Type: | Package |
Title: | Radiation and Photovoltaic Systems |
Version: | 0.11 |
Encoding: | UTF-8 |
Description: | Provides tools for calculating solar geometry, solar radiation on horizontal and inclined planes, and simulating the performance of various photovoltaic (PV) systems. Supports daily and intradaily irradiation data, enabling detailed analysis of grid-connected and water-pumping PV systems, including shading effects and solar angle calculations. |
URL: | https://solarization.github.io/solaR2/ |
BugReports: | https://github.com/solarization/solaR2/issues |
License: | GPL-3 |
LazyData: | yes |
Depends: | R (≥ 4.0.0), lattice |
Imports: | data.table, latticeExtra, RColorBrewer, httr2, graphics, grDevices, stats, methods, utils |
Suggests: | zoo, sp, raster, rasterVis, tdr, meteoForecast, jsonlite, testthat (≥ 3.0.0) |
Config/testthat/edition: | 3 |
NeedsCompilation: | no |
Packaged: | 2025-01-16 20:09:30 UTC; Fran |
Author: | Oscar Perpiñán-Lamigueiro
|
Maintainer: | Francisco Delgado-López <f.delgadol@alumnos.upm.es> |
Repository: | CRAN |
Date/Publication: | 2025-01-16 20:40:02 UTC |
Solar Radiation and Photovoltaic Systems with R version 2
Description
The solaR2
package allows for reproducible research both for
photovoltaics (PV) systems performance and solar radiation. It
includes a set of classes, methods and functions to calculate the sun
geometry and the solar radiation incident on a photovoltaic generator
and to simulate the performance of several applications of the
photovoltaic energy. This package performs the whole calculation
procedure from both daily and intradaily global horizontal irradiation
to the final productivity of grid-connected PV systems and water
pumping PV systems.
Details
solaRd
is designed using a set of S4
classes whose core
is a group of slots with multivariate time series. The classes share a
variety of methods to access the information and several visualization
methods. In addition, the package provides a tool for the visual
statistical analysis of the performance of a large PV plant composed of
several systems.
Although solaRd
is primarily designed for time series associated
to a location defined by its latitude/longitude values and the
temperature and irradiation conditions, it can be easily combined with
spatial packages for space-time analysis.
Please note that this package needs to set the timezone to
UTC
. Every ‘data.table’ object created by the package will have an
index with this time zone as a synonym of mean solar time..
You can check it after loading solaR2
with:
Sys.getenv('TZ')
If you need to change it, use:
Sys.setenv(TZ = 'YourTimeZone')
Index of functions and classes:
G0-class Class "G0": irradiation and irradiance on the horizontal plane. Gef-class Class "Gef": irradiation and irradiance on the generator plane. HQCurve H-Q curves of a centrifugal pump Meteo-class Class "Meteo" NmgPVPS Nomogram of a photovoltaic pumping system ProdGCPV-class Class "ProdGCPV": performance of a grid connected PV system. ProdPVPS-class Class "ProdPVPS": performance of a PV pumping system. Shade-class Class "Shade": shadows in a PV system. Sol-class Class "Sol": Apparent movement of the Sun from the Earth aguiar Markov Transition Matrices for the Aguiar etal. procedure as.data.tableD Methods for Function as.data.frameD as.data.tableI Methods for Function as.data.frameI as.data.tableM Methods for Function as.data.frameM as.data.tableY Methods for Function as.data.frameY calcG0 Irradiation and irradiance on the horizontal plane. calcGef Irradiation and irradiance on the generator plane. calcShd Shadows on PV systems. calcSol Apparent movement of the Sun from the Earth compare Compare G0, Gef and ProdGCPV objects compareLosses Losses of a GCPV system corrFdKt Correlations between the fraction of diffuse irradiation and the clearness index. d2r Conversion between angle units. diff2Hours Small utilities for difftime objects. fBTd Daily time base fCompD Components of daily global solar irradiation on a horizontal surface fCompI Calculation of solar irradiance on a horizontal surface fInclin Solar irradiance on an inclined surface fProd Performance of a PV system fPump Performance of a centrifugal pump fSolD Daily apparent movement of the Sun from the Earth fSolI Instantaneous apparent movement of the Sun from the Earth fSombra Shadows on PV systems fTemp Intradaily evolution of ambient temperature fTheta Angle of incidence of solar irradiation on a inclined surface getData Methods for function getData getG0 Methods for function getG0 getLat Methods for Function getLat helios Daily irradiation and ambient temperature from the Helios-IES database hour Utilities for time indexes. indexD Methods for Function indexD indexI Methods for Function indexI levelplot-methods Methods for function levelplot. local2Solar Local time, mean solar time and UTC time zone. mergesolaR Merge solaR objects optimShd Shadows calculation for a set of distances between elements of a PV grid connected plant. prodEx Productivity of a set of PV systems of a PV plant. prodGCPV Performance of a grid connected PV system. prodPVPS Performance of a PV pumping system pumpCoef Coefficients of centrifugal pumps. readBD Daily or intradaily values of global horizontal irradiation and ambient temperature from a local file or a data.frame. readG0dm Monthly mean values of global horizontal irradiation. readSIAR Meteorological data exported from the SIAR network shadeplot Methods for Function shadeplot solaR.theme solaR theme window Methods for extracting a time window writeSolar Exporter of solaR results xyplot-methods Methods for function xyplot in Package 'solaR'
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Apparent movement of the Sun from the Earth
Description
Compute the apparent movement of the Sun from the Earth with the
functions fSolD
and fSolI
.
Usage
calcSol(lat, BTd, sample = 'hour', BTi,
EoT = TRUE, keep.night = TRUE,
method = 'michalsky')
Arguments
lat |
Latitude (degrees) of the point of the Earth where calculations are needed. It is positive for locations above the Equator. |
BTd |
Daily time base, a |
sample |
Increment of the intradaily sequence. It is a character
string, containing one of ‘"sec"’, ‘"min"’, ‘"hour"’.
This can optionally be preceded by a (positive or
negative) integer and a space, or followed by ‘"s"’. It is
used by It is not considered if |
BTi |
Intradaily time base, a |
EoT |
logical, if |
keep.night |
logical, if |
method |
|
Value
A Sol-class
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Cooper, P.I., Solar Energy, 12, 3 (1969). "The Absorption of Solar Radiation in Solar Stills"
Spencer, Search 2 (5), 172, https://www.mail-archive.com/sundial@uni-koeln.de/msg01050.html
Michalsky, J., 1988: The Astronomical Almanac's algorithm for approximate solar position (1950-2050), Solar Energy 40, 227-235
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
Examples
library("data.table")
BTd <- fBTd(mode <- 'serie')
lat <- 37.2
sol <- calcSol(lat, BTd[100])
print(as.data.tableD(sol))
library(lattice)
xyplot(as.data.tableI(sol))
solStrous <- calcSol(lat, BTd[100], method = 'strous')
print(as.data.tableD(solStrous))
solSpencer <- calcSol(lat, BTd[100], method = 'spencer')
print(as.data.tableD(solSpencer))
solCooper <- calcSol(lat, BTd[100], method = 'cooper')
print(as.data.tableD(solCooper))
Irradiation and irradiance on the horizontal plane.
Description
This function obtains the global, diffuse and direct irradiation and
irradiance on the horizontal plane from the values of daily and
intradaily global irradiation on the horizontal plane.
It makes use of the functions calcSol
,
fCompD
, fCompI
, fBTd
and readBDd
(or equivalent).
Besides, if information about maximum and minimum temperatures values are available it obtains a series of temperature values with fTemp
.
Usage
calcG0(lat, modeRad = 'prom', dataRad,
sample = 'hour', keep.night = TRUE,
sunGeometry = 'michalsky',
corr, f, ...)
Arguments
lat |
numeric, latitude (degrees) of the point of the Earth where calculations are needed. It is positive for locations above the Equator. |
modeRad |
A character string, describes the kind of source data of the global irradiation and ambient temperature. It can be
If If |
dataRad |
|
sample |
|
keep.night |
|
sunGeometry |
|
corr |
A character, the correlation between the fraction of diffuse irradiation and the clearness index to be used. With this version several options are available, as described in
If If |
f |
A function defininig a correlation between the fraction of
diffuse irradiation and the clearness index. It is only neccessary
when |
... |
Value
A G0
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
Aguiar, Collares-Pereira and Conde, "Simple procedure for generating sequences of daily radiation values using a library of Markov transition matrices", Solar Energy, Volume 40, Issue 3, 1988, Pages 269–279
See Also
calcSol
,
fCompD
,
fCompI
,
readG0dm
,
readBDd
,
readBDi
,
dt2Meteo
,
corrFdKt
.
Examples
library("data.table")
G0dm <- c(2.766, 3.491, 4.494, 5.912, 6.989, 7.742, 7.919, 7.027, 5.369, 3.562, 2.814, 2.179)*1000;
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2, 17.2,
15.2)
g0 <- calcG0(lat = 37.2, modeRad = 'prom', dataRad = list(G0dm = G0dm, Ta = Ta))
print(g0)
xyplot(g0)
## Aguiar et al.
g0 <- calcG0(lat = 37.2, modeRad = 'aguiar', dataRad = G0dm)
print(g0)
xyplot(g0)
##Now the G0I component of g0 is used as
##the bdI argument to calcG0 in order to
##test the intradaily correlations of fd-kt
BDi = as.data.tableI(g0)
BDi$Ta = 25 ##Information about temperature must be contained in BDi
g02 <- calcG0(lat = 37.2,
modeRad = 'bdI',
dataRad = list(lat = 37.2, file = BDi),
corr = 'none')
print(g02)
g03 <- calcG0(lat = 37.2,
modeRad = 'bdI',
dataRad = list(lat = 37.2, file = BDi),
corr = 'BRL')
print(g03)
xyplot(Fd ~ Kt, data = g03, pch = 19, alpha = 0.3)
Irradiation and irradiance on the generator plane.
Description
This function obtains the global, diffuse and direct irradiation and
irradiance on the generator plane from the values of daily or intradaily global
irradiation on the horizontal plane. It makes use of the functions
calcG0
, fTheta
,
fInclin
. Besides, it can calculate the shadows effect with
the calcShd
function.
Usage
calcGef(lat,
modeTrk = 'fixed',
modeRad = 'prom',
dataRad,
sample = 'hour',
keep.night = TRUE,
sunGeometry = 'michalsky',
corr, f,
betaLim = 90, beta = abs(lat)-10, alpha = 0,
iS = 2, alb = 0.2, horizBright = TRUE, HCPV = FALSE,
modeShd = '',
struct = list(),
distances = data.table(),
...)
Arguments
lat |
numeric, latitude (degrees) of the point of the Earth where calculations are needed. It is positive for locations above the Equator. |
modeTrk |
character, to be chosen from |
modeRad , dataRad |
Information about the source data of the
global irradiation. See |
sample , keep.night |
See |
sunGeometry |
|
corr , f |
See |
beta |
numeric, inclination angle of the surface
(degrees). It is only needed when |
betaLim |
numeric, maximum value of the inclination angle for a tracking surface. Its default value is 90 (no limitation)) |
alpha |
numeric, azimuth angle of the surface (degrees). It is
measured from the south ( |
iS |
integer, degree of dirtiness. Its value must be included in
the set (1,2,3,4). |
alb |
numeric, albedo reflection coefficient. Its default value is 0.2 |
modeShd , struct , distances |
See |
horizBright |
logical, if TRUE, the horizon brightness correction proposed by Reind et al. is used. |
HCPV |
logical, if TRUE the diffuse and albedo components of the effective irradiance are set to zero. HCPV is the acronym of High Concentration PV system. |
... |
Value
A Gef
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Hay, J. E. and McKay, D. C.: Estimating Solar Irradiance on Inclined Surfaces: A Review and Assessment of Methodologies. Int. J. Solar Energy, (3):pp. 203, 1985.
Martin, N. and Ruiz, J.M.: Calculation of the PV modules angular losses under field conditions by means of an analytical model. Solar Energy Materials & Solar Cells, 70:25–38, 2001.
D. T. Reindl and W. A. Beckman and J. A. Duffie: Evaluation of hourly tilted surface radiation models, Solar Energy, 45:9-17, 1990.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
calcG0
,
fTheta
,
fInclin
,
calcShd
.
Examples
library("data.table")
lat <- 37.2
###12 Average days.
