardized estimator is used.

data The data.

values A named list or data frame specifying the variables and values at which marginal

means of the outcome will be estimated.

ci_level Coverage probability of confidence intervals.

ci_type A string, indicating the type of confidence intervals. Either "plain", which gives

untransformed intervals, or "log", which gives log-transformed intervals.

contrasts A vector of contrasts in the following format: If set to "difference" or "ratio",

then $\psi(x) - \psi(x_0)$ or $\psi(x)/\psi(x_0)$ are constructed, where x_0 is a reference level specified by the reference argument. Has to be NULL if no references are spec-

ified.

family_outcome The family argument which is used to fit the glm model for the outcome.

family_exposure

The family argument which is used to fit the glm model for the exposure.

reference A vector of reference levels in the following format: If contrasts is not NULL,

the desired reference level(s). This must be a vector or list the same length as contrasts, and if not named, it is assumed that the order is as specified in

contrasts.

transforms A vector of transforms in the following format: If set to "log", "logit", or

"odds", the standardized mean $\theta(x)$ is transformed into $\psi(x) = \log\{\theta(x)\}$, $\psi(x) = \log[\theta(x)/\{1 - \theta(x)\}]$, or $\psi(x) = \theta(x)/\{1 - \theta(x)\}$, respectively. If the

vector is NULL, then $\psi(x) = \theta(x)$.

Details

standardize_glm_dr performs regression standardization in generalized linear models, see e.g., documentation for standardize_glm_dr. Specifically, this version uses a doubly robust estimator for standardization, meaning inference is valid when either the outcome regression or the exposure model is correctly specified and there is no unmeasured confounding.

Value

An object of class std_glm. Obtain numeric results in a data frame with the tidy.std_glm function. This is a list with the following components:

res_contrast An unnamed list with one element for each of the requested contrasts. Each element is itself a list with the elements:

estimates Estimated counterfactual means and standard errors for each exposure level

covariance Estimated covariance matrix of counterfactual means **fit_outcome** The estimated regression model for the outcome

```
fit_exposure The estimated exposure model
exposure_names A character vector of the exposure variable names
est_table Data.frame of the estimates of the contrast with inference
transform The transform argument used for this contrast
contrast The requested contrast type
reference The reference level of the exposure
ci_type Confidence interval type
ci_level Confidence interval level
```

res A named list with the elements:

estimates Estimated counterfactual means and standard errors for each exposure level
covariance Estimated covariance matrix of counterfactual means
fit_outcome The estimated regression model for the outcome
fit_exposure The estimated exposure model
exposure_names A character vector of the exposure variable names

References

Gabriel E.E., Sachs, M.C., Martinussen T., Waernbaum I., Goetghebeur E., Vansteelandt S., Sjölander A. (2024), Inverse probability of treatment weighting with generalized linear outcome models for doubly robust estimation. *Statistics in Medicine*, **43**(3):534–547.

```
# doubly robust estimator
# needs to correctly specify either the outcome model or the exposure model
# for confounding
# NOTE: only works with binary exposures
data <- AF::clslowbwt
x <- standardize_glm_dr(</pre>
  formula_outcome = bwt ~ smoker * (race + age + lwt) + I(age^2) + I(lwt^2),
  formula_exposure = smoker ~ race * age * lwt + I(age^2) + I(lwt^2),
  family_outcome = "gaussian",
  family_exposure = "binomial",
  data = data,
  values = list(smoker = c(0, 1)), contrasts = "difference", reference = 0
)
set.seed(6)
n <- 100
Z <- rnorm(n)</pre>
X \leftarrow rbinom(n, 1, prob = (1 + exp(Z))^{-1})
Y \leftarrow rbinom(n, 1, prob = (1 + exp(as.numeric(X) + Z))^(-1))
dd <- data.frame(Z, X, Y)</pre>
x <- standardize_glm_dr(</pre>
  formula_outcome = Y ~ X * Z, formula_exposure = X ~ Z,
  family_outcome = "binomial",
  data = dd,
  values = list(X = 0:1), reference = 0,
  contrasts = c("difference"), transforms = c("odds")
```

26 standardize_level

)

standardize_level

Get standardized estimates using the g-formula with and separate models for each exposure level in the data

Description

Get standardized estimates using the g-formula with and separate models for each exposure level in the data

Usage

```
standardize_level(
  fitter_list,
  arguments,
  predict_fun_list,
  data,
  values,
  B = NULL,
  ci_level = 0.95,
  contrasts = NULL,
  reference = NULL,
  seed = NULL,
  times = NULL,
  transforms = NULL,
  progressbar = TRUE
)
```

Arguments

fitter_list The function to call to fit the data (as a list).

arguments The arguments to be used in the fitter function as a list.

predict_fun_list

The function used to predict the means/probabilities for a new data set on the response level. For survival data, this should be a matrix where each column is

the time, and each row the data (as a list).

data The data.

values A named list or data.frame specifying the variables and values at which marginal

means of the outcome will be estimated.

