Type: | Package |
Title: | Structural Equation Modeling for the Social Relations Model |
Version: | 0.4-26 |
Date: | 2022-11-03 10:20:31 |
Author: | Steffen Nestler [aut], Alexander Robitzsch [aut, cre], Oliver Luedtke [aut] |
Maintainer: | Alexander Robitzsch <robitzsch@ipn.uni-kiel.de> |
Description: | Provides functionality for structural equation modeling for the social relations model (Kenny & La Voie, 1984; <doi:10.1016/S0065-2601(08)60144-6>; Warner, Kenny, & Soto, 1979, <doi:10.1037/0022-3514.37.10.1742>). Maximum likelihood estimation (Gill & Swartz, 2001, <doi:10.2307/3316080>; Nestler, 2018, <doi:10.3102/1076998617741106>) and least squares estimation is supported (Bond & Malloy, 2018, <doi:10.1016/B978-0-12-811967-9.00014-X>). |
Depends: | R (≥ 3.1) |
Imports: | Rcpp, stats, utils |
Enhances: | amen, TripleR |
LinkingTo: | Rcpp, RcppArmadillo |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://github.com/alexanderrobitzsch/srm, https://sites.google.com/site/alexanderrobitzsch2/software |
NeedsCompilation: | yes |
Packaged: | 2022-11-03 09:21:57 UTC; sunpn563 |
Repository: | CRAN |
Date/Publication: | 2022-11-03 10:00:02 UTC |
Structural Equation Modeling for the Social Relations Model
Description
Provides functionality for structural equation modeling for the social relations model (Kenny & La Voie, 1984; <doi:10.1016/S0065-2601(08)60144-6>; Warner, Kenny, & Soto, 1979, <doi:10.1037/0022-3514.37.10.1742>). Maximum likelihood estimation (Gill & Swartz, 2001, <doi:10.2307/3316080>; Nestler, 2018, <doi:10.3102/1076998617741106>) and least squares estimation is supported (Bond & Malloy, 2018, <doi:10.1016/B978-0-12-811967-9.00014-X>).
Author(s)
Steffen Nestler [aut], Alexander Robitzsch [aut, cre], Oliver Luedtke [aut]
Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>
References
Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure: The general case. In T. E. Malloy. Social relations modeling of behavior in dyads and groups (Ch. 14). Academic Press. doi: 10.1016/B978-0-12-811967-9.00014-X
Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data. Canadian Journal of Statistics, 29(2), 321-331. doi: 10.2307/3316080
Kenny, D. A., & La Voie, L. J. (1984). The social relations model. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 18, pp. 142-182). Orlando, FL: Academic. doi: 10.1016/S0065-2601(08)60144-6
Nestler, S. (2018). Likelihood estimation of the multivariate social relations model. Journal of Educational and Behavioral Statistics, 43(4), 387-406. doi: 10.3102/1076998617741106
Warner, R. M., Kenny, D. A., & Soto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37(10), 1742-1757. doi: 10.1037/0022-3514.37.10.1742
See Also
See also the R packages amen and TripleR for estimating the social relations model.
Hallmark and Kenny Round Robin Data
Description
Data from Kenny et al. (1994)
Usage
data(HallmarkKenny)
Format
A data frame with 802 measurements of 30 round-robin groups on the following 7
round-robin variables (taken on unnumbered 7-point rating scales with higher numbers
indicating a higher value of the trait):
calm
: rating of dimension calm-anxious
sociable
rating of dimension sociable-withdrawn
liking
rating of dimension like-do not like
careful
rating of dimension careful-careless
relaxed
rating of dimension relaxed-tense
talkative
rating of dimension talkative-quiet
responsible
rating of dimension responsible-undependable
The data frame also contains participants gender (actor.sex
; 1
= F,
2
= M) and their age in years (actor.age
).
Note that the data was assessed in two conditions: odd round robin group numbers indicate
groups in which participants rated all traits for a person at a time whereas even numbers
refer to groups in which participants rated all the people for each trait.