G0dm = c(2.766, 3.491, 4.494, 5.912, 6.989, 7.742, 7.919, 7.027, 5.369,
3.562, 2.814, 2.179)*1000;
Ta = c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2, 17.2,
15.2)
##Fixed surface, default values of inclination and azimuth.
gef <- calcGef(lat = lat, modeRad = 'prom', dataRad = list(G0dm = G0dm, Ta = Ta))
print(gef)
xyplot(gef)
##Two-axis surface, no limitation angle.
gef2 <- calcGef(lat = lat, modeRad = 'prom',
dataRad = list(G0dm = G0dm, Ta = Ta),
modeTrk = 'two')
print(gef2)
xyplot(gef2)
struct = list(W = 23.11, L = 9.8, Nrow = 2, Ncol = 8)
distances = data.table(Lew = 40, Lns = 30, H = 0)
gefShd <- calcGef(lat = lat, modeRad = 'prom',
dataRad = list(G0dm = G0dm, Ta = Ta),
modeTrk = 'two',
modeShd = c('area', 'prom'),
struct = struct, distances = distances)
print(gefShd)
Performance of a grid connected PV system.
Description
Compute every step from solar angles to effective irradiance to calculate the performance of a grid connected PV system.
Usage
prodGCPV(lat,
modeTrk = 'fixed',
modeRad = 'prom',
dataRad,
sample = 'hour',
keep.night = TRUE,
sunGeometry = 'michalsky',
corr, f,
betaLim = 90, beta = abs(lat)-10, alpha = 0,
iS = 2, alb = 0.2, horizBright = TRUE, HCPV = FALSE,
module = list(),
generator = list(),
inverter = list(),
effSys = list(),
modeShd = '',
struct = list(),
distances = data.table(),
...)
Arguments
lat |
numeric, latitude (degrees) of the point of the Earth where calculations are needed. It is positive for locations above the Equator. |
modeTrk |
A character string, describing the tracking method
of the generator. See |
modeRad , dataRad |
Information about the source data of the
global irradiation. See |
sample , keep.night |
See |
sunGeometry |
|
corr , f |
See |
betaLim , beta , alpha , iS , alb , horizBright , HCPV |
See |
module |
list of numeric values with information about the PV module,
|
generator |
list of numeric values with information about the generator,
|
inverter |
list of numeric values with information about the DC/AC inverter,
|
effSys |
list of numeric values with information about the system losses,
|
modeShd , struct , distances |
See |
... |
Details
The calculation of the irradiance on the horizontal plane is
carried out with the function calcG0
. The transformation
to the inclined surface makes use of the fTheta
and
fInclin
functions inside the calcGef
function. The shadows are computed with calcShd
while
the performance of the PV system is simulated with
fProd
.
Value
A ProdGCPV
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
fProd
,
calcGef
,
calcShd
,
calcG0
,
compare
,
compareLosses
,
mergesolaR
Examples
library("data.table")
lat <- 37.2;
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562,
2814, 2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2,
17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
###Comparison of different tracker methods
prodFixed <- prodGCPV(lat = lat, dataRad = prom,
keep.night = FALSE)
prod2x <- prodGCPV(lat = lat, dataRad = prom,
modeTrk = 'two',
keep.night = FALSE)
prodHoriz <- prodGCPV(lat = lat,dataRad = prom,
modeTrk = 'horiz',
keep.night = FALSE)
##Comparison of yearly productivities
compare(prodFixed, prod2x, prodHoriz)
compareLosses(prodFixed, prod2x, prodHoriz)
##Comparison of power time series
ComparePac <- data.table(Dates = indexI(prod2x),
two = as.data.tableI(prod2x)$Pac,
horiz = as.data.tableI(prodHoriz)$Pac,
fixed = as.data.tableI(prodFixed)$Pac)
AngSol <- as.data.tableI(as(prodFixed, 'Sol'))
ComparePac <- merge(AngSol, ComparePac, by = 'Dates')
ComparePac[, Month := as.factor(month(Dates))]
xyplot(two + horiz + fixed ~ AzS|Month, data = ComparePac,
type = 'l',
auto.key = list(space = 'right',
lines = TRUE,
points = FALSE),
ylab = 'Pac')
###Shadows
#Two-axis trackers
struct2x <- list(W = 23.11, L = 9.8, Nrow = 2, Ncol = 8)
dist2x <- data.table(Lew = 40, Lns = 30, H = 0)
prod2xShd <- prodGCPV(lat = lat, dataRad = prom,
modeTrk = 'two',
modeShd = 'area',
struct = struct2x,
distances = dist2x)
print(prod2xShd)
#Horizontal N-S tracker
structHoriz <- list(L = 4.83);
distHoriz <- data.table(Lew = structHoriz$L*4);
#Without Backtracking
prodHorizShd <- prodGCPV(lat = lat, dataRad = prom,
sample = '10 min',
modeTrk = 'horiz',
modeShd = 'area', betaLim = 60,
distances = distHoriz,
struct = structHoriz)
print(prodHorizShd)
xyplot(r2d(Beta)~r2d(w),
data = prodHorizShd,
type = 'l',
main = 'Inclination angle of a horizontal axis tracker',
xlab = expression(omega (degrees)),
ylab = expression(beta (degrees)))
#With Backtracking
prodHorizBT <- prodGCPV(lat = lat, dataRad = prom,
sample = '10 min',
modeTrk = 'horiz',
modeShd = 'bt', betaLim = 60,
distances = distHoriz,
struct = structHoriz)
print(prodHorizBT)
xyplot(r2d(Beta)~r2d(w),
data = prodHorizBT,
type = 'l',
main = 'Inclination angle of a horizontal axis tracker\n with backtracking',
xlab = expression(omega (degrees)),
ylab = expression(beta (degrees)))
compare(prodFixed, prod2x, prodHoriz, prod2xShd,
prodHorizShd, prodHorizBT)
compareLosses(prodFixed, prod2x, prodHoriz, prod2xShd,
prodHorizShd, prodHorizBT)
compareYf2 <- mergesolaR(prodFixed, prod2x, prodHoriz, prod2xShd,
prodHorizShd, prodHorizBT)
xyplot(prodFixed + prod2x +prodHoriz + prod2xShd + prodHorizShd + prodHorizBT ~ Dates,
data = compareYf2, type = 'l', ylab = 'kWh/kWp',
main = 'Daily productivity',
auto.key = list(space = 'right'))
Performance of a PV pumping system
Description
Compute every step from solar angles to effective irradiance to calculate the performance of a PV pumping system.
Usage
prodPVPS(lat,
modeTrk = 'fixed',
modeRad = 'prom',
dataRad,
sample = 'hour',
keep.night = TRUE,
sunGeometry = 'michalsky',
corr, f,
betaLim = 90, beta = abs(lat)-10, alpha = 0,
iS = 2, alb = 0.2, horizBright = TRUE, HCPV = FALSE,
pump , H,
Pg, converter= list(),
effSys = list(),
...)
Arguments
lat |
numeric, latitude (degrees) of the point of the Earth where calculations are needed. It is positive for locations above the Equator. |
modeTrk |
A character string, describing the tracking method
of the generator. See |
modeRad , dataRad |
Information about the source data of the
global irradiation. See |
sample , keep.night |
See |
sunGeometry |
|
corr , f |
See |
betaLim , beta , alpha , iS , alb , horizBright , HCPV |
See |
pump |
A |
H |
Total manometric head (m) |
Pg |
Nominal power of the PV generator (Wp) |
converter |
|
effSys |
list of numeric values with information about the system losses,
|
... |
Details
The calculation of the irradiance on the generator is carried
out with the function calcGef
. The performance of the PV system is simulated with fPump
.
Value
A ProdPVPS
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Abella, M. A., Lorenzo, E. y Chenlo, F.: PV water pumping systems based on standard frequency converters. Progress in Photovoltaics: Research and Applications, 11(3):179–191, 2003, ISSN 1099-159X.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Shadows on PV systems.
Description
Compute the irradiance and irradiation including shadows
for two-axis and horizontal N-S axis trackers and fixed surfaces. It
makes use of the function fSombra
for the shadows factor
calculation. It is used by the function calcGef
.
Usage
calcShd(radEf,
modeShd = '',
struct = list(),
distances = data.table())
Arguments
radEf |
|
modeShd |
character, defines the type of shadow calculation. In
this version of the package the effect of the shadow is calculated
as a proportional reduction of the circumsolar diffuse and direct
irradiances. This type of approach is selected with
|
struct |
When For two-axis trackers ( |
distances |
When When When The distances, in meters, are defined between axis of the trackers. |
Value
A Gef
object including three additional variables
(Gef0
, Def0
and Bef0
) in the slots GefI
,
GefD
, Gefdm
and Gefy
with the
irradiance/irradiation without shadows as a reference.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
calcG0
, fTheta
,
fInclin
, calcShd
.
Shadows calculation for a set of distances between elements of a PV grid connected plant.
Description
The optimum distance between trackers or static structures of a PV grid connected plant depends on two main factors: the ground requirement ratio (defined as the ratio of the total ground area to the generator PV array area), and the productivity of the system including shadow losses. Therefore, the optimum separation may be the one which achieves the highest productivity with the lowest ground requirement ratio.
However, this definition is not complete since the terrain characteristics and the costs of wiring or civil works could alter the decision. This function is a help for choosing this distance: it computes the productivity for a set of combinations of distances between the elements of the plant.
Usage
optimShd(lat,
modeTrk = 'fixed',
modeRad = 'prom',
dataRad,
sample = 'hour',
keep.night = TRUE,
sunGeometry = 'michalsky',
betaLim = 90, beta = abs(lat)-10, alpha = 0,
iS = 2, alb = 0.2, HCPV = FALSE,
module = list(),
generator = list(),
inverter = list(),
effSys = list(),
modeShd = '',
struct = list(),
distances = data.table(),
res = 2,
prog = TRUE)
Arguments
lat |
numeric, latitude (degrees) of the point of the Earth where calculations are needed. It is positive for locations above the Equator. |
modeTrk |
character, to be chosen from |
modeRad , dataRad |
Information about the source data of the
global irradiation. See |
sample |
|
keep.night |
|
sunGeometry |
|
betaLim , beta , alpha , iS , alb , HCPV |
See |
module |
list of numeric values with information about the PV module,
|
generator |
list of numeric values with information about the generator,
|
inverter |
list of numeric values with information about the DC/AC inverter,
|
effSys |
list of numeric values with information about the system losses,
|
modeShd |
character, defines the type of shadow calculation. In
this version of the package the effect of the shadow is calculated
as a proportional reduction of the circumsolar diffuse and direct
irradiances. This type of approach is selected with
|
struct |
|
distances |
These distances, in meters, are defined between the axis of the trackers. |
res |
numeric; |
prog |
logical, show a progress bar; default value is TRUE |
Details
optimShd
calculates the energy produced for every
combination of distances as defined by distances
and
res
. The result of this function is a Shade-class
object. A method of shadeplot
for this class is defined
(shadeplot-methods
), and it shows the graphical relation
between the productivity and the distance between trackers or fixed
surfaces.
Value
A Shade
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O.: Grandes Centrales Fotovoltaicas: producción, seguimiento y ciclo de vida. PhD Thesis, UNED, 2008. https://www.researchgate.net/publication/39419806_Grandes_Centrales_Fotovoltaicas_Produccion_Seguimiento_y_Ciclo_de_Vida.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Examples
library("data.table")
lat <- 37.2;
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562, 2814,
2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2, 17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
###Two-axis trackers
library("latticeExtra")
struct2x <- list(W = 23.11, L = 9.8, Nrow = 2, Ncol = 3)
dist2x <- list(Lew = c(30, 45),Lns = c(20, 40))
ShdM2x <- optimShd(lat = lat, dataRad = prom, modeTrk = 'two',
modeShd = c('area','prom'),
distances = dist2x, struct = struct2x,
res = 5)
shadeplot(ShdM2x)
pLew <- xyplot(Yf ~ GRR,data = ShdM2x, groups = factor(Lew), type = c('l','g'),
main = 'Productivity for each Lew value')
pLew + glayer(panel.text(x[1], y[1], group.value))
pLns <- xyplot(Yf~GRR,data = ShdM2x,groups = factor(Lns),type = c('l','g'),
main = 'Productivity for each Lns value')
pLns + glayer(panel.text(x[1], y[1], group.value))
## 1-axis tracker with Backtracking
structHoriz <- list(L = 4.83);
distHoriz <- list(Lew = structHoriz$L * c(2,5));
Shd12HorizBT <- optimShd(lat = lat, dataRad = prom,
modeTrk = 'horiz',
betaLim = 60,
distances = distHoriz, res = 2,
struct = structHoriz,
modeShd = 'bt')
shadeplot(Shd12HorizBT)
xyplot(diff(Yf) ~ GRR[-1],data = Shd12HorizBT, type = c('l','g'))
###Fixed system
structFixed = list(L = 5);
distFixed <- list(D = structFixed$L*c(1,3));
Shd12Fixed <- optimShd(lat = lat, dataRad = prom,
modeTrk = 'fixed',
distances = distFixed, res = 2,
struct = structFixed,
modeShd = 'area')
shadeplot(Shd12Fixed)
Transformation of intradaily meteorological data into daily and daily into monthly data.