B Number of nonparametric bootstrap resamples. Default is NULL (no bootstrap).

ci_level Coverage probability of confidence intervals.

standardize_level 27

contrasts A vector of contrasts in the following format: If set to "difference" or "ratio",

then $\psi(x) - \psi(x_0)$ or $\psi(x)/\psi(x_0)$ are constructed, where x_0 is a reference level specified by the reference argument. Has to be NULL if no references are spec-

ified.

reference A vector of reference levels in the following format: If contrasts is not NULL,

the desired reference level(s). This must be a vector or list the same length as contrasts, and if not named, it is assumed that the order is as specified in

contrasts.

seed The seed to use with the nonparametric bootstrap.
times For use with survival data. Set to NULL otherwise.

transforms A vector of transforms in the following format: If set to "log", "logit", or

"odds", the standardized mean $\theta(x)$ is transformed into $\psi(x) = \log\{\theta(x)\}\$, $\psi(x) = \log[\theta(x)/\{1 - \theta(x)\}]$, or $\psi(x) = \theta(x)/\{1 - \theta(x)\}\$, respectively. If the

vector is NULL, then $\psi(x) = \theta(x)$.

progressbar Logical, if TRUE will print bootstrapping progress to the console

Details

See standardize. The difference is here that different models can be fitted for each value of x in values.

Value

An object of class std_custom. Obtain numeric results using tidy.std_custom. This is a list with the following components:

res_contrast An unnamed list with one element for each of the requested contrasts. Each element is itself a list with the elements:

B The number of bootstrap replicates

estimates Estimated counterfactual means and standard errors for each exposure level

fit_outcome The estimated regression model for the outcome

estimates_boot A list of estimates, one for each bootstrap resample

exposure_names A character vector of the exposure variable names

times The vector of times at which the calculation is done, if relevant

est table Data.frame of the estimates of the contrast with inference

transform The transform argument used for this contrast

contrast The requested contrast type

reference The reference level of the exposure

ci_level Confidence interval level

res A named list with the elements:

B The number of bootstrap replicates

estimates Estimated counterfactual means and standard errors for each exposure level

fit_outcome The estimated regression model for the outcome

estimates boot A list of estimates, one for each bootstrap resample

exposure_names A character vector of the exposure variable names

times The vector of times at which the calculation is done, if relevant

28 standardize_level

References

Rothman K.J., Greenland S., Lash T.L. (2008). *Modern Epidemiology*, 3rd edition. Lippincott, Williams & Wilkins.

Sjölander A. (2016). Regression standardization with the R-package stdReg. *European Journal of Epidemiology* **31**(6), 563-574.

Sjölander A. (2016). Estimation of causal effect measures with the R-package stdReg. *European Journal of Epidemiology* **33**(9), 847-858.

```
require(survival)
prob_predict.coxph <- function(object, newdata, times) {</pre>
  fit.detail <- suppressWarnings(basehaz(object))</pre>
 cum.haz <- fit.detail$hazard[sapply(times, function(x) max(which(fit.detail$time <= x)))]</pre>
  predX <- predict(object = object, newdata = newdata, type = "risk")</pre>
  res <- matrix(NA, ncol = length(times), nrow = length(predX))</pre>
  for (ti in seq_len(length(times))) {
    res[, ti] <- exp(-predX * cum.haz[ti])</pre>
  res
}
set.seed(68)
n <- 500
Z \leftarrow rnorm(n)
X \leftarrow rbinom(n, 1, prob = 0.5)
T \leftarrow rexp(n, rate = exp(X + Z + X * Z)) # survival time
C \leftarrow rexp(n, rate = exp(X + Z + X * Z)) \# censoring time
U <- pmin(T, C) # time at risk
D <- as.numeric(T < C) # event indicator
dd <- data.frame(Z, X, U, D)</pre>
x <- standardize_level(</pre>
  fitter_list = list("coxph", "coxph"),
  arguments = list(
    list(
      formula = Surv(U, D) \sim X + Z + X * Z,
      method = "breslow",
      x = TRUE
      y = TRUE
    ),
    list(
      formula = Surv(U, D) ~ X,
      method = "breslow",
      x = TRUE
      y = TRUE
  predict_fun_list = list(prob_predict.coxph, prob_predict.coxph),
  data = dd,
  times = seq(1, 5, 0.1),
  values = list(X = c(0, 1)),
```