Source
http://davidakenny.net/srm/srmdata.htm
References
Kenny, D. A., Albright, L., Malloy, T. E., & Kashy, D. A. (1994). Consensus in interpersonal perception: Acquaintance and the big five. Psychological Bulletin, 116(2), 245-258. doi: 10.1037/0033-2909.116.2.245
Zero Acquaintance Round Robin Data from Kenny
Description
Data from Albright et al. (1988) Study 2
Usage
data(Kenzer)
Format
A data frame with 124 measurements from 7 round-robin groups on the following 5 round-robin
variables (taken on unnumbered 7-point rating scales with higher numbers indicating a
higher value of the trait):
sociable
: rating of dimension sociable
irritable
: rating of dimension good-natured
responsible
: rating of dimension responsible
anxious
: rating of dimension calm
intellectual
: rating of dimension intellectual
The data frame also contains the gender (actor.sex
; 1
= F,
2
= M) of the participants and their self-ratings on the five assessed traits
(actor.sociable
and so on).
Source
http://davidakenny.net/srm/srmdata.htm
References
Albright, L., Kenny, D. A., & Malloy, T. E. (1988). Consensus in personality judgments at zero acquaintance. Journal of Personality and Social Psychology, 55(3), 387-395. doi: 10.1037/0022-3514.55.3.387
Zero Acquaintance Round Robin Data from Malloy
Description
Data from Albright et al. (1988) Study 1
Usage
data(Malzer)
Format
A data frame with 216 measurements from 12 round-robin groups on the following 5 round-robin
variables (assessed on numbered 7-point rating scales with higher numbers indicating a
higher value of the trait with the exception for good and calm):
sociable
: rating of dimension sociable
irritable
: rating of dimension good-natured
responsible
: rating of dimension responsible
anxious
: rating of dimension calm
intellectual
: rating of dimension intellectual
The data frame also contains the gender (actor.sex
; 1
= F,
2
= M) of the participants and their self-ratings on the five assessed traits
(actor.sociable
and so on).
Source
http://davidakenny.net/srm/srmdata.htm
References
Albright, L., Kenny, D. A., & Malloy, T. E. (1988). Consensus in personality judgments at zero acquaintance. Journal of Personality and Social Psychology, 55(3), 387-395. doi: 10.1037/0022-3514.55.3.387
Round Robin Data Reported in Warner et al.
Description
Data from Warner et al. (1979)
Usage
data(Warner)
Format
A data frame with 56 measurements of a single round-robin group on a single round-robin
variable that was measured at three consecutive time points. The variable reflects the
proportion of time an actor spent when speaking to a partner.
prop.T1
: proportion of time spent in the first interaction
prop.T2
: proportion of time spent in the second interaction
prop.T3
: proportion of time spent in the third interaction
Source
See Table 7 (p. 1752) of the Warner et al. (1979).
References
Warner, R. M., Kenny, D. A., & Soto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37(10), 1742-1757. doi: 10.1037/0022-3514.37.10.1742
Zero Acquaintance Round Robin Data From Albirght, Kenny, and Malloy
Description
Data from Study 3 of Albright et al. (1988)
Usage
data(Zero)
Format
A data frame with 636 measurements of 36 round robin groups on the following 15 round-robin
variables (taken on 7-point rating scales with higher values indicating more of the
trait):
sociable
: rating of dimension sociable-reclusive
good
: rating of dimension good-natured-irritable
responsible
: rating of dimension responsible-undependable
calm
: rating of dimension calm-anxious
intellectual
: rating of dimension intellectual-unintellectual
imaginative
: rating of dimension imaginative-unimaginative
talkative
: rating of dimension talkative-silent
fussy
: rating of dimension fussy-careless
composed
: rating of dimension composed-excitable
cooperative
: rating of dimension cooperative-negativistic
physically_attractive
: rating of dimension physically attractive-unattractive
formal_dress
: rating of dimension formal dress-casual dress
neatly_dressed
: rating of dimension neatly dressed-sloppy dress
athletic
: rating of dimension athletic-not athletic
young
: rating of dimension young-old
The data frame also contains the gender (actor.sex
; 1
= F,
2
= M) of the participants and their self-ratings on the five assessed traits
(actor.sociable
and so on).
