Title: Information Consistency-Based Measures for Spatial Stratified Heterogeneity
Version: 0.1.0
Description: Spatial stratified heterogeneity (SSH) denotes the coexistence of within-strata homogeneity and between-strata heterogeneity. Information consistency-based methods provide a rigorous approach to quantify SSH and evaluate its role in spatial processes, grounded in principles of geographical stratification and information theory (Bai, H. et al. (2023) <doi:10.1080/24694452.2023.2223700>; Wang, J. et al. (2024) <doi:10.1080/24694452.2023.2289982>).
License: GPL-3
Encoding: UTF-8
RoxygenNote: 7.3.2
URL: https://stscl.github.io/sshicm/, https://github.com/stscl/sshicm
BugReports: https://github.com/stscl/sshicm/issues
Depends: R (≥ 4.1.0)
LinkingTo: Rcpp, RcppThread
Imports: dplyr, purrr, sdsfun (≥ 0.5.0), sf
Suggests: gdverse, knitr, rmarkdown
VignetteBuilder: knitr
NeedsCompilation: yes
Packaged: 2024-12-02 16:04:56 UTC; dell
Author: Wenbo Lv ORCID iD [aut, cre, cph]
Maintainer: Wenbo Lv <lyu.geosocial@gmail.com>
Repository: CRAN
Date/Publication: 2024-12-03 19:00:02 UTC

Measurement of Spatial Stratified Heterogeneity Based on Information Consistency for Continuous Variables

Description

Measurement of Spatial Stratified Heterogeneity Based on Information Consistency for Continuous Variables

Usage

sshic(d, s, seed = 42, permutation_number = 999, bin_method = "Sturges")

Arguments

d

The target variable.

s

The stratification.

seed

(optional) Random number seed, default is 42.

permutation_number

(optional) Number of Random Permutations, default is 999.

bin_method

(optional) Histogram binning method for probability density estimation, default is Sturges.

Value

A two-element numerical vector.

Examples


# This code may take a bit longer to execute:
baltim = sf::read_sf(system.file("extdata/baltim.gpkg",package = "sshicm"))
sshic(baltim$PRICE,baltim$DWELL)


Information Consistency-Based Measures for Spatial Stratified Heterogeneity

Description

Information Consistency-Based Measures for Spatial Stratified Heterogeneity

Usage

sshicm(
  formula,
  data,
  type = "IC",
  seed = 42,
  permutation_number = 999,
  bin_method = "Sturges"
)

Arguments

formula

A formula.

data

A data.frame, tibble or sf object of observation data.

type

(optional) Measure type, default is IC.

seed

(optional) Random number seed, default is 42.

permutation_number

(optional) Number of Random Permutations, default is 999.

bin_method

(optional) Histogram binning method for probability density estimation, default is Sturges.

Value

A tibble.

Examples


# This code may take a bit longer to execute:
baltim = sf::read_sf(system.file("extdata/baltim.gpkg",package = "sshicm"))
sshicm(PRICE ~ .,baltim,type = "IC")
cinc = sf::read_sf(system.file("extdata/cinc.gpkg",package = "sshicm"))
sshicm(THEFT_D ~ .,cinc,type = "IN")


Measurement of Spatial Stratified Heterogeneity Based on Information Consistency for Nominal Variables

Description

Measurement of Spatial Stratified Heterogeneity Based on Information Consistency for Nominal Variables

Usage

sshin(d, s, seed = 42, permutation_number = 999)

Arguments

d

The target variable.

s

The stratification.

seed

(optional) Random number seed, default is 42.

permutation_number

(optional) Number of Random Permutations, default is 999.

Value

A two-element numerical vector.

Examples


# This code may take a bit longer to execute:
cinc = sf::read_sf(system.file("extdata/cinc.gpkg",package = "sshicm"))
sshin(cinc$THEFT_D,cinc$MALE)