Package 'ssev'

July 23, 2025

Title Sample Size Computation for Fixed N with Optimal Reward

Version 0.1.0

Description Computes the optimal sample size for various 2-group designs (e.g., when comparing the means of two groups assuming equal variances, unequal variances, or comparing proportions) when the aim is to maximize the rewards over the full decision procedure of a) running a trial (with the computed sample size), and b) subsequently administering the winning treatment to the remaining N-n units in the population. Sample sizes and expected rewards for standard t- and z- tests are also provided.

Depends R (>= 3.4)
License GPL-3
Encoding UTF-8
LazyData true
Imports pwr, MESS, stats
RoxygenNote 6.1.1
NeedsCompilation no
Author Maurits Kaptein [aut, cre]
Maintainer Maurits Kaptein <maurits@mauritskaptein.com></maurits@mauritskaptein.com>
Repository CRAN
Date/Publication 2019-01-25 17:30:03 UTC

Contents

Index

print.ssev
ev_proportions
ev_means_unequal
ev_means_equal
compute_sample_size

compute_sample_size Compute sample size

Description

Function to compute the optimal sample size for a comparison of two means (with equal or unequal variances) or proportions. Function returns the standard sample size for an RCT with the specified power, as well as the optimal sample size for a population of size N.

Usage

```
compute_sample_size(means = NULL, sds = NULL, proportions = NULL,
  N = Inf, power = 0.8, sig.level = 0.05, ties = 0.5,
  .verbose = FALSE, ...)
```

Arguments

means	A vector of length 2 containing the (assumed) means of the two groups
sds	A vector containing the (assumed) standard deviations of the two groups. When only one element is supplied equal variances are assumed.
proportions	A vector of length 2 containing the (assumed) proportions of the two groups
N	Estimated population size
power	Desired power for the classical RCT
sig.level	Significance level of the test used (alpha)
ties	Probability of choosing the first group in case of a tie (i.e., H0 is not rejected)
.verbose	Whether or not verbose output should be provided, default FALSE
	further arguments passed to or from other methods.

Value

An object of type ssev

Examples

```
compute_sample_size(means=c(0,1), sds=2, N=100)
compute_sample_size(means=c(0,1), sds=2, N=10000, power=.9)
compute_sample_size(means=c(0,1), sds=c(1,2), N=10000)
compute_sample_size(proportions=c(.5,.7), N=5000)
```

ev_means_equal 3

ev_means_equal	Compute expected	l value as	function	of n N
ev_iiieai is_equai	Сотрине ехрестес	i vaiue as	junction	O(n, N)

Description

Comparing means with equal variances

Usage

```
ev_means_equal(n, N, means, sd, sig.level, ties)
```

Arguments

n	Sample size per group
N	Population size (estimate)
means	Vector of estimated means

sd Standard deviation of the groups (assumed equal)

sig.level Significance level

ties Tie-breaking probability

Value

A scalar indicating the expected mean reward per unit in the population

ev_means_unequal Compute expected value as function of n, N

Description

Comparing means with unequal variances

Usage

```
ev_means_unequal(n, N, means, sds, sig.level, ties)
```

Arguments

n	Sample size per group
N	Population size (estimate)
means	Vector of estimated means

sds Vector of standard deviation of the groups

sig.level Significance level

ties Tie-breaking probability

print.ssev

Value

A scalar indicating the expected mean reward per unit in the population

ev_proportions

Compute expected value as function of n, N

Description

Comparing proportions

Usage

```
ev_proportions(n, N, proportions, sig.level, ties)
```

Arguments

n Sample size per group

N Population size (estimate)

proportions Vector of two proportions

sig.level Significance level

ties Tie-breaking probability

Value

A scalar indicating the expected mean reward per unit in the population

print.ssev

Pretty printing of ssev object

Description

Pretty printing of ssev object

Usage

```
## S3 method for class 'ssev'
print(x, digits = getOption("digits"), ...)
```

Arguments

x Object of type ssev for pretty printing

digits Standard number of digits for pretty printing, default is getOption("digits")

... further arguments passed to or from other methods.

Index

```
compute_sample_size, 2
ev_means_equal, 3
ev_means_unequal, 3
ev_proportions, 4
print.ssev, 4
```