Source
http://davidakenny.net/srm/srmdata.htm
References
Albright, L., Kenny, D. A., & Malloy, T. E. (1988). Consensus in personality judgments at zero acquaintance. Journal of Personality and Social Psychology, 55(3), 387-395. doi: 10.1037/0022-3514.55.3.387
Dataset Back et al. (2011)
Description
Dataset used in Back, Schmukle and Egloff (2011).
Usage
data(data.back)
Format
The dataset
data.back
is a round-robin desiogn with 54 units and has the following structure'data.frame': 2862 obs. of 8 variables:
$ Group : num 1 1 1 1 1 1 1 1 1 1 ...
$ Actor : int 1 1 1 1 1 1 1 1 1 1 ...
$ Partner: int 2 3 4 5 6 7 8 9 10 11 ...
$ Dyad : int 1 2 3 4 5 6 7 8 9 10 ...
$ y : int 3 3 2 2 4 3 3 2 3 3 ...
$ sex : int 1 1 1 1 1 1 1 1 1 1 ...
$ age : int 22 22 22 22 22 22 22 22 22 22 ...
$ n : num -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 -1.17 ...
Source
References
Back, M. D., Schmukle, S. C., & Egloff, B. (2011). A closer look at first sight: Social relations lens model analysis of personality and interpersonal attraction at zero acquaintance. European Journal of Personality, 25(3), 225-238. doi: 10.1002/per.790
Dataset Bond and Malloy (2018)
Description
This is the illustration dataset of Bond and Malloy (2018) for a bivariate social relations model. The round robin design contains 16 persons and some missing values for one person.
Usage
data(data.bm1)
data(data.bm2)
Format
The dataset
data.bm1
contains all ratings in a wide format. The two outcomes are arranged one below the other.'data.frame': 32 obs. of 16 variables:
$ a: int NA 12 13 14 15 15 14 14 13 13 ...
$ b: int 10 NA 10 18 7 15 14 8 12 12 ...
$ c: int 13 12 NA 14 13 14 13 13 11 12 ...
[...]
$ p: int 11 13 14 14 9 8 17 13 11 12 ...
The dataset
data.bm2
is a subdataset ofdata.bm1
which contains observations 9 to 16.
Source
http://thomasemalloy.org/arbsrm-the-general-social-relations-model/
References
Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure: The general case. In T. E. Malloy. Social relations modeling of behavior in dyads and groups (Ch. 14). Academic Press. doi: 10.1016/B978-0-12-811967-9.00014-X
Example Datasets for the srm Package
Description
Some simulated example datasets for the srm package.
Usage
data(data.srm01)
Format
The dataset
data.srm01
contains three variables, 10 round robin groups with 10 members each.'data.frame': 900 obs. of 7 variables:
$ Group : num 1 1 1 1 1 1 1 1 1 1 ...
$ dyad : num 1 2 3 4 5 6 7 8 9 10 ...
$ Actor : num 1 1 1 1 1 1 1 1 1 2 ...
$ Partner: num 2 3 4 5 6 7 8 9 10 3 ...
$ Wert1 : num -0.15 -0.95 0.82 1.15 -1.79 1.17 1.79 -0.57 -0.46 1.19 ...
$ Wert2 : num -0.77 0.17 0.42 0.16 -0.44 0.89 1.67 -1.9 -0.74 2.67 ...
$ Wert3 : num -0.49 0.08 -0.12 1.16 -2.78 -0.74 2.66 -1.28 -0.45 1.93 ...
Structural Equation Model for the Social Relations Model
Description
Provides an estimation routine for a multiple group structural equation model for the social relations model (SRM; Kenny & La Voie, 1984; Warner, Kenny, & Soto, 1979). The model is estimated by maximum likelihood (Gill & Swartz, 2001; Nestler, 2018).