standardize_parfrailty 29

```
B = 100,
  reference = 0,
  contrasts = "difference"
)
print(x)
```

standardize_parfrailty

Regression standardization in shared frailty gamma-Weibull models

Description

standardize_parfrailty performs regression standardization in shared frailty gamma-Weibull models, at specified values of the exposure, over the sample covariate distribution. Let T,X, and Z be the survival outcome, the exposure, and a vector of covariates, respectively. standardize_parfrailty fits a parametric frailty model to estimate the standardized survival function $\theta(t,x)=E\{S(t|X=x,Z)\}$, where t is a specific value of T,x is a specific value of X, and the expectation is over the marginal distribution of Z.

Usage

```
standardize_parfrailty(
  formula,
  data,
  values,
  times,
  clusterid,
  ci_level = 0.95,
  ci_type = "plain",
  contrasts = NULL,
  family = "gaussian",
  reference = NULL,
  transforms = NULL
```

Arguments

formula	The formula which is used to fit the model for the outcome.
data	The data.
values	A named list or data.frame specifying the variables and values at which marginal means of the outcome will be estimated.
times	A vector containing the specific values of ${\cal T}$ at which to estimate the standardized survival function.
clusterid	An optional string containing the name of a cluster identification variable when data are clustered.
ci_level	Coverage probability of confidence intervals.

contrasts

ci_type A string, indicating the type of confidence intervals. Either "plain", which gives

untransformed intervals, or "log", which gives log-transformed intervals.

A vector of contrasts in the following format: If set to "difference" or "ratio", then $\psi(x) - \psi(x_0)$ or $\psi(x)/\psi(x_0)$ are constructed, where x_0 is a reference level specified by the reference argument. Has to be NULL if no references are spec-

ified.

family The family argument which is used to fit the glm model for the outcome.

reference A vector of reference levels in the following format: If contrasts is not NULL, the desired reference level(s). This must be a vector or list the same length

as contrasts, and if not named, it is assumed that the order is as specified in

contrasts.

transforms A vector of transforms in the following format: If set to "log", "logit", or

"odds", the standardized mean $\theta(x)$ is transformed into $\psi(x) = \log\{\theta(x)\}$, $\psi(x) = \log[\theta(x)/\{1 - \theta(x)\}]$, or $\psi(x) = \theta(x)/\{1 - \theta(x)\}$, respectively. If the

vector is NULL, then $\psi(x) = \theta(x)$.

Details

standardize_parfrailty fits a shared frailty gamma-Weibull model

$$\lambda(t_{ij}|X_{ij},Z_{ij}) = \lambda(t_{ij};\alpha,\eta)U_iexp\{h(X_{ij},Z_{ij};\beta)\}$$

, with parameterization as described in the help section for parfrailty. Integrating out the gamma frailty gives the survival function

$$S(t|X,Z) = [1 + \phi\Lambda_0(t;\alpha,\eta)\exp\{h(X,Z;\beta)\}]^{-1/\phi},$$

where $\Lambda_0(t; \alpha, \eta)$ is the cumulative baseline hazard

$$(t/\alpha)^{\eta}$$
.

The ML estimates of $(\alpha, \eta, \phi, \beta)$ are used to obtain estimates of the survival function S(t|X=x,Z):

$$\hat{S}(t|X=x,Z) = [1+\hat{\phi}\Lambda_0(t;\hat{\alpha},\hat{\eta})\exp\{h(X,Z;\hat{\beta})\}]^{-1/\hat{\phi}}.$$

For each t in the t argument and for each x in the x argument, these estimates are averaged across all subjects (i.e. all observed values of Z) to produce estimates

$$\hat{\theta}(t,x) = \sum_{i=1}^{n} \hat{S}(t|X=x,Z_i)/n.$$

The variance for $\hat{\theta}(t, x)$ is obtained by the sandwich formula.