Description
Functions for the class Meteo
that transforms an
intradaily Meteo
object into a daily and a daily into a
monthly.
Usage
Meteoi2Meteod(G0i)
Meteod2Meteom(G0d)
Arguments
G0i |
A |
G0d |
A |
Value
A Meteo
object
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
See Also
Examples
library("data.table")
G0dm <- c(2.766,3.491,4.494,5.912,6.989,7.742,7.919,
7.027,5.369,3.562,2.814,2.179) * 1000;
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2,
28.4, 29.9, 24.3, 18.2, 17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
g0 <- calcG0(lat = 37.2, dataRad = prom, modeRad = 'aguiar')
G0i <- as.data.tableI(g0)
G0i <- dt2Meteo(G0i, lat = 37.2)
G0i
G0d <- Meteoi2Meteod(G0i)
G0d
G0m <- Meteod2Meteom(G0d)
G0m
Daily or intradaily values of global horizontal irradiation and ambient temperature from a local file or a data.frame.
Description
Constructor for the class Meteo
with values of
daily or intradaily values of global horizontal irradiation and ambient temperature
from a local file or a data.frame.
Usage
readBDd(file, lat,
format = '%d/%m/%Y',
header = TRUE, fill = TRUE, dec = '.', sep = ';',
dates.col = 'Dates', ta.col = 'Ta',
g0.col = 'G0', keep.cols = FALSE, ...)
readBDi(file, lat,
format = '%d/%m/%Y %H:%M:%S',
header = TRUE, fill = TRUE, dec = '.',
sep = ';', dates.col = 'Dates', times.col,
ta.col = 'Ta', g0.col = 'G0', keep.cols = FALSE, ...)
dt2Meteo(file, lat, source = '', type)
zoo2Meteo(file, lat, source = '')
Arguments
file |
The name of the file ( If the Only for daily data: if the ambient temperature is not available,
the file should include two columns named |
header , fill , dec , sep |
See |
format |
character string with the format of the dates or time
index.
(Default for daily time bases: |
lat |
numeric, latitude (degrees) of the location. |
dates.col |
character string with the name of the column wich contains the dates of the time series. |
times.col |
character string with the name of the column wich contains the time index of the series in case is in a different column than the dates. |
source |
character string with information about the source of the values. (Default: the name of the file). |
ta.col , g0.col |
character, the name of the columns with the information of ambient temperature and radiation in the provided file |
keep.cols |
If |
... |
Arguments for |
type |
character, type of the data in |
Value
A Meteo
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
See Also
Examples
library("data.table")
data(helios)
names(helios) = c('Dates', 'G0d', 'TempMax', 'TempMin')
bd = dt2Meteo(helios, lat = 41, source = 'helios-IES', type = 'bd')
getData(bd)
xyplot(bd)
Monthly mean values of global horizontal irradiation.
Description
Constructor for the class Meteo
with 12 values of
monthly means of irradiation.
Usage
readG0dm(G0dm, Ta = 25, lat = 0,
year= as.POSIXlt(Sys.Date())$year+1900,
promDays = c(17,14,15,15,15,10,18,18,18,19,18,13),
source = '')
Arguments
G0dm |
numeric, 12 values of monthly means of daily global horizontal irradiation (Wh/m²). |
Ta |
numeric, 12 values of monthly means of ambient temperature (degrees Celsius). |
lat |
numeric, latitude (degrees) of the location. |
year |
numeric (Default: current year). |
promDays |
numeric, set of the average days for each month. |
source |
character string with information about the source of the values. |
Value
Meteo
object
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
See Also
Examples
library("data.table")
G0dm <-
c(2.766,3.491,4.494,5.912,6.989,7.742,7.919,7.027,5.369,3.562,2.814,2.179) * 1000;
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2, 17.2, 15.2)
BD <- readG0dm(G0dm = G0dm, Ta = Ta, lat = 37.2)
print(BD)
getData(BD)
xyplot(BD)
Meteorological data from the SIAR network.
Description
Download, interpolate and transform meteorological data fromm the SIAR network.
Usage
readSIAR(Lon = 0, Lat = 0,
inicio = paste(year(Sys.Date())-1, '01-01', sep = '-'),
final = paste(year(Sys.Date())-1, '12-31', sep = '-'),
tipo = 'Mensuales', n_est = 3)
Arguments
Lon |
numeric, longitude (degrees) of the location. |
Lat |
numeric, latitude (degrees) of the location. |
inicio |
character or Date, first day of the records. |
final |
character or Date, last day of the records. |
tipo |
character, tipe of the records. To choose between
|
n_est |
integer, select that number of stations closest to the given point and then perform an IDW (Inverse Distance Weighting) interpolation with these data. |
Value
A Meteo
object
Author(s)
Francisco Delgado López, Oscar Perpiñán Lamigueiro.
See Also
Examples
library("data.table")
library("httr2")
library("jsonlite")
SIAR = readSIAR(Lon = -3.603, Lat = 40.033,
## Aranjuez, Comunity of Madrid, Spain
inicio = '2023-01-01',
final = '2023-05-01',
tipo = 'Mensuales', n_est = 3)
SIAR
Class "Meteo"
Description
A class for meteorological data.
Objects from the Class
Objects can be created by the family of readBDd
functions.
Slots
latm
:Latitude (degrees) of the meteorological station or source of the data.
data
:A
data.table
object with the time series of daily irradiation (G0
, Wh/m²), the ambient temperature (Ta
) or the maximum and minimum ambient temperature (TempMax
andTempMin
).source
:A character with a short description of the source of the data.
type
:A character,
prom
,bd
orbdI
depending on the constructor.
Methods
- getData
signature(object = "Meteo")
: extracts thedata
slot as adata.table
object.- getG0
signature(object = "Meteo")
: extracts the irradiation as vector.- getLat
signature(object = "Meteo")
: extracts the latitude value.- indexD
signature(object = "Meteo")
: extracts the index of thedata
slot.- xyplot
signature(x = "formula", data = "Meteo")
: plot the content of the object according to theformula
argument.- xyplot
signature(x = "Meteo", data = "missing")
: plot thedata
slot using thexyplot
method forzoo
objects.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
See Also
readBDd
,
readBDi
,
zoo2Meteo
,
dt2Meteo
,
readG0dm
,
Class "Sol": Apparent movement of the Sun from the Earth
Description
A class which describe the apparent movement of the Sun from the Earth.
Objects from the Class
Objects can be created by calcSol
.
Slots
lat
:numeric, latitude (degrees) as defined in the call to
calcSol
.solD
:Object of class
"data.table"
created byfSolD
.solI
:Object of class
"data,table"
created byfSolI
.method
:character, method for the sun geometry calculations.
sample
:difftime
, increment of the intradaily sequence.
Methods
- as.data.tableD
signature(object = "Sol")
: conversion to a data.table with daily values.- as.data.tableI
signature(object = "Sol")
: conversion to a data.table with intradaily values.- getLat
signature(object = "Sol")
: latitude (degrees) as defined in the call tocalcSol
.- indexD
signature(object = "Sol")
: index of thesolD
slot.- indexI
signature(object = "Sol")
: index of thesolI
object.- xyplot
signature(x = "formula", data = "Sol")
: displays the contents of aSol
object with thexyplot
method for formulas.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Class "G0": irradiation and irradiance on the horizontal plane.
Description
This class contains the global, diffuse and direct irradiation and irradiance on the horizontal plane, and ambient temperature.
Objects from the Class
Objects can be created by the function calcG0
.
Slots
G0D
:Object of class
data.table
created byfCompD
. It includes daily values of:- Fd:
numeric, the diffuse fraction
- Ktd:
numeric, the clearness index
- G0d:
numeric, the global irradiation on a horizontal surface (Wh/m²)
- D0d:
numeric, the diffuse irradiation on a horizontal surface (Wh/m²)
- B0d:
numeric, the direct irradiation on a horizontal surface (Wh/m²)
G0I
:Object of class
data.table
created byfCompI
. It includes values of:- kt:
numeric, clearness index
- G0:
numeric, global irradiance on a horizontal surface, (W/m²)
- D0:
numeric, diffuse irradiance on a horizontal surface, (W/m²)
- B0:
numeric, direct irradiance on a horizontal surface, (W/m²)
G0dm
:Object of class
data.table
with monthly mean values of daily irradiation.G0y
:Object of class
data.table
with yearly sums of irradiation.Ta
:Object of class
data.table
with intradaily ambient temperature values.
Besides, this class contains the slots from the Sol
and
Meteo
classes.
Extends
Class "Meteo"
, directly.
Class "Sol"
, directly.
Methods
- as.data.tableD
signature(object = "G0")
: conversion to a data.table with daily values.- as.data.tableI
signature(object = "G0")
: conversion to a data.table with intradaily values.- as.data.tableM
signature(object = "G0")
: conversion to a data.table with monthly values.- as.data.tableY
signature(object = "G0")
: conversion to a data.frame with yearly values.- indexD
signature(object = "G0")
: index of thesolD
slot.- indexI
signature(object = "G0")
: index of thesolI
slot.- getLat
signature(object = "G0")
: latitude of the inheritedSol
object.- xyplot
signature(x = "G0", data = "missing")
: display the time series of daily values of irradiation.- xyplot
signature(x = "formula", data = "G0")
: displays the contents of aG0
object with thexyplot
method for formulas.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Class "Gef": irradiation and irradiance on the generator plane.
Description
This class contains the global, diffuse and direct irradiation and irradiance on the horizontal plane, and ambient temperature.
Objects from the Class
Objects can be created by the function calcGef
.
Slots
GefI
:Object of class
data.table
created byfInclin
. It contains these components:- Bo:
Extra-atmospheric irradiance on the inclined surface (W/m²)
- Bn:
Direct normal irradiance (W/m²)
- G, B, D, Di, Dc, R:
Global, direct, diffuse (total, isotropic and anisotropic) and albedo irradiance incident on an inclined surface (W/m²)
- Gef, Bef, Def, Dief, Dcef, Ref:
Effective global, direct, diffuse (total, isotropic and anisotropic) and albedo irradiance incident on an inclined surface (W/m²)
- FTb, FTd, FTr:
Factor of angular losses for the direct, diffuse and albedo components
GefD
:Object of class
data.table
with daily values of global, diffuse and direct irradiation.Gefdm
:Object of class
data.table
with monthly means of daily global, diffuse and direct irradiation.Gefy
:Object of class
data.table
with yearly sums of global, diffuse and direct irradiation.Theta
:Object of class
data.table
created byfTheta
. It contains these components:Beta
:numeric, inclination angle of the surface (radians). When
modeTrk='fixed'
it is the value of the argumentbeta
converted from degreesto radians.Alpha
:numeric, azimuth angle of the surface (radians). When
modeTrk='fixed'
it is the value of the argumentalpha
converted from degrees to radians.cosTheta
:numeric, cosine of the incidence angle of the solar irradiance on the surface
iS
:numeric, degree of dirtiness.
alb
:numeric, albedo reflection coefficient.
modeTrk
:character, mode of tracking.
modeShd
:character, mode of shadows.
angGen
:A list with the values of
alpha
,beta
andbetaLim
.struct
:A list with the dimensions of the structure.
distances
:A data.frame with the distances between structures.
Extends
Class "G0"
, directly.
Class "Meteo"
, by class "G0", distance 2.
Class "Sol"
, by class "G0", distance 2.
Methods
- as.data.tableD
signature(object = "Gef")
: conversion to a data.table with daily values.- as.data.tableI
signature(object = "Gef")
: conversion to a data.table with intradaily values.- as.data.tableM
signature(object = "Gef")
: conversion to a data.table with monthly values.- as.data.tableY
signature(object = "Gef")
: conversion to a data.table with yearly values.- indexD
signature(object = "Gef")
: index of thesolD
slot.- indexI
signature(object = "Gef")
: index of thesolI
slot.- getLat
signature(object = "Gef")
: latitude of the inheritedSol
object.- xyplot
signature(x = "Gef", data = "missing")
: display the time series of daily values of irradiation.- xyplot
signature(x = "formula", data = "Gef")
: displays the contents of aGef
object with thexyplot
method for formulas.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Class "ProdGCPV": performance of a grid connected PV system.
Description
A class containing values of the performance of a grid connected PV system.
