Type: Package
Title: Stability Analysis of Genotype by Environment Interaction (GEI)
Version: 0.6.0
Maintainer: Muhammad Yaseen <myaseen208@gmail.com>
Description: Provides functionalities for performing stability analysis of genotype by environment interaction (GEI) to identify superior and stable genotypes across diverse environments. It implements Eberhart and Russell’s ANOVA method (1966)(<doi:10.2135/cropsci1966.0011183X000600010011x>), Finlay and Wilkinson’s Joint Linear Regression method (1963) (<doi:10.1071/AR9630742>), Wricke’s Ecovalence (1962, 1964), Shukla’s stability variance parameter (1972) (<doi:10.1038/hdy.1972.87>), Kang’s simultaneous selection for high yield and stability (1991) (<doi:10.2134/agronj1991.00021962008300010037x>), Additive Main Effects and Multiplicative Interaction (AMMI) method and Genotype plus Genotypes by Environment (GGE) Interaction methods.
URL: https://myaseen208.com/stability/ https://CRAN.R-project.org/package=stability
BugReports: https://github.com/myaseen208/stability/issues
Depends: R (≥ 3.1)
Imports: dplyr, ggplot2, ggfortify, lme4, magrittr, matrixStats, reshape2, rlang, scales, stats, tibble, tidyr
License: GPL-2
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.2
Note: 1. School of Mathematical & Statistical Sciences, Clemson University, Clemson, South Carolina, USA 2. Department of Mathematics and Statistics, University of Agriculture Faisalabad, Faisalabad, Pakistan
NeedsCompilation: no
Packaged: 2024-09-28 23:40:31 UTC; myaseen208
Author: Muhammad Yaseen ORCID iD [aut, cre, cph], Kent M. Eskridge [aut, ctb]
Repository: CRAN
Date/Publication: 2024-09-29 06:30:02 UTC

Additive ANOVA for Genotypes by Environment Interaction (GEI) model

Description

Additive ANOVA for Genotypes by Environment Interaction (GEI) model

Usage

add_anova(.data, .y, .rep, .gen, .env)

## Default S3 method:
add_anova(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Value

Additive ANOVA

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples

data(ge_data)
YieldANOVA <-
     add_anova(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
      )
YieldANOVA


Additive Main Effects and Multiplicative Interaction (AMMI)

Description

Performs Additive Main Effects and Multiplicative Interaction (AMMI) Analysis for Genotypes by Environment Interaction (GEI)

Usage

ammi(.data, .y, .rep, .gen, .env)

## Default S3 method:
ammi(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Value

Stability Measures

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)
Yield.ammi <-
     ammi(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
      )
Yield.ammi




Additive Main Effects and Multiplicative Interaction (AMMI) Biplot

Description

Plots Additive Main Effects and Multiplicative Interaction (AMMI) for Genotypes by Environment Interaction (GEI)

Usage

ammi_biplot(.data, .y, .rep, .gen, .env)

## Default S3 method:
ammi_biplot(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Value

Stability Measures

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)
     ammi_biplot(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
      )




Eberhart & Russel’s Model ANOVA

Description

ANOVA of Eberhart & Russel’s Model

Usage

er_anova(.data, .y, .rep, .gen, .env)

## Default S3 method:
er_anova(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Value

Additive ANOVA

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)
Yield.er_anova <-
         er_anova(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
          )
Yield.er_anova



Data for Genotypes by Environment Interaction (GEI)

Description

ge_data is used for performing Genotypes by Environment Interaction (GEI) Analysis.

Usage

data(ge_data)

Format

A data.frame 1320 obs. of 6 variables.

Details

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples

data(ge_data)


Genotype by Environment Interaction Effects

Description

Calcuates Genotype by Environment Interaction Effects

Usage

ge_effects(.data, .y, .gen, .env)

## Default S3 method:
ge_effects(.data, .y, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

Value

Effects

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)
Yield.Effects <-
              ge_effects(
                .data  = ge_data
               , .y    = Yield
               , .gen  = Gen
               , .env  = Env
               )
names(Yield.Effects)

Yield.Effects$ge_means
Yield.Effects$ge_effects
Yield.Effects$gge_effects



Genotype by Environment Interaction Means and Ranks

Description

Calcuates Genotype by Environment Interaction Means along with their Ranks

Usage

ge_means(.data, .y, .gen, .env)

## Default S3 method:
ge_means(.data, .y, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

Value

Means and Ranks

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)

Yield.ge_means <-
          ge_means(
                .data  = ge_data
               , .y    = Yield
               , .gen  = Gen
               , .env  = Env
               )

Yield.ge_means$ge_means
Yield.ge_means$ge_ranks
Yield.ge_means$g_means
Yield.ge_means$e_means



Genotype plus Genotypes by Environment (GGE) Interaction Biplot

Description

Plots Genotype plus Genotypes by Environment (GGE) Interaction Biplot for Genotypes by Environment Interaction (GEI)

Usage

gge_biplot(.data, .y, .rep, .gen, .env)

## Default S3 method:
gge_biplot(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Value

Stability Measures

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)
     gge_biplot(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
      )




Individual ANOVA for Each Environment

Description

Individual ANOVA for Each Environment

Usage

## Default S3 method:
indiv_anova(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Value

Additive ANOVA

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

  3. Ghulam Murtaza (gmurtaza208@gmail.com)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)
Yield.indiv_anova <-
         indiv_anova(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
          )
Yield.indiv_anova