Value

An object of class std_surv. Obtain numeric results by using tidy.std_surv. This is a list with the following components:

res_contrast An unnamed list with one element for each of the requested contrasts. Each element is itself a list with the elements:

standardize_parfrailty

31

call The function call

input A list with components used in the estimation

measure Either "survival" or "rmean"

est Estimated counterfactual means and standard errors for each exposure level

vcov Estimated covariance matrix of counterfactual means for each time

est table Data.frame of the estimates of the contrast with inference

times The vector of times used in the calculation

transform The transform argument used for this contrast

contrast The requested contrast type

reference The reference level of the exposure

ci_type Confidence interval type

ci level Confidence interval level

res A named list with the elements:

call The function call

input A list with components used in the estimation

measure Either "survival" or "rmean"

est Estimated counterfactual means and standard errors for each exposure level

vcov Estimated covariance matrix of counterfactual means for each time

Note

Standardized survival functions are sometimes referred to as (direct) adjusted survival functions in the literature.

standardize_coxph/standardize_parfrailty does not currently handle time-varying exposures or covariates.

standardize_coxph/standardize_parfrailty internally loops over all values in the t argument. Therefore, the function will usually be considerably faster if length(t) is small.

The variance calculation performed by standardize_coxph does not condition on the observed covariates $\bar{Z} = (Z_1, ..., Z_n)$. To see how this matters, note that

$$var\{\hat{\theta}(t,x)\} = E[var\{\hat{\theta}(t,x)|\bar{Z}\}] + var[E\{\hat{\theta}(t,x)|\bar{Z}\}].$$

The usual parameter β in a Cox proportional hazards model does not depend on \bar{Z} . Thus, $E(\hat{\beta}|\bar{Z})$ is independent of \bar{Z} as well (since $E(\hat{\beta}|\bar{Z})=\beta$), so that the term $var[E\{\hat{\beta}|\bar{Z}\}]$ in the corresponding variance decomposition for $var(\hat{\beta})$ becomes equal to 0. However, $\theta(t,x)$ depends on \bar{Z} through the average over the sample distribution for Z, and thus the term $var[E\{\hat{\theta}(t,x)|\bar{Z}\}]$ is not 0, unless one conditions on \bar{Z} . The variance calculation by Gail and Byar (1986) ignores this term, and thus effectively conditions on \bar{Z} .

Author(s)

Arvid Sjölander

References

Chang I.M., Gelman G., Pagano M. (1982). Corrected group prognostic curves and summary statistics. *Journal of Chronic Diseases* **35**, 669-674.

Dahlqwist E., Pawitan Y., Sjölander A. (2019). Regression standardization and attributable fraction estimation with between-within frailty models for clustered survival data. *Statistical Methods in Medical Research* **28**(2), 462-485.

Gail M.H. and Byar D.P. (1986). Variance calculations for direct adjusted survival curves, with applications to testing for no treatment effect. *Biometrical Journal* **28**(5), 587-599.

Makuch R.W. (1982). Adjusted survival curve estimation using covariates. *Journal of Chronic Diseases* **35**, 437-443.

```
require(survival)
# simulate data
set.seed(6)
n <- 300
m <- 3
alpha <- 1.5
eta <- 1
phi <- 0.5
beta <- 1
id \leftarrow rep(1:n, each = m)
U <- rep(rgamma(n, shape = 1 / phi, scale = phi), each = m)
X \leftarrow rnorm(n * m)
# reparameterize scale as in rweibull function
weibull.scale <- alpha / (U * exp(beta * X))^(1 / eta)</pre>
T <- rweibull(n * m, shape = eta, scale = weibull.scale)
# right censoring
C \leftarrow runif(n * m, 0, 10)
D <- as.numeric(T < C)
T <- pmin(T, C)
# strong left-truncation
L <- runif(n * m, 0, 2)
incl \leftarrow T > L
incl \leftarrow ave(x = incl, id, FUN = sum) == m
dd <- data.frame(L, T, D, X, id)</pre>
dd <- dd[incl, ]</pre>
fit.std <- standardize_parfrailty(</pre>
  formula = Surv(L, T, D) \sim X,
  data = dd,
  values = list(X = seq(-1, 1, 0.5)),
  times = 1:5,
  clusterid = "id"
```

summary.parfrailty 33

```
print(fit.std)
plot(fit.std)
```

summary.parfrailty

Summarizes parfrailty fit

Description

This is a summary method for class "parfrailty".