Objects from the Class
Objects can be created by prodGCPV
.
Slots
prodI
:Object of class
data.table
created byfProd
. It includes these components:- Tc:
cell temperature,
^{\circ}{\rm C}
.- Voc, Isc, Vmpp, Impp:
open circuit voltage, short circuit current, MPP voltage and current, respectively.
- Vdc, Idc:
voltage and current at the input of the inverter.
- Pdc:
power at the input of the inverter, W
- Pac:
power at the output of the inverter, W
- EffI:
efficiency of the inverter
prodD
:A
data.table
object with daily values of AC (Eac
) and DC (Edc
) energy (Wh), and productivity (Yf
, Wh/Wp) of the system.prodDm
:A
data.table
object with monthly means of daily values of AC and DC energy (kWh), and productivity of the system.prody
:A
data.table
object with yearly sums of AC and DC energy (kWh), and productivity of the system.module
:A list with the characteristics of the module.
generator
:A list with the characteristics of the PV generator.
inverter
:A list with the characteristics of the inverter.
effSys
:A list with the efficiency values of the system.
Besides, this class contains the slots from the
"Meteo"
, "Sol"
,
"G0"
and "Gef"
classes.
Extends
Class "Gef"
, directly.
Class "G0"
, by class "Gef", distance 2.
Class "Meteo"
, by class "Gef", distance 3.
Class "Sol"
, by class "Gef", distance 3.
Methods
- as.data.tableD
signature(object = "ProdGCPV")
: conversion to a data.table with daily values.- as.data.tableI
signature(object = "ProdGCPV")
: conversion to a data.table with intradaily values.- as.data.tableM
signature(object = "ProdGCPV")
: conversion to a data.table with monthly values.- as.data.tableY
signature(object = "ProdGCPV")
: conversion to a data.table with yearly values.- indexD
signature(object = "ProdGCPV")
: index of thesolD
slot.- indexI
signature(object = "ProdGCPV")
: index of thesolI
object.- getLat
signature(object = "ProdGCPV")
: latitude of the inheritedSol
object.- xyplot
signature(x = "ProdGCPV", data = "missing")
: display the time series of daily values.- xyplot
signature(x = "formula", data = "ProdGCPV")
: displays the contents of aProdGCPV
object with thexyplot
method for formulas.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Class "ProdPVPS": performance of a PV pumping system.
Description
Performance of a PV pumping system with a centrifugal pump and a variable frequency converter.
Objects from the Class
Objects can be created by prodPVPS
.
Slots
prodI
:Object of class
data.table
with these components:- Q:
Flow rate, (m³/h)
- Pb, Ph:
Pump shaft power and hydraulical power (W), respectively.
- etam, etab:
Motor and pump efficiency, respectively.
- f:
Frequency (Hz)
prodD
:A
data.table
object with daily values of AC energy (Wh), flow (m³) and productivity of the system.prodDm
:A
data.table
object with monthly means of daily values of AC energy (kWh), flow (m³) and productivity of the system.prody
:A
data.table
object with yearly sums of AC energy (kWh), flow (m³) and productivity of the system.pump
A
list
extracted frompumpCoef
H
Total manometric head (m)
Pg
Nominal power of the PV generator (Wp)
converter
list
containing the nominal power of the frequency converter,Pnom
, andKi
, vector of three values, coefficients of the efficiency curve.effSys
list of numeric values with information about the system losses
Besides, this class contains the slots from the Gef
class.
Extends
Class "Gef"
, directly.
Class "G0"
, by class "Gef", distance 2.
Class "Meteo"
, by class "Gef", distance 3.
Class "Sol"
, by class "Gef", distance 3.
Methods
- as.data.tableD
signature(object = "ProdPVPS")
: conversion to a data.table with daily values.- as.data.tableI
signature(object = "ProdPVPS")
: conversion to a data.table with intradaily values.- as.data.tableM
signature(object = "ProdPVPS")
: conversion to a data.table with monthly values.- as.data.tableY
signature(object = "ProdPVPS")
: conversion to a data.table with yearly values.- indexD
signature(object = "ProdPVPS")
: index of thesolD
slot.- indexI
signature(object = "ProdPVPS")
: index of thesolI
object.- getLat
signature(object = "ProdPVPS")
: latitude of the inheritedSol
object.- xyplot
signature(x = "ProdPVPS", data = "missing")
: display the time series of daily values.- xyplot
signature(x = "formula", data = "ProdPVPS")
: displays the contents of aProdPVPS
object with thexyplot
method for formulas.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Abella, M. A., Lorenzo, E. y Chenlo, F.: PV water pumping systems based on standard frequency converters. Progress in Photovoltaics: Research and Applications, 11(3):179–191, 2003, ISSN 1099-159X.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Class "Shade": shadows in a PV system.
Description
A class for the optimization of shadows in a PV system.
Objects from the Class
Objects can be created by optimShd
.
Slots
FS
:numeric, shadows factor values for each combination of distances.
GRR
:numeric, Ground Requirement Ratio for each combination.
Yf
:numeric, final productivity for each combination.
FS.loess
:A local fitting of
FS
withloess
.Yf.loess
:A local fitting of
Yf
withloess
.modeShd
:character, mode of shadows.
struct
:A list with the dimensions of the structure.
distances
:A data.frame with the distances between structures.
res
numeric, difference (meters) between the different steps of the calculation.
Besides, as a reference, this class includes a ProdGCPV
object
with the performance of a PV systems without shadows.
Extends
Class "ProdGCPV"
, directly.
Class "Gef"
, by class "ProdGCPV", distance 2.
Class "G0"
, by class "ProdGCPV", distance 3.
Class "Meteo"
, by class "ProdGCPV", distance 4.
Class "Sol"
, by class "ProdGCPV", distance 4.
Methods
- as.data.frame
signature(x = "Shade")
: conversion to a data.frame including columns for distances (Lew
,Lns
, andD
) and results (FS
,GRR
andYf
).- shadeplot
signature(x = "Shade")
: display the results of the iteration with a level plot for the two-axis tracking, or with conventional plot for horizontal tracking and fixed systems.- xyplot
signature(x = "formula", data = "Shade")
: display the content of theShade
object with thexyplot
method for formulas.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O.: Grandes Centrales Fotovoltaicas: producción, seguimiento y ciclo de vida. PhD Thesis, UNED, 2008. https://www.researchgate.net/publication/39419806_Grandes_Centrales_Fotovoltaicas_Produccion_Seguimiento_y_Ciclo_de_Vida.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
H-Q curves of a centrifugal pump
Description
Compute and display the H-Q curves of a centrifugal pump fed working at several frequencies, and the iso-efficiency curve as a reference.
Usage
HQCurve(pump)
Arguments
pump |
|
Value
result |
A |
plot |
The plot with several curves labelled with the correspondent frequencies, and the isoefficiency curve (named "ISO"). |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Abella, M. A., Lorenzo, E. y Chenlo, F.: PV water pumping systems based on standard frequency converters. Progress in Photovoltaics: Research and Applications, 11(3):179–191, 2003, ISSN 1099-159X.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Examples
library("data.table")
data(pumpCoef)
CoefSP8A44 <- subset(pumpCoef, Qn == 8&stages == 44)
CurvaSP8A44 <- HQCurve(pump = CoefSP8A44)
Nomogram of a photovoltaic pumping system
Description
This function simulate the performance of a water pump fed by a frequency converter with several PV generators of different size during a day. The result is plotted as a nomogram which relates the nominal power of the PV generator, the total water flow and the total manometric head.
Usage
NmgPVPS(pump, Pg, H, Gd, Ta = 30,
lambda = 0.0045, TONC = 47, eta = 0.95,
Gmax = 1200, t0 = 6, Nm = 6,
title = '', theme = custom.theme.2())
Arguments
pump |
A |
Pg |
Sequence of values of the nominal power of the PV generator (Wp)) |
H |
Sequence of values of the total manometric head (m) |
Gd |
Global irradiation incident on the generator (Wh/m²) |
Ta |
Ambient temperature ( |
lambda |
Power losses factor due to temperature |
TONC |
Nominal operational cell temperature ( |
eta |
Average efficiency of the frequency converter |
Gmax |
Maximum value of irradiance (parameter of the IEC 61725) |
t0 |
Hours from midday to sunset (parameter of the IEC 61725) |
Nm |
Number of samples per hour |
title |
Main title of the plot. |
theme |
Theme of the lattice plot. |
Details
This function computes the irradiance profile according to the IEC 61725 "Analytical Expression for Daily Solar Profiles", which is a common reference in the official documents regarding PV pumping systems.
At this version only pumps from the manufacturer Grundfos are included in pumpCoef
.
Value
I |
|
D |
|
param |
|
plot |
|
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Abella, M. A., Lorenzo, E. y Chenlo, F.: PV water pumping systems based on standard frequency converters. Progress in Photovoltaics: Research and Applications, 11(3):179–191, 2003, ISSN 1099-159X.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Examples
library("data.table")
Pg = seq(4000, 8000,by = 100);
H = seq(120, 150,by = 5);
data(pumpCoef)
CoefSP8A44 <- subset(pumpCoef, Qn == 8 & stages == 44)
NmgSP8A44 <- NmgPVPS(pump = CoefSP8A44,Pg = Pg,H = H,Gd = 5000,
title = 'Choice of Pump', theme = custom.theme())
Correlations between the fraction of diffuse irradiation and the clearness index.
Description
A set of correlations between the fraction of diffuse irradiation and the
clearness index used by fCompD
and fCompI
.
Usage
## Monthly means of daily values
Ktm(sol, G0dm)
FdKtPage(sol, G0dm)
FdKtLJ(sol, G0dm)
## Daily values
Ktd(sol, G0d)
FdKtCPR(sol, G0d)
FdKtEKDd(sol, G0d)
FdKtCLIMEDd(sol, G0d)
## Intradaily values
Kti(sol, G0i)
FdKtEKDh(sol, G0i)
FdKtCLIMEDh(sol, G0i)
FdKtBRL(sol, G0i)
Arguments
sol |
|
G0dm |
A |
G0d |
A |
G0i |
A |
Value
A data.table, with two columns:
Fd |
A numeric, the diffuse fraction. |
Kt |
A numeric, the clearness index(provided by the Kt functions). |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López; The BRL model was suggested by Kevin Ummel.
References
Page, J. K., The calculation of monthly mean solar radiation for horizontal and inclined surfaces from sunshine records for latitudes 40N-40S. En U.N. Conference on New Sources of Energy, vol. 4, págs. 378–390, 1961.
Collares-Pereira, M. y Rabl, A., The average distribution of solar radiation: correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 22:155–164, 1979.
Erbs, D.G, Klein, S.A. and Duffie, J.A., Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 28:293:302, 1982.
De Miguel, A. et al., Diffuse solar irradiation model evaluation in the north mediterranean belt area, Solar Energy, 70:143-153, 2001.
Ridley, B., Boland, J. and Lauret, P., Modelling of diffuse solar fraction with multiple predictors, Renewable Energy, 35:478-482, 2010.
See Also
Examples
library("data.table")
lat <- 37.2
BTd <- fBTd(mode = 'prom')
G0dm <- c(2.766, 3.491, 4.494, 5.912, 6.989, 7.742, 7.919, 7.027, 5.369,
3.562, 2.814, 2.179)*1000;
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2, 17.2,
15.2)
prom <- readG0dm(G0dm = G0dm, Ta = Ta, lat = lat)
sol <- calcSol(lat = lat, BTd = BTd)
Kt <- Ktm(sol = sol, G0dm = prom)
Kt
Page <- FdKtPage(sol = sol, G0dm = prom)
LJ <- FdKtLJ(sol = sol, G0dm = prom)
Monthly <- merge(Page, LJ, by = 'Kt',
suffixes = c('.Page', '.LJ'))
Monthly
xyplot(Fd.Page+Fd.LJ~Kt, data = Monthly,
type = c('l', 'g'), auto.key = list(space = 'right'))
Kt = Ktd(sol = sol, G0d = prom)
Kt
CPR <- FdKtCPR(sol = sol, G0d = prom)
CLIMEDd <- FdKtCLIMEDd(sol = sol, G0d = prom)
Daily <- merge(CPR, CLIMEDd, by = 'Kt',
suffixes = c('.CPR', '.CLIMEDd'))
Daily
xyplot(Fd.CPR + Fd.CLIMEDd ~ Kt, data = Daily,
type = c('l', 'g'), auto.key = list(space = 'right'))
Daily time base
Description
Construction of a daily time base for solar irradiation calculation
Usage
fBTd(mode = "prom",
year = as.POSIXlt(Sys.Date())$year+1900,
start = paste('01-01-',year,sep = ''),
end = paste('31-12-',year,sep = ''),
format = '%d-%m-%Y')
Arguments
mode |
character, controls the type of time base to be
created. With |
year |
which year is to be used for the time base when |
start |
first day of the time base for |
end |
last day of the time base for |
format |
format of |
Details
This function is commonly used inside fSolD
.