Usage
srm(model.syntax = NULL, data = NULL, group.var = NULL, rrgroup_name = NULL,
person_names = c("Actor", "Partner"), fixed.groups = FALSE, var_positive = -1,
optimizer = "srm", maxiter = 300, conv_dev = 1e-08, conv_par = 1e-06,
do_line_search = TRUE, line_search_iter_max = 6, verbose = TRUE, use_rcpp = TRUE,
shortcut = TRUE, use_woodbury = TRUE)
## S3 method for class 'srm'
coef(object, ...)
## S3 method for class 'srm'
vcov(object, ...)
## S3 method for class 'srm'
summary(object, digits=3, file=NULL, layout=1, ...)
## S3 method for class 'srm'
logLik(object, ...)
Arguments
model.syntax |
Syntax similar to lavaan language, see Examples. |
data |
Data frame containing round robin identifier variables and variables in the round robin design |
group.var |
Name of grouping variable |
rrgroup_name |
Name of variable indicating round robin group |
person_names |
Names for identifier variables for actors and partners |
fixed.groups |
Logical indicating whether groups should be handled with fixed effects |
var_positive |
Nonnegative value if variances are constrained to be positive |
optimizer |
Optimizer to be used: |
maxiter |
Maximum number of iterations |
conv_dev |
Convergence criterion for change relative deviance |
conv_par |
Convergence criterion for change in parameters |
do_line_search |
Logical indicating whether line search should be performed |
line_search_iter_max |
Number of iterations during line search algorithm |
verbose |
Logical indicating whether convergence progress should be displayed |
use_rcpp |
Logical indicating whether Rcpp package should be used |
shortcut |
Logical indicating whether shortcuts for round robin groups with same structure should be used |
use_woodbury |
Logical indicating whether matrix inversion should be simplified by Woodbury identity |
object |
Object of class |
file |
Optional file name for summary output |
digits |
Number of digits after decimal in summary output |
layout |
Different layouts ( |
... |
Further arguments to be passed |
Value
List with following entries (selection)
parm.table |
Parameter table with estimated values |
coef |
Vector of parameter estimates |
vcov |
Covariance matrix of parameter estimates |
parm_list |
List of model matrices |
sigma |
Model implied covariance matrices |
... |
Further values |
References
Gill, P. S., & Swartz, T. B. (2001). Statistical analyses for round robin interaction data. Canadian Journal of Statistics, 29(2), 321-331. doi: 10.2307/3316080
Kenny, D. A., & La Voie, L. J. (1984). The social relations model. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 18, pp. 142-182). Orlando, FL: Academic. doi: 10.1016/S0065-2601(08)60144-6
Nestler, S. (2018). Likelihood estimation of the multivariate social relations model. Journal of Educational and Behavioral Statistics, 43(4), 387-406. doi: 10.3102/1076998617741106
Warner, R. M., Kenny, D. A., & Soto, M. (1979). A new round robin analysis of variance for social interaction data. Journal of Personality and Social Psychology, 37(10), 1742-1757. doi: 10.1037/0022-3514.37.10.1742
See Also
See also TripleR and amen packages for alternative estimation routines for the SRM.