Usage

```
## S3 method for class 'parfrailty'
summary(
  object,
  ci_type = "plain",
  ci_level = 0.95,
  digits = max(3L, getOption("digits") - 3L),
  ...
)
```

Arguments

```
object an object of class "parfrailty".

ci_type string, indicating the type of confidence intervals. Either "plain", which gives untransformed intervals, or "log", which gives log-transformed intervals.

ci_level desired coverage probability of confidence intervals, in decimal form.

digits the number of significant digits to use when printing..

not used.
```

Value

An object of class "summary.parfrailty", which is a list that contains relevant summary statistics about the fitted model

Author(s)

Arvid Sjölander and Elisabeth Dahlqwist.

See Also

```
parfrailty
```

```
## See documentation for parfrailty
```

34 tidy.std_custom

tidy.std_custom

Provide tidy output from a std_custom object for use in downstream computations

Description

Tidy summarizes information about the components of the standardized regression fit.

Usage

```
## S3 method for class 'std_custom'
tidy(x, ...)
```

Arguments

x An object of class std_custom

... Not currently used

Value

A data.frame

```
set.seed(6)
n <- 100
Z <- rnorm(n)</pre>
X <- rnorm(n, mean = Z)</pre>
Y \leftarrow rbinom(n, 1, prob = (1 + exp(X + Z))^{(-1)})
dd <- data.frame(Z, X, Y)</pre>
prob_predict.glm <- function(...) predict.glm(..., type = "response")</pre>
x <- standardize(</pre>
  fitter = "glm",
  arguments = list(
    formula = Y \sim X * Z,
    family = "binomial"
  predict_fun = prob_predict.glm,
  data = dd,
  values = list(X = seq(-1, 1, 0.1)),
  B = 100,
  reference = 0,
  contrasts = "difference"
tidy(x)
```

tidy.std_glm 35

tidy.std_glm

Provide tidy output from a std_glm object for use in downstream computations

Description

Tidy summarizes information about the components of the standardized regression fit.

Usage

```
## S3 method for class 'std_glm' tidy(x, \dots)
```

Arguments

x An object of class std_glm

... Not currently used

Value

A data.frame

```
set.seed(6)
n <- 100
Z <- rnorm(n)
X <- rnorm(n, mean = Z)
Y <- rbinom(n, 1, prob = (1 + exp(X + Z))^(-1))
dd <- data.frame(Z, X, Y)
x <- standardize_glm(
  formula = Y ~ X * Z,
  family = "binomial",
  data = dd,
  values = list(X = 0:1),
  contrasts = c("difference", "ratio"),
  reference = 0
)
tidy(x)</pre>
```

36 tidy.std_surv

tidy.std_surv

Provide tidy output from a std_surv object for use in downstream computations

Description

Tidy summarizes information about the components of the standardized model fit.

Usage

```
## S3 method for class 'std_surv' tidy(x, ...)
```

Arguments

x An object of class std_surv

... Not currently used

Value

A data.frame

```
require(survival)
set.seed(8)
n <- 300
Z <- rnorm(n)
X <- rnorm(n, mean = Z)
time <- rexp(n, rate = exp(X + Z + X * Z)) # survival time
C <- rexp(n, rate = exp(X + Z + X * Z)) # censoring time
U <- pmin(time, C) # time at risk
D <- as.numeric(time < C) # event indicator
dd <- data.frame(Z, X, U, D)
x <- standardize_coxph(
  formula = Surv(U, D) ~ X + Z + X * Z,
  data = dd, values = list(X = seq(-1, 1, 0.5)), times = c(2,3,4)
)
tidy(x)</pre>
```

Index

```
coxph, 3, 8
coxph.detail, 8
glm, 8
legend, 6
parfrailty, 3, 30, 33
plot.std_glm, 5
plot.std_surv, 6
print.std_custom(print.std_surv), 7
print.std_glm(print.std_surv), 7
print.std_surv, 7
print.summary.parfrailty, 7
sandwich, 8
standardize, 9
standardize\_coxph, 12
standardize_gee, 16
standardize_glm, 19
standardize_glm_dr, 23
standardize_level, 26
standardize_parfrailty, 29
stdReg2 (stdReg2-package), 2
stdReg2-package, 2
summary.parfrailty, 33
survfit, 8
tidy.std_custom, 10, 27, 34
tidy.std_glm, 18, 21, 24, 35
tidy.std_surv, 14, 30, 36
```