Value
This function returns a POSIXct
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
fSolD
,
as.POSIXct
,
seq.POSIXt
.
Examples
library("data.table")
#Average days
fBTd(mode = 'prom')
#The day #100 of the year 2008
BTd = fBTd(mode = 'serie', year = 2008)
BTd[100]
Intra-daily time base
Description
Construction of an intra-daily time base for solar irradiation calculation
Usage
fBTi(BTd, sample = 'hour')
Arguments
BTd |
vector, it may be a result for |
sample |
character, identify the sample of the time set. Its default value is 'hour'. |
Details
This function is commonly used inside fSolI
.
Value
This function returns a POSIXct
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Examples
library("data.table")
#Average days
BTd <- fBTd(mode = 'prom')
#Intradaily base time for the first day
BTi <- fBTi(BTd = BTd[1], sample = 'hour')
BTi
Components of daily global solar irradiation on a horizontal surface
Description
Extract the diffuse and direct components from the daily global irradiation on a horizontal surface by means of regressions between the clearness index and the diffuse fraction parameters.
Usage
fCompD(sol, G0d, corr = "CPR",f)
Arguments
sol |
A |
G0d |
A |
corr |
A character, the correlation between the fraction of diffuse irradiation and the clearness index to be used. With this version several options are available, as described in
If If |
f |
A function defininig a correlation between the fraction of
diffuse irradiation and the clearness index. It is only neccessary when |
Value
A data.table
object which includes:
Fd |
numeric, the diffuse fraction |
Ktd |
numeric, the clearness index |
G0d |
numeric, the global irradiation on a horizontal surface (Wh/m²) |
D0d |
numeric, the diffuse irradiation on a horizontal surface (Wh/m²) |
B0d |
numeric, the direct irradiation on a horizontal surface (Wh/m²) |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Examples
library("data.table")
lat <- 37.2;
BTd <- fBTd(mode = 'serie')
SolD <- fSolD(lat, BTd[100])
G0d <- 5000
fCompD(SolD, G0d, corr = "Page")
fCompD(SolD, G0d, corr = "CPR")
#define a function fKtd with the correlation of CPR
fKTd <- function(sol, G0d){
Kt <- Ktm(sol, G0d)
Fd <- (0.99*(Kt <= 0.17))+ (Kt>0.17)*(1.188 -2.272 * Kt + 9.473 * Kt^2 -
21.856 * Kt^3 + 14.648 * Kt^4)
return(data.table(Fd, Kt))}
#The same as with corr = "CPR"
fCompD(SolD, G0d, corr = "user", f = fKTd)
lat <- -37.2;
SolDs <- fSolD(lat, BTd[283])
G0d <- data.table(Dates = SolDs$Dates, G0d = 5000)
fCompD(SolDs, G0d, corr = "CPR")
lat <- 37.2;
G0dm <- c(2.766,3.491,4.494,5.912,6.989,7.742,7.919,7.027,5.369,3.562,2.814,2.179)*1000;
Rad <- readG0dm(G0dm, lat = lat)
solD <- fSolD(lat, fBTd(mode = 'prom'))
fCompD(solD, Rad, corr = 'Page')
Calculation of solar irradiance on a horizontal surface
Description
From the daily global, diffuse and direct irradiation values supplied by fCompD
, the profile of the global, diffuse and direct irradiance is calculated with the rd
and rg
components of fSolI
.
Usage
fCompI(sol, compD, G0I, corr = 'none', f, filterG0 = TRUE)
Arguments
sol |
A |
compD |
A |
G0I |
A See below for |
corr |
A character, the correlation between the the fraction of
intradaily diffuse irradiation and the clearness index to be
used. It is ignored if With this version several correlations are available, as described in
If If |
f |
A function defininig a correlation between the fraction of
diffuse irradiation and the clearness index. It is only neccessary
when |
filterG0 |
A logical. If |
Value
A data.table
with these components:
kt |
numeric, clearness index. |
fd |
numeric, diffuse fraction. |
G0 |
numeric, global irradiance on a horizontal surface, (W/m²) |
D0 |
numeric, diffuse irradiance on a horizontal surface, (W/m²) |
B0 |
numeric, direct irradiance on a horizontal surface, (W/m²) |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Collares-Pereira, M. y Rabl, A., The average distribution of solar radiation: correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 22:155–164, 1979.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
fCompD
,
fSolI
,
calcSol
,
corrFdKt
.
Examples
library("data.table")
lat <- 37.2
BTd <- fBTd(mode = 'serie')
solD <- fSolD(lat, BTd[100])
solI <- fSolI(solD, sample = 'hour')
G0d <- data.table(Dates = solD$Dates, G0d = 5000)
compD <- fCompD(solD, G0d, corr = "Page")
fCompI(solI, compD)
sol <- calcSol(lat, fBTd(mode = 'prom'), sample = 'hour', keep.night = FALSE)
G0dm <- c(2.766, 3.491, 4.494, 5.912, 6.989, 7.742,
7.919, 7.027, 5.369, 3.562, 2.814, 2.179)*1000
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9,
24.3, 18.2, 17.2, 15.2)
BD <- readG0dm(G0dm = G0dm, Ta = Ta, lat = lat)
compD <- fCompD(sol, BD, corr = 'Page')
compI <- fCompI(sol, compD)
head(compI)
## Use of 'corr'. The help page of calcG0 includes additional examples
## with intradaily data xyplot(fd ~ kt, data = compI)
climed <- fCompI(sol, G0I = compI, corr = 'CLIMEDh')
xyplot(Fd ~ Kt, data = climed)
ekdh <- fCompI(sol, G0I = compI, corr = 'EKDh')
xyplot(Fd ~ Kt, data = ekdh)
brl <- fCompI(sol, G0I = compI, corr = 'BRL')
xyplot(Fd ~ Kt, data = brl)
Solar irradiance on an inclined surface
Description
The solar irradiance incident on an inclined surface is calculated from the direct and diffuse irradiance on a horizontal surface, and from the evolution of the angles of the Sun and the surface. Moreover, the effect of the angle of incidence and dust on the PV module is included to obtain the effective irradiance.
This function is used by the calcGef
function.
Usage
fInclin(compI, angGen, iS = 2, alb = 0.2, horizBright = TRUE, HCPV = FALSE)
Arguments
compI |
A |
angGen |
A |
iS |
integer, degree of dirtiness. Its value must be included in the set (1,2,3,4). |
alb |
numeric, albedo reflection coefficient. Its default value is 0.2 |
horizBright |
logical, if TRUE, the horizon brightness correction proposed by Reind et al. is used. |
HCPV |
logical, if TRUE the diffuse and albedo components of the effective irradiance are set to zero. HCPV is the acronym of High Concentration PV system. |
Details
The solar irradiance incident on an inclined surface can be calculated from the direct and diffuse irradiance on a horizontal surface, and from the evolution of the angles of the Sun and the surface. The transformation of the direct radiation is straightforward since only geometric considerations are needed. However, the treatment of the diffuse irradiance is more complex since it involves the modelling of the atmosphere. There are several models for the estimation of diffuse irradiance on an inclined surface. The one which combines simplicity and acceptable results is the proposal of Hay and McKay. This model divides the diffuse component in isotropic and anisotropic whose values depends on a anisotropy index.
On the other hand, the effective irradiance, the fraction of the incident irradiance that reaches the cells inside a PV module, is calculated with the losses due to the angle of incidence and dirtiness. This behaviour can be simulated with a model proposed by Martin and Ruiz requiring information about the angles of the surface and the level of dirtiness (iS
) .
Value
A data.table
object with these components:
Bo |
Extra-atmospheric irradiance on the inclined surface (W/m²) |
Bn |
Direct normal irradiance (W/m²) |
G , B , D , Di , Dc , R |
Global, direct, diffuse (total, isotropic and anisotropic) and albedo irradiance incident on an inclined surface (W/m²) |
Gef , Bef , Def , Dief , Dcef , Ref |
Effective global, direct, diffuse (total, isotropic and anisotropic) and albedo irradiance incident on an inclined surface (W/m²) |
FTb , FTd , FTr |
Factor of angular losses for the direct, diffuse and albedo components |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Hay, J. E. and McKay, D. C.: Estimating Solar Irradiance on Inclined Surfaces: A Review and Assessment of Methodologies. Int. J. Solar Energy, (3):pp. 203, 1985.
Martin, N. and Ruiz, J.M.: Calculation of the PV modules angular losses under field conditions by means of an analytical model. Solar Energy Materials & Solar Cells, 70:25–38, 2001.
D. T. Reindl and W. A. Beckman and J. A. Duffie: Evaluation of hourly tilted surface radiation models, Solar Energy, 45:9-17, 1990.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Performance of a PV system
Description
Simulate the behaviour of a grid connected PV system under different
conditions of irradiance and temperature. This function is used by the
prodGCPV
function.
Usage
fProd(inclin, module, generator, inverter, effSys)
Arguments
inclin |
A |
module |
list of numeric values with information about the PV module,
|
generator |
list of numeric values with information about the generator,
|
inverter |
list of numeric values with information about the DC/AC inverter,
|
effSys |
list of numeric values with information about the system losses,
|
Value
If inclin
is data.table
or Gef
object, the result
is a data.table
object with these components:
Tc |
cell temperature, |
Voc , Isc , Vmpp , Impp |
open circuit voltage, short circuit current, MPP voltage and current, respectively, in the conditions of irradiance and temperature provided by |
Vdc , Idc |
voltage and current at the input of the inverter. If no voltage limitation occurs (according to the values of |
Pdc |
power at the input of the inverter, W |
Pac |
power at the output of the inverter, W |
EffI |
efficiency of the inverter |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Jantsch, M., Schmidt, H. y Schmid, J.: Results on the concerted action on power conditioning and control. 11th European photovoltaic Solar Energy Conference, 1992.
Baumgartner, F. P., Schmidt, H., Burger, B., Bründlinger, R., Haeberlin, H. and Zehner, M.: Status and Relevance of the DC Voltage Dependency of the Inverter Efficiency. 22nd European Photovoltaic Solar Energy Conference, 2007.
Alonso Garcia, M. C.: Caracterización y modelado de asociaciones de dispositivos fotovoltaicos. PhD Thesis, CIEMAT, 2005.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Examples
library("data.table")
inclin <- data.table(Gef = c(200,400,600,800,1000),Ta = 25)
#using default values
fProd(inclin)
#Using a matrix for Ki (voltage dependence)
inv1 <- list(Ki = rbind(c(-0.00019917, 7.513e-06, -5.4183e-09),
c(0.00806, -4.161e-06, 2.859e-08),
c(0.02118, 3.4002e-05, -4.8967e-08)))
fProd(inclin, inverter = inv1)
#Voltage limits of the inverter
inclin <- data.table(Gef = 800,Ta = 30)
gen1 <- list(Nms = 10, Nmp = 11)
prod <- fProd(inclin,generator = gen1)
print(prod)
with(prod, Vdc * Idc / (Vmpp * Impp))
Performance of a centrifugal pump
Description
Compute the performance of the different parts of a centrifugal pump fed by a frequency converter following the affinity laws.
Usage
fPump(pump, H)
Arguments
pump |
|
H |
Total manometric head (m). |
Value
lim |
Range of values of electrical power input |
fQ |
Function constructed with |
fPb |
Function constructed with |
fPh |
Function constructed with |
fFreq |
Function constructed with |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Abella, M. A., Lorenzo, E. y Chenlo, F.: PV water pumping systems based on standard frequency converters. Progress in Photovoltaics: Research and Applications, 11(3):179–191, 2003, ISSN 1099-159X.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
NmgPVPS
, prodPVPS
, pumpCoef
, splinefun
.