Additive Main Effects and Multiplicative Interacion Stability Value

Description

Additive ANOVA for Genotypes by Environment Interaction (GEI) model

Usage

stab_asv(.data, .y, .rep, .gen, .env)

## Default S3 method:
stab_asv(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Value

Additive ANOVA

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples

data(ge_data)
YieldASV <-
     stab_asv(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
      )
YieldASV


Stability Distance in AMMI

Description

Stability Distance of Genotypes in Additive ANOVA for Genotypes by Environment Interaction (GEI) model

Usage

stab_dist(.data, .y, .rep, .gen, .env, .m = 2)

## Default S3 method:
stab_dist(.data, .y, .rep, .gen, .env, .m = 2)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

.m

No of PCs retained

Value

Stability Distance

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

Examples

data(ge_data)
YieldDist <-
     stab_dist(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
          , .m    = 2
      )
YieldDist


Stability Fox Function

Description

Performs a stability analysis based on the criteria of Fox et al. (1990), using the statistical "TOP third" only. In Fox function, a stratified ranking of the genotypes at each environment separately is done. The proportion of locations at which the genotype occurred in the top third are expressed in TOP output.

Usage

stab_fox(.data, .y, .rep, .gen, .env)

## Default S3 method:
stab_fox(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

  1. Fox, P.N. and Skovmand, B. and Thompson, B.K. and Braun, H.J. and Cormier, R. (1990). Yield and adaptation of hexaploid spring triticale. Euphytica, 47, 57-64.

Examples

data(ge_data)
YieldFox <-
     stab_fox(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
      )
YieldFox


Stability Kang Function

Description

Performs a stability analysis based on the Kang (1988) criteria. Kang nonparametric stability (ranksum) uses both "trait single value" and stability variance (Shukla, 1972), and the genotype with the lowest ranksum is commonly the most favorable one.

Usage

stab_kang(.data, .y, .rep, .gen, .env)

## Default S3 method:
stab_kang(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

  1. Kang, M.S. (1988). A rank-sum method for selecting high-yielding, stable corn genotypes. Cereal Research Communications, 16, 1-2.

  2. Shukla, G.K. (1972). Some aspects of partitioning genotype environmental components of variability. Heredity, 29, 237-245.

Examples

data(ge_data)
YieldKang <-
     stab_kang(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
      )
YieldKang


Modified Additive Main Effects and Multiplicative Interacion Stability Value

Description

Additive ANOVA for Genotypes by Environment Interaction (GEI) model

Usage

stab_masv(.data, .y, .rep, .gen, .env, .m = 2)

## Default S3 method:
stab_masv(.data, .y, .rep, .gen, .env, .m = 2)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

.m

No of PCs retained

Value

Additive ANOVA

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples

data(ge_data)
YieldMASV <-
     stab_masv(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
          , .m    = 2
      )
YieldMASV


Stability Measures for Genotypes by Environment Interaction (GEI)

Description

Stability Measures for Genotypes by Environment Interaction (GEI)

Usage

stab_measures(.data, .y, .gen, .env)

## Default S3 method:
stab_measures(.data, .y, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.gen

Genotypes Factor

.env

Environment Factor

Value

Stability Measures

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)
Yield.StabMeasures <- stab_measures(
                .data  = ge_data
               , .y    = Yield
               , .gen  = Gen
               , .env  = Env
               )
Yield.StabMeasures




Stability Parameters for Genotypes by Environment Interaction (GEI)

Description

Stability Parameters for Genotypes by Environment Interaction (GEI)

Usage

stab_par(.data, .y, .rep, .gen, .env, alpha = 0.1, .envCov = NULL)

## Default S3 method:
stab_par(.data, .y, .rep, .gen, .env, alpha = 0.1, .envCov = NULL)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

alpha

Level of Significance, default is 0.1

.envCov

Environmental Covariate, default is NULL

Value

Stability Parameters

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)
Yield.StabPar <-
   stab_par(
            .data   = ge_data
          , .y      = Yield
          , .rep    = Rep
          , .gen    = Gen
          , .env    = Env
          , alpha   = 0.1
          , .envCov = NULL
)

Yield.StabPar


Individual Regression for each Genotype

Description

Individual Regression for each Genotype in Genotypes by Environment Interaction (GEI)

Usage

stab_reg(.data, .y, .rep, .gen, .env)

## Default S3 method:
stab_reg(.data, .y, .rep, .gen, .env)

Arguments

.data

data.frame

.y

Response Variable

.rep

Replication Factor

.gen

Genotypes Factor

.env

Environment Factor

Value

Additive ANOVA

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)

References

Singh, R. K. and Chaudhary, B. D. (2004) Biometrical Methods in Quantitative Genetic Analysis. New Delhi: Kalyani.

Examples


data(ge_data)
Yield.StabReg <-
        stab_reg(
            .data = ge_data
          , .y    = Yield
          , .rep  = Rep
          , .gen  = Gen
          , .env  = Env
          )

Yield.StabReg


Stability Analysis of Genotype by Environment Interaction (GEI)

Description

The stability package provides functionalities to perform Stability Analysis of Genotype by Environment Interaction (GEI) to identify superior and stable genotypes under diverse environments. It performs Eberhart & Russel's ANOVA (1966), Finlay and Wilkinson (1963) Joint Linear Regression, Wricke (1962, 1964) Ecovalence, Shukla's stability variance parameter (1972) and Kang's (1991) simultaneous selection for high yielding and stable parameter.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Kent M. Edkridge (keskridge1@unl.edu)