Examples
#############################################################################
# EXAMPLE 1: Univariate SRM
#############################################################################
data(data.srm01, package="srm")
dat <- data.srm01
#-- define model
mf <- '
%Person
F1@A =~ 1*Wert1@A
F1@P =~ 1*Wert1@P
Wert1@A ~~ 0*Wert1@A + 0*Wert1@P
Wert1@P ~~ 0*Wert1@P
%Dyad
F1@AP =~ 1*Wert1@AP
F1@PA =~ 1*Wert1@PA
Wert1@AP ~~ 0*Wert1@AP + 0*Wert1@PA
Wert1@PA ~~ 0*Wert1@PA
'
#-- estimate model
mod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", conv_par=1e-4, maxiter=20)
summary(mod1)
round(coef(mod1),3)
#############################################################################
# EXAMPLE 2: Bivariate SRM
#############################################################################
data(data.srm01, package="srm")
dat <- data.srm01
#-- define model
mf <- '
%Person
F1@A =~ 1*Wert1@A
F1@P =~ 1*Wert1@P
F2@A =~ 1*Wert2@A
F2@P =~ 1*Wert2@P
Wert1@A ~~ 0*Wert1@A + 0*Wert1@P
Wert1@P ~~ 0*Wert1@P
Wert2@A ~~ 0*Wert2@A + 0*Wert2@P
Wert2@P ~~ 0*Wert2@P
%Dyad
F1@AP =~ 1*Wert1@AP
F1@PA =~ 1*Wert1@PA
F2@AP =~ 1*Wert2@AP
F2@PA =~ 1*Wert2@PA
Wert1@AP ~~ 0*Wert1@AP + 0*Wert1@PA
Wert1@PA ~~ 0*Wert1@PA
Wert2@AP ~~ 0*Wert2@AP + 0*Wert2@PA
Wert2@PA ~~ 0*Wert2@PA
'
#-- estimate model
mod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", conv_par=1e-4, maxiter=20)
summary(mod1)
#############################################################################
# EXAMPLE 3: One-factor model
#############################################################################
data(data.srm01, package="srm")
dat <- data.srm01
#-- define model
mf <- '
# definition of factor for persons and dyad
%Person
f1@A=~Wert1@A+Wert2@A+Wert3@A
f1@P=~Wert1@P+Wert2@P+Wert3@P
%Dyad
f1@AP=~Wert1@AP+Wert2@AP+Wert3@AP
# define some constraints
Wert1@AP ~~ 0*Wert1@PA
Wert3@AP ~~ 0*Wert3@PA
'
#-- estimate model
mod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", conv_par=1e-4)
summary(mod1)
coef(mod1)
#- use stats::nlminb() optimizer
mod1 <- srm::srm(mf, data = dat, rrgroup_name="Group", optimizer="nlminb", conv_par=1e-4)
summary(mod1)
Least Squares Estimation of the Social Relations Model (Bond & Malloy, 2018)
Description
Provides least squares estimation of the bivariate social relations model with missing completely at random data (Bond & Malloy, 2018a). The code is basically taken from Bond and Malloy (2018b) and rewritten for reasons of computation time reduction.
Usage
srm_arbsrm(data, serror = TRUE, use_srm = TRUE)
## S3 method for class 'srm_arbsrm'
coef(object, ...)
## S3 method for class 'srm_arbsrm'
summary(object, digits=3, file=NULL, ...)
Arguments
data |
Rectangular dataset currently containing only one round robin group.
Bivariate observations are stacked one below the other (see
example dataset |
serror |
Logical indicating whether standard errors should be calculated. |
use_srm |
Logical indicating whether the rewritten code ( |
object |
Object of class |
file |
Optional file name for summary output |
digits |
Number of digits after decimal in summary output |
... |
Further arguments to be passed |
Value
List containing entries
par_summary |
Parameter summary table |
est |
Estimated parameters (as in Bond & Malloy, 2018b) |
se |
Estimated standard errors (as in Bond & Malloy, 2018b) |
Note
If you use this function, please also cite Bond and Malloy (2018a).
Author(s)
Rewritten code of Bond and Malloy (2018b). See http://thomasemalloy.org/arbsrm-the-general-social-relations-model/ and http://thomasemalloy.org/wp-content/uploads/2017/09/arbcodeR.pdf.
References
Bond, C. F., & Malloy, T. E. (2018a). Social relations analysis of dyadic data structure: The general case. In T. E. Malloy. Social relations modeling of behavior in dyads and groups (Ch. 14). Academic Press. doi: 10.1016/B978-0-12-811967-9.00014-X
Bond, C. F., & Malloy, T. E. (2018b). ARBSRM - The general social relations model. http://thomasemalloy.org/arbsrm-the-general-social-relations-model/.
See Also
Without missing data, ANOVA estimation can be conducted with the TripleR package.
Examples
#############################################################################
# EXAMPLE 1: Bond and Malloy (2018) illustration dataset
#############################################################################
data(data.bm2, package="srm")
dat <- data.bm2
#- estimation
mod1 <- srm::srm_arbsrm(dat)
mod1$par_summary
coef(mod1)
summary(mod1)
#-- estimation with original Bond and Malloy code
mod1a <- srm::srm_arbsrm(dat, use_srm=FALSE)
summary(mod1a)