Examples
library("data.table")
data(pumpCoef)
CoefSP8A44 <- subset(pumpCoef, Qn == 8 & stages == 44)
fSP8A44 <- fPump(pump = CoefSP8A44,H = 40)
SP8A44 = with(fSP8A44,{
Pac = seq(lim[1],lim[2],by = 100)
Pb = fPb(Pac)
etam = Pb/Pac
Ph = fPh(Pac)
etab = Ph/Pb
f = fFreq(Pac)
Q = fQ(Pac)
result = data.frame(Q,Pac,Pb,Ph,etam,etab,f)})
#Efficiency of the motor, pump and the motor-pump
library("latticeExtra")
SP8A44$etamb = with(SP8A44,etab*etam)
lab = c(expression(eta[motor]), expression(eta[pump]), expression(eta[mp]))
p <- xyplot(etam + etab + etamb ~ Pac,data = SP8A44,type = 'l', ylab = 'Efficiency')
p + glayer(panel.text(x[1], y[1], lab[group.number], pos = 3))
#Mechanical, hydraulic and electrical power
lab <- c(expression(P[pump]), expression(P[hyd]))
p <- xyplot(Pb + Ph ~ Pac,data = SP8A44,type = 'l', ylab = 'Power (W)', xlab = 'AC Power (W)')
p + glayer(panel.text(x[length(x)], y[length(x)], lab[group.number], pos = 3))
#Flow and electrical power
xyplot(Q ~ Pac,data = SP8A44,type = 'l')
Daily apparent movement of the Sun from the Earth
Description
Compute the daily apparent movement of the Sun from the Earth. This movement is mainly described (for the simulation of photovoltaic systems) by the declination angle, the sunrise angle and the daily extra-atmospheric irradiation.
Usage
fSolD(lat, BTd, method = 'michalsky')
Arguments
lat |
Latitude (degrees) of the point of the Earth where calculations are needed. It is positive for locations above the Equator. |
BTd |
Daily temporal base, a |
method |
|
Value
A data.table
object with these components:
lat |
Latitude (degrees) |
decl |
Declination angle (radians) for each day of year in |
eo |
Factor of correction due the eccentricity of orbit of the Earth around the Sun. |
ws |
Sunrise angle (in radians) for each day of year. Due to the convention which considers that the solar hour angle is negative before midday, this angle is negative. |
Bo0d |
Extra-atmospheric daily irradiation (watt-hour per squared meter) incident on a horizontal surface |
EoT |
Equation of Time. |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Cooper, P.I., Solar Energy, 12, 3 (1969). "The Absorption of Solar Radiation in Solar Stills"
Spencer, Search 2 (5), 172, https://www.mail-archive.com/sundial@uni-koeln.de/msg01050.html
Michalsky, J., 1988: The Astronomical Almanac's algorithm for approximate solar position (1950-2050), Solar Energy 40, 227-235
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
Examples
library("data.table")
BTd <- fBTd(mode = 'serie')
lat <- 37.2
(fSolD(lat, BTd[100]))
(fSolD(lat, BTd[100], method = 'strous'))
(fSolD(lat, BTd[100], method = 'spencer'))
(fSolD(lat, BTd[100], method = 'cooper'))
lat <- -37.2
(fSolD(lat, BTd[283]))
#Solar angles along the year
SolD <- fSolD(lat, BTd = fBTd())
xyplot(SolD)
#Calculation of the daylength for several latitudes
library("latticeExtra")
Lats <- c(-60, -40, -20, 0, 20, 40, 60)
NomLats <- ifelse(Lats > 0, paste(Lats,'N', sep = ''),
paste(abs(Lats), 'S', sep = ''))
NomLats[Lats == 0] <- '0'
BTd <- fBTd(mode = 'serie')
mat <- matrix(nrow = length(BTd), ncol = length(Lats))
colnames(mat) <- NomLats
WsZ <- data.table(Dates = BTd, mat)
for (i in seq_along(Lats)){
SolDaux <- fSolD(lat = Lats[i], BTd = fBTd(mode = 'serie'));
WsZ[,i+1] <- r2h(2*abs(SolDaux$ws))}
p = xyplot(`60S` + `40S` + `20S` + `0` + `20N` + `40N` + `60N` ~ Dates, data = WsZ, type = "l",
ylab = expression(omega[s] * (h)))
plab = p+glayer(panel.text(x[1], y[1], NomLats[group.number], pos = 2))
print(plab)
Instantaneous apparent movement of the Sun from the Earth
Description
Compute the angles which describe the intradaily apparent movement of the Sun from the Earth.
Usage
fSolI(solD, sample = 'hour', BTi, EoT = TRUE, keep.night = TRUE, method = 'michalsky')
Arguments
solD |
A |
sample |
Increment of the intradaily sequence. It is a character
string, containing one of ‘"sec"’, ‘"min"’, ‘"hour"’. This can
optionally be preceded by a (positive or negative) integer and a
space, or followed by ‘"s"’. It is used by It is not considered when |
BTi |
Intradaily time base, a |
EoT |
logical, if |
keep.night |
logical, if |
method |
|
Value
A data.table
object is returned with these components:
lat |
numeric, latitude (degrees) |
w |
numeric, solar hour angle (radians) |
aman |
logical, |
cosThzS |
numeric, cosine of the solar zenith angle |
AzS |
numeric, solar acimuth angle (radians) |
AlS |
numeric, solar elevation angle (radians) |
Bo0 |
numeric, extra-atmospheric irradiance (W/m2) |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Cooper, P.I., Solar Energy, 12, 3 (1969). "The Absorption of Solar Radiation in Solar Stills"
Spencer, Search 2 (5), 172, https://www.mail-archive.com/sundial@uni-koeln.de/msg01050.html
Michalsky, J., 1988: The Astronomical Almanac's algorithm for approximate solar position (1950-2050), Solar Energy 40, 227-235
Collares-Pereira, M. y Rabl, A., The average distribution of solar radiation: correlations between diffuse and hemispherical and between daily and hourly insolation values. Solar Energy, 22:155–164, 1979.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Examples
library("data.table")
###Angles for one day
BTd <- fBTd(mode = 'serie')
#North hemisphere
lat <- 37.2
solD <- fSolD(lat,BTd[100])
solI <- fSolI(solD, sample = 'hour')
print(solI)
#South hemisphere
lat <- -37.2;
solDs <- fSolD(lat,BTd[283])
solIs <- fSolI(solDs, sample = 'hour')
print(solIs)
###Angles for the 12 average days
lat <- 37.2;
solD <- fSolD(lat,BTd = fBTd(mode = 'prom'))
solI <- fSolI(solD, sample = '10 min', keep.night = FALSE)
###Solar elevation angle vs. azimuth.
#This kind of graphics is useful for shadows calculations
library("latticeExtra")
mon <- month.abb
p <- xyplot(r2d(AlS)~r2d(AzS),
groups = month(Dates),
data = solI, type = 'l', col = 'black',
xlab = expression(psi[s]),ylab = expression(gamma[s]))
plab <- p + glayer({
idx <- round(length(x)/2+1)
panel.text(x[idx], y[idx], mon[group.value], pos = 3, offset = 0.2, cex = 0.8)})
print(plab)
Shadows on PV systems
Description
Compute the shadows factor for two-axis and horizontal N-S axis trackers and fixed surfaces.
Usage
fSombra(angGen, distances, struct, modeTrk = 'fixed',prom = TRUE)
fSombra6(angGen,distances,struct,prom = TRUE)
fSombra2X(angGen,distances,struct)
fSombraHoriz(angGen, distances,struct)
fSombraEst(angGen, distances,struct)
Arguments
angGen |
A |
distances |
|
struct |
|
modeTrk |
character, to be chosen from |
prom |
logical, only needed for two-axis tracker mode. If |
Details
fSombra
is only a wrapper for fSombra6
(two-axis trackers), fSombraEst
(fixed systems) and fSombraHoriz
(horizontal N-S axis trackers). Depending on the value of modeTrk
the corresponding function is selected.
fSombra6
calculates the shadows factor in a set of six two-axis trackers. If distances
has only one row, this function constructs a symmetric grid around a tracker located at (0,0,0). These five trackers are located at (-Lew, Lns, H), (0, Lns, H), (Lew, Lns, H), (-Lew, 0, H) and (Lns, 0, H). It is possible to define a irregular grid around (0,0,0) including five rows in distances
. When prom = TRUE
the shadows factor for each of the six trackers is calculated. Then, according to the distribution of trackers in the plant defined by struct$Nrow
and struct$Ncol
, a weighted average of the shadows factors is the result.
It is important to note that the distances are defined between axis for trackers and between similar points of the structure for fixed surfaces.
Value
data.table
including angGen
and a variable named FS
, which is the shadows factor. This factor is the ratio between the area of the generator affected by shadows and the total area. Therefore its value is 1 when the PV generator is completely shadowed.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O.: Grandes Centrales Fotovoltaicas: producción, seguimiento y ciclo de vida. PhD Thesis, UNED, 2008. https://www.researchgate.net/publication/39419806_Grandes_Centrales_Fotovoltaicas_Produccion_Seguimiento_y_Ciclo_de_Vida.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
calcShd
, optimShd
, fTheta
, calcSol
Examples
library("data.table")
lat <- 37.2;
sol <- calcSol(lat, fBTd(mode = 'prom'), sample = '10 min', keep.night = FALSE)
angGen <- fTheta(sol, beta = 35);
Angles <- merge(as.data.tableI(sol), angGen)
###Two-axis tracker
#Symmetric grid
distances = data.table(Lew = 40,Lns = 30,H = 0)
struct = list(W = 23.11, L = 9.8, Nrow = 2, Ncol = 8)
ShdFactor <- fSombra6(Angles, distances, struct, prom = FALSE)
Angles$FS = ShdFactor
xyplot(FS ~ w, groups = month(Dates), data = Angles,
type = 'l',
auto.key = list(space = 'right',
lines = TRUE,
points = FALSE))
#Symmetric grid defined with a five rows data.frame
distances = data.table(Lew = c(-40,0,40,-40,40),
Lns = c(30,30,30,0,0),
H = 0)
ShdFactor2 <- fSombra6(Angles, distances, struct,prom = FALSE)
#of course, with the same result
identical(ShdFactor, ShdFactor2)
Intradaily evolution of ambient temperature
Description
From the maximum and minimum daily values of ambient temperature, its evolution its calculated through a combination of cosine functions (ESRA method)
Usage
fTemp(sol, BD)
Arguments
sol |
|
BD |
A |
Details
The ESRA method estimates the dependence of the temperature on the time of the day (given as the local solar time) from only two inputs: minimum and maximum daily temperatures. It assumes that the temperature daily profile can be described using three piecewise cosine functions, dividing the day into three periods: from midnight to sunrise, from sunrise to the time of peak temperature (3 hours after midday), and to midnight.
Value
A data.table
object with the profile of the ambient temperature.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Huld, T. , Suri, M., Dunlop, E. D., and Micale F., Estimating average daytime and daily temperature profiles within Europe, Environmental Modelling & Software 21 (2006) 1650-1661.
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Angle of incidence of solar irradiation on a inclined surface
Description
The orientation, azimuth and incidence angle are calculated from the
results of fSolI
or calcSol
and from the information supplied by the
arguments beta
and alpha
when the surface is fixed
(modeTrk = 'fixed')
or the movement equations when a tracking
surface is chosen (modeTrk = 'horiz'
or modeTrk = 'two')
.
Besides, the modified movement of a horizontal NS tracker due to the
backtracking strategy is calculated if BT = TRUE
with information
about the tracker and the distance between the trackers included in the
system.
This function is used by the calcGef
function.
Usage
fTheta(sol, beta, alpha = 0, modeTrk = "fixed", betaLim = 90,
BT = FALSE, struct, dist)
Arguments
sol |
|
beta |
numeric, inclination angle of the surface (degrees). It is only needed when |
alpha |
numeric, azimuth angle of the surface (degrees). It is
measured from the south ( |
modeTrk |
character, to be chosen from |
betaLim |
numeric, maximum value of the inclination angle for a tracking surface. Its default value is 90 (no limitation)) |
BT |
logical, |
struct |
Only needed when |
dist |
Only needed when |
Value
A data.table
object with these components:
Beta |
numeric, inclination angle of the surface (radians). When |
Alpha |
numeric, azimuth angle of the surface (radians). When |
cosTheta |
numeric, cosine of the incidence angle of the solar irradiance on the surface |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Panico, D., Garvison, P., Wenger, H. J., Shugar, D., Backtracking: a novel strategy for tracking PV systems, Photovoltaic Specialists Conference, 668-673, 1991
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Local time, mean solar time and UTC time zone.
Description
The function local2Solar
converts the time zone of a POSIXct
object to
the mean solar time and set its time zone to UTC as a synonym of mean
solar time. It includes two corrections:
the difference of longitudes between the location and the time zone, and
the daylight saving time.
The function lonHH
calculates the longitude (radians) of a time zone.
Usage
local2Solar(x, lon = NULL)
lonHH(tz)
Arguments
x |
a |
lon |
A numeric value of the longitude (degrees) of the
location. If |
tz |
A character, a time zone as documented in https://en.wikipedia.org/wiki/List_of_tz_database_time_zones. |
Details
Since the result of local2Solar
is the mean solar time, the
Equation of Time correction is not calculated with this function. The
eot
function includes this correction if desired.
Value
The function local2Solar
produces a POSIXct
object
with its time zone set to UTC.
The function lonHH
gives a numeric value.
Note
It is important to note that the solaR2
package sets the system
time zone to UTC
with Sys.setenv(TZ = 'UTC')
.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
Examples
library("data.table")
t.local <- as.POSIXct("2006-01-08 10:07:52", tz = 'Europe/Madrid')
##The local time zone and the location have the same longitude (15 degrees)
local2Solar(t.local)
##But Madrid is at lon = -3
local2Solar(t.local, lon = -3)
##Daylight saving time
t.local.dst <- as.POSIXct("2006-07-08 10:07:52", tz = 'Europe/Madrid')
local2Solar(t.local.dst)
local2Solar(t.local.dst, lon = -3)
Small utilities for difftime objects.
Description
diff2Hours
converts a difftime
object into its numeric
value with units = 'hours'
.
char2diff
converts a character description into a
difftime
object, following the code of
seq.POSIXt
.
sample2Hours
calculates the sampling time in hours described by a character
or a difftime
.
P2E
(power to energy) sums a series of power values (for
example, irradiance) to obtain energy aggregation (for example,
irradiation) using sample2Hours
for the units conversion.
Usage
diff2Hours(by)
char2diff(by)
sample2Hours(by)
P2E(x, by)
Arguments
by |
A character for |
x |
A numeric vector. |
Value
A numeric value or a difftime
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
See Also
Examples
library("data.table")
char2diff('min')
char2diff('2 s')
sample2Hours('s')
sample2Hours('30 m')
by1 <- char2diff('10 min')
sample2Hours(by1)
Solar angles
Description
A set of functions that compute the apparent movement of the Sun from the Earth.
Usage
## Declination
declination(d, method = 'michalsky')
## Eccentricity
eccentricity(d, method = 'michalsky')
## Equation of time
eot(d)
## Solar time
sunrise(d, lat, method = 'michalsky',
decl = declination(d, method = method))
## Extraterrestrial irradiation
bo0d(d, lat, method = 'michalsky',
decl = declination(d, method = method),
eo = eccentricity(d, method = method),
ws = sunrise(d, lat, method = method))
## Sun hour angle
sunHour(d, BTi, sample = 'hour', EoT = TRUE,
method = 'michalsky',
eqtime = eot(d))
## Cosine of the zenith angle
zenith(d, lat, BTi, sample = 'hour', method = 'michalsky',
decl = declination(d, method = method),
w = sunHour(d, BTi, sample, method = method))
## Azimuth angle
azimuth(d, lat, BTi, sample = 'hour', method = 'michalsky',
decl = declination(d, method = method),
w = sunHour(d, BTi, sample, method = method),
cosThzS = zenith(d, lat, BTi, sample,
method = method,
decl = decl,
w = w))
Arguments
d |
Date, a daily time base, it may be the result of
|
method |
character, method for the sun geometry calculations, to be chosen from 'cooper', 'spencer', 'michalsky' and 'strous'. See references for details. |
lat |
numeric, latitude (degrees) of the point of the Earth where calculations are needed. It is positive for locations above the Equator. |
sample |
Character, increment of the intradaily sequence. |
BTi |
|
EoT |
logical, if |
decl , eo , ws , eqtime , w , cosThzS |
Arguments that compute the variables they reference (default value). It can be replaced with previously calculated values to avoid calculating the same variable twice. |
Value
A vector with the calculated elements. Its size varies depending on whether the calculations are daily or intradaily.
Author(s)
Francisco Delgado López, Oscar Perpiñán Lamigueiro.
References
Cooper, P.I., Solar Energy, 12, 3 (1969). "The Absorption of Solar Radiation in Solar Stills"
Spencer, Search 2 (5), 172, https://www.mail-archive.com/sundial@uni-koeln.de/msg01050.html
Michalsky, J., 1988: The Astronomical Almanac's algorithm for approximate solar position (1950-2050), Solar Energy 40, 227-235
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Examples
library("data.table")
d = fBTd(mode = 'serie')[100]
decl = declination(d, method = 'michalsky')
decl
w = sunHour(d, sample = 'hour', method = 'michalsky')
w
cosThzS = zenith(d, lat = 37.2, sample = 'hour',
method = 'michalsky',
decl = decl,
w = w)
cosThzS
Conversion between angle units.
Description
Several small functions to convert angle units.
Usage
d2r(x)
r2d(x)
h2r(x)
h2d(x)
r2h(x)
d2h(x)
r2sec(x)
Arguments
x |
A numeric value. |
Value
A numeric value:
- d2r:
Degrees to radians.
- r2d:
Radians to degrees.
- h2r:
Hours to radians.
- r2h:
Radians to hours.
- h2d:
Hours to degrees.
- d2h:
Degrees to hours.
- r2sec:
Radians to seconds.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Utilities for time indexes.
Description
Several small functions to extract information from POSIXct
indexes.
Usage
hms(x)
doy(x)
dom(x)
dst(x)
truncDay(x)
Arguments
x |
A |
Value
doy
and dom
provide the (numeric) day of year and day of month,
respectively.
hms
gives the numeric value
hour(x)+minute(x)/60+second(x)/3600
dst
is +1 if the Daylight Savings Time flag is in force,
zero if not, -1 if unknown (DateTimeClasses
).
truncDay
truncates the POSIXct
object towards the day.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
See Also
as.POSIXct
Losses of a GCPV system
Description
The function losses
calculates the yearly losses
from a Gef
or a ProdGCPV
object. The function
compareLosses
compares the losses from several ProdGCPV
objects and plots the result with dotplot
.
Usage
compareLosses(...)
losses(object)
Arguments
... |
A list of |
object |
An object of |
Methods
signature(... = "Gef")
shadows and angle of incidence (
AoI
) losses.signature(... = "ProdGCPV")
shadows,
AoI
, generator (mainly temperature), DC and AC system (as detailed ineffSys
offProd
) and inverter losses.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
See Also
Examples
library("data.table")
setDTthreads(2)
lat <- 37.2;
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562, 2814,
2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2, 17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
###Comparison of different tracker methods
ProdFixed <- prodGCPV(lat = lat,dataRad = prom, keep.night = FALSE)
Prod2x <- prodGCPV(lat = lat, dataRad = prom, modeTrk = 'two', keep.night = FALSE)
ProdHoriz <- prodGCPV(lat = lat,dataRad = prom, modeTrk = 'horiz', keep.night = FALSE)
losses(ProdFixed)
losses(as(ProdFixed, 'Gef'))
compareLosses(ProdFixed, Prod2x, ProdHoriz)
Methods for Function as.data.tableD
Description
Convert a Sol
, G0
, Gef
,
ProdGCPV
or ProdPVPS
object into a
data.table
object with daily values.
Usage
## S4 method for signature 'Sol'
as.data.tableD(object, complete=FALSE, day=FALSE)
Arguments
object |
A |
complete |
A logical. |
day |
A logical. |
Methods
signature(object = "Sol")
Conversion to a
data.table
object with the content of thesolD
slot. Ifday=TRUE
(default isFALSE
), the result includes three columns namedmonth
,day
(day of the year) andyear
.signature(object = "G0")
If
complete=FALSE
(default) the result includes only the columns ofG0d
,D0d
andB0d
from theG0D
slot. Ifcomplete=TRUE
it returns the contents of the slotssolD
andG0D
.signature(object = "Gef")
If
complete=FALSE
(default) the result includes only the columns ofGefd
,Defd
andBefd
from theGefD
slot. Ifcomplete=TRUE
it returns the contents of the slotssolD
,G0D
andGefD
signature(object = "ProdGCPV")
If
complete=FALSE
(default) the result includes only the columns ofEac
,Edc
andYf
from theprodD
slot. Ifcomplete=TRUE
it returns the contents of the slotssolD
,G0D
,GefD
andprodD
.signature(object = "ProdPVPS")
If
complete=FALSE
(default) the result includes only the columns ofEac
,Qd
andYf
from theprodD
slot. Ifcomplete=TRUE
it returns the contents of the slotssolD
,G0D
,GefD
andprodD
.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Examples
library("data.table")
lat = 37.2
BTd = fBTd(mode = 'prom')
sol = calcSol(lat, BTd)
solD = as.data.tableD(sol)
solD
solD2 = as.data.tableD(sol, day = TRUE)
solD2
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562,
2814, 2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2,
17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
prodfixed = prodGCPV(lat, dataRad = prom)
prodD = as.data.tableD(prodfixed, complete = TRUE, day = TRUE)
prodD
Methods for Function as.data.tableI
Description
Convert a Sol
, G0
, Gef
,
ProdGCPV
or ProdPVPS
object into a
data.table
object with daily values.
Usage
## S4 method for signature 'Sol'
as.data.tableI(object, complete=FALSE, day=FALSE)
Arguments
object |
A |
complete |
A logical. |
day |
A logical. |
Methods
signature(object = "Sol")
If
complete=FALSE
andday=FALSE
(default) the result includes only the content of thesolI
slot. Ifcomplete=TRUE
the contents of thesolD
slots are included.signature(object = "G0")
If
complete=FALSE
andday=FALSE
(default) the result includes only the columns ofG0
,D0
andB0
of theG0I
slot. Ifcomplete=TRUE
it returns the contents of the slotsG0I
andsolI
. Ifday=TRUE
the daily values (slotsG0D
andsolD
) are also included.)signature(object = "Gef")
If
complete=FALSE
andday=FALSE
(default) the result includes only the columns ofGef
,Def
andBef
of theGefI
slot. Ifcomplete=TRUE
it returns the contents of the slotsGefI
,G0I
andsolI
. Ifday=TRUE
the daily values (slotsGefD
,G0D
andsolD
) are also included.)signature(object = "ProdGCPV")
If
complete=FALSE
andday=FALSE
(default) the result includes only the columns ofPac
andPdc
of theprodI
slot. Ifcomplete=TRUE
it returns the contents of the slotsprodI
,GefI
,G0I
andsolI
. Ifday=TRUE
the daily values (slotsprodD
,GefD
,G0D
andsolD
) are also included.)signature(object = "ProdPVPS")
If
complete=FALSE
andday=FALSE
(default) the result includes only the columns ofPac
andQ
of theprodI
slot. Ifcomplete=TRUE
it returns the contents of the slotsprodI
,GefI
,G0I
andsolI
. Ifday=TRUE
the daily values (slotsprodD
,GefD
,G0D
andsolD
) are also included.)
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Examples
library("data.table")
lat = 37.2
BTd = fBTd(mode = 'prom')[1]
sol = calcSol(lat, BTd, keep.night = FALSE)
solI = as.data.tableI(sol)
solI
solI2 = as.data.tableI(sol, day = TRUE)
solI2
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562,
2814, 2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2,
17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
prodfixed = prodGCPV(lat, dataRad = prom)
prodI = as.data.tableI(prodfixed, complete = TRUE, day = TRUE)
prodI
Methods for Function as.data.tableM
Description
Convert a G0
, Gef
,
ProdGCPV
or ProdPVPS
object into a
as.data.table
object with monthly average of daily values.
Usage
## S4 method for signature 'G0'
as.data.tableM(object, complete=FALSE, day=FALSE)
Arguments
object |
A |
complete |
A logical. |
day |
A logical |
Methods
signature(object = "G0")
The result is the
G0dm
slot. Ifday=TRUE
(default isFALSE
), the result includes two columns namesmonth
andyear
.signature(object = "Gef")
If
complete=FALSE
(default) the result is the slotGefdm
. Ifcomplete=TRUE
it returns the slotG0dm
.signature(object = "ProdGCPV")
If
complete=FALSE
(default) the result is theprodDm
slot. Ifcomplete=TRUE
the result includes the slotsG0dm
andGefdm
.signature(object = "ProdPVPS")
If
complete=FALSE
(default) the result is theprodDm
slot. Ifcomplete=TRUE
the result includes the slotsG0dm
andGefdm
.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Examples
library("data.table")
lat <- 37.2
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562,
2814, 2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2,
17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
prodfixed <- prodGCPV(lat, dataRad = prom)
prodM <- as.data.tableM(prodfixed, complete = TRUE, day = TRUE)
prodM
Methods for Function as.data.tableY
Description
Convert a G0
, Gef
,
ProdGCPV
or ProdPVPS
object into a
data.table
object with yearly values.
Usage
## S4 method for signature 'G0'
as.data.tableY(object, complete=FALSE, day=FALSE)
Arguments
object |
A |
complete |
A logical. |
day |
A logical. |
Methods
signature(object = "G0")
The result is the
G0y
slot. Ifday = TRUE
(default isFALSE
), the result includes a column namedyear
.signature(object = "Gef")
If
complete=FALSE
(default) the result is the slotGefy
. Ifcomplete=TRUE
it returns the slotG0y
.signature(object = "ProdGCPV")
If
complete=FALSE
(default) the result is theprody
slot. Ifcomplete=TRUE
the result includes the slotsG0y
andGefy
.signature(object = "ProdPVPS")
If
complete=FALSE
(default) the result is theprody
slot. Ifcomplete=TRUE
the result includes the slotsG0y
andGefy
.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Examples
library("data.table")
lat <- 37.2
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562,
2814, 2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2,
17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
prodfixed = prodGCPV(lat, dataRad = prom)
prodY = as.data.tableY(prodfixed, complete = TRUE, day = TRUE)
prodY
Compare G0, Gef and ProdGCPV objects
Description
Compare and plot the yearly values of several objects.
Usage
## S4 method for signature 'G0'
compare(...)
Arguments
... |
A list of objects to be compared. |
Methods
The class of the first element of ...
is used to determine the
suitable method. The result is plotted with dotplot
:
signature(... = "G0")
yearly values of
G0d
,B0d
andD0d
.signature(... = "Gef")
yearly values of
Gefd
,Befd
andDefd
.signature(... = "ProdGCPV")
yearly values of
Yf
,Gefd
andG0d
.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
See Also
Examples
library("data.table")
lat <- 37.2;
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562, 2814,
2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2, 17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
###Comparison of different tracker methods
ProdFixed <- prodGCPV(lat = lat, dataRad = prom, keep.night = FALSE)
Prod2x <- prodGCPV(lat = lat, dataRad = prom, modeTrk = 'two', keep.night = FALSE)
ProdHoriz <- prodGCPV(lat = lat, dataRad = prom, modeTrk = 'horiz', keep.night = FALSE)
compare(ProdFixed, Prod2x, ProdHoriz)
##The first element rules the method
GefFixed <- as(ProdFixed, 'Gef')
compare(GefFixed, Prod2x, ProdHoriz)
Methods for function getData
Description
Meteorological source data of a Meteo
(or extended) object.
Methods
signature(object = "Meteo")
returns the meteorological source data of the slot
data
of the object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Methods for function getG0
Description
Global irradiation source data of a Meteo
(or extended) object.
Methods
signature(object = "Meteo")
returns the global irradiation values stored in a
Meteo
object.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Methods for Function getLat
Description
Latitude angle of solaR
objects.
Usage
getLat(object, units='rad')
Arguments
object |
A |
units |
A character, 'rad' or 'deg'. |
Methods
This function returns the latitude angle in radians
(units='rad'
, default) or degrees (units='deg'
).
signature(object = "Meteo")
Value of the
latData
slot, which is defined by the argumentlat
of thereadG0dm
andreadBDd
functions, or by thelat
component of thedataRad
object passed tocalcG0
(or equivalent) . It is the latitude of the meteorological station (or equivalent) which provided the irradiation source data. It may be different from the value used for the calculation procedure.signature(object = "Sol")
Value of the
lat
slot, which is defined by the argumentlat
of thecalcSol
function. It is the value used through the calculation procedure.signature(object = "G0")
same as for the
Sol
class.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Methods for Function indexD
Description
Daily time index of solaR
objects.
Methods
signature(object = "Meteo")
returns the index of the
data
slot (adata.table
object.)signature(object = "Sol")
returns the index of the
solD
slot (adata.table
object.)signature(object = "G0")
same as for
object='Sol'
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Methods for Function indexI
Description
Intra-daily time index of solaR
objects.
Methods
signature(object = "Sol")
returns the index of the slot
solI
(adata.table
object).
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Methods for function levelplot.
Description
Methods for function levelplot
and zoo
and solaR
objects.
Methods
signature(x = "formula", data = "Meteo")
:-
The
Meteo
object is converted into adata.table
object, and the previous method is used. signature(x = "formula", data = "Sol")
:idem
signature(x = "formula", data = "G0")
:idem
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Merge solaR objects
Description
Merge the daily time series of solaR objects
Usage
## S4 method for signature 'G0'
mergesolaR(...)
Arguments
... |
A list of objects to be merged. |
Methods
The class of the first element of ...
is used to
determine the suitable method. Only the most important daily variable is
merged, depending on the class of the objects:
signature(... = "Meteo")
G0
signature(... = "G0")
G0d
signature(... = "Gef")
Gefd
signature(... = "ProdGCPV")
Yf
signature(... = "ProdPVPS")
Yf
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Examples
library("data.table")
lat <- 37.2;
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562, 2814,
2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2, 17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
###Different tracker methods
ProdFixed <- prodGCPV(lat = lat,dataRad = prom, keep.night = FALSE)
Prod2x <- prodGCPV(lat = lat, dataRad = prom, modeTrk = 'two', keep.night = FALSE)
ProdHoriz <- prodGCPV(lat = lat,dataRad = prom, modeTrk = 'horiz', keep.night = FALSE)
prod <- mergesolaR(ProdFixed, Prod2x, ProdHoriz)
head(prod)
Methods for Function shadeplot
Description
Visualization of the content of a Shade
object.
Methods
signature(x = "Shade")
display the results of the iteration with a level plot for the two-axis tracking, or with conventional plot for horizontal tracking and fixed systems.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Methods for extracting a time window
Description
Method for extracting the subset of a solaR
object
whose daily time index (indexD
) is comprised between the
times i
and j
.
Usage
## S4 method for signature 'Meteo'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'Sol'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'G0'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'Gef'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'ProdGCPV'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'ProdPVPS'
x[i, j, ..., drop = TRUE]
Arguments
x |
A |
i |
an index/time value ( |
j |
an index/time value ( |
... , drop |
Additional arguments for |
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
See Also
Examples
library("data.table")
lat <- 37.2
sol <- calcSol(lat, BTd = fBTd(mode = 'serie'))
range(indexD(sol))
start <- as.Date(indexD(sol)[1])
end <- start + 30
solWindow <- sol[start, end]
range(indexD(solWindow))
Exporter of solaR results
Description
Exports the results of the solaR
functions as text
files using write.table
Usage
## S4 method for signature 'Sol'
writeSolar(object, file, complete = FALSE,
day = FALSE, timeScales = c('i', 'd', 'm', 'y'), sep = ',', ...)
Arguments
object |
A |
file |
A character with the name of the file. |
complete |
A logical. Should all the variables be exported? |
day |
A logical. Should be daily values included in the intradaily file? |
timeScales |
A character. Use 'i' to export intradaily values, 'd' for daily values, 'm' for monthly values and 'y' for yearly values. A different file will be created for each choice. |
sep |
The field separator character. |
... |
Additional arguments for |
Methods
signature(object = "Sol")
This function exports the slots with results using
write.table
. Ifcomplete = FALSE
andday = FALSE
(default) the result includes only the content of thesolI
slot. Itday = TRUE
the contents of thesolD
slot are included.signature(object = "G0")
If
complete = FALSE
andday = FALSE
(default) the result includes only the columns ofG0
,D0
andB0
of theG0I
slot. Ifcomplete = TRUE
it returns the contents of the slotsG0I
andsolI
. Ifday = TRUE
the daily values (slotsG0D
andsolD
) are also included.signature(object = "Gef")
If
complete = FALSE
andday = FALSE
(default) the result includes only the columns ofGef
,Def
andBef
of theGefI
slot. Ifcomplete = TRUE
it returns the contents of the slotsGefI
,G0I
andsolI
. Ifday = TRUE
the daily values (slotsGefD
,G0D
andsolD
) are also included.signature(object = "ProdGCPV")
If
complete = FALSE
andday = FALSE
(default) the result includes only the columns ofPac
andPdc
of theprodI
slot. Ifcomplete = TRUE
it returns the contents of the slotsprodI
,GefI
,G0I
andsolI
. Ifday = TRUE
the daily values (slotsprodD
,GefD
,G0D
andsolD
) are also included.signature(object = "ProdPVPS")
If
complete = FALSE
andday = FALSE
(default) the result includes only the columns ofPac
andQ
of theprodI
slot. Ifcomplete = TRUE
it returns the contents of the slotsprodI
,GefI
,G0I
andsolI
. Ifday = TRUE
the daily values (slotsprodD
,GefD
,G0D
andsolD
) are also included.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
See Also
write.table
,
fread
,
as.data.tableI
,
as.data.tableD
,
as.data.tableM
,
as.data.tableY
Examples
library("data.table")
lat <- 37.2;
G0dm <- c(2766, 3491, 4494, 5912, 6989, 7742, 7919, 7027, 5369, 3562, 2814, 2179)
Ta <- c(10, 14.1, 15.6, 17.2, 19.3, 21.2, 28.4, 29.9, 24.3, 18.2, 17.2, 15.2)
prom <- list(G0dm = G0dm, Ta = Ta)
prodFixed <- prodGCPV(lat = lat, dataRad = prom, modeRad = 'aguiar', keep.night = FALSE)
old <- setwd(tempdir())
writeSolar(prodFixed, 'prodFixed.csv')
dir()
zI <- fread("prodFixed.csv",
header = TRUE, sep = ",")
zI
zD <- fread("prodFixed.D.csv",
header = TRUE, sep = ",")
zD
zM <- fread("prodFixed.M.csv",
header = TRUE, sep = ",")
zM
zY <- fread("prodFixed.Y.csv",
header = TRUE, sep = ",")
zY
setwd(old)
Methods for function xyplot in Package ‘solaR’
Description
Methods for function xyplot
in Package ‘solaR’
Methods
signature(x = "data.table", data = "missing")
:-
This method creates an XY plot for objects of class
data.table
without specifying adata
argument. It must contain a column namedDates
with the time information. signature(x = "formula", data = "Meteo")
:-
The
Meteo
object is converted into adata.table
object withgetData(x)
and displayed with the method fordata.table
. signature(x = "formula", data = "Sol")
:-
The
Sol
object is converted into adata.table
object withas.data.tableI(x, complete = TRUE, day = TRUE)
and displayed with the method fordata.table
. signature(x = "formula", data = "G0")
:-
Idem.
signature(x = "Meteo", data = "missing")
:-
The
Meteo
object is converted into adata.table
object withgetData(data)
. Thisdata.table
is thex
argument for a call toxyplot
, using the S4 method forsignature(x = "data.table", data = "missing")
. signature(x = "G0", data = "missing")
:-
The
G0
object is converted into adata.table
object withindexD(data)
. Thisdata.table
is thex
argument for a call toxyplot
, using the S4 method forsignature(x = 'data.table', data = 'missing')
. signature(x = "ProdGCPV", data = "missing")
:-
Idem, but the variables are not superposed.
signature(x = "ProdPVPS", data = "missing")
:-
Idem.
signature(x = "formula", data = "Shade")
:-
Idem.
Author(s)
Oscar Perpiñán Lamigueiro, Francisco Delgado López.
Data on the stations that make up the SIAR network
Description
Information about the location and operational status of the stations that make up the SIAR network
Usage
data(SIAR)
Format
est_SIAR
is a data.table
with 625 estations containing the following information:
Estacion
character, name of the station.
Codigo
character, code of the station.
Longitud
numeric, longitude of the station in degrees (negative is for locations in the west).
Latitud
numeric, latitud of the station in degrees.
Altitud
integer, altitude of the station in meters.
Fecha_Instalacion
Date, day the station was installed, and therefore, the start of its records.
Fecha_Baja
Date, day the station was decommisioned, and therefore, the end of its records (if its value is
NA
, it means it is still operational).
Source
https://servicio.mapa.gob.es/websiar/
Markov Transition Matrices for the Aguiar etal. procedure
Description
Markov Transition Matrices and auxiliary data for generating sequences of daily radiation values.
Usage
data(MTM)
Format
MTM
is a data.frame
with the collection of Markov
Transition Matrices defined in the paper "Simple procedure for
generating sequences of daily radiation values using a library of
Markov transition matrices", Aguiar et al., Solar Energy,
1998. Ktlim
(matrix) and Ktmtm
(vector) are auxiliary data
to choose the correspondent matrix of the collection.
Author(s)
Oscar Perpiñán Lamiguiero, Francisco Delgado López.
Daily irradiation and ambient temperature from the Helios-IES database
Description
A year of irradiation, maximum and minimum ambient temperature from the HELIOS-IES database.
Usage
data(helios)
Format
A data frame with 355 observations on the following 4 variables:
yyyy.mm.dd
a factor: year, month and day.
G.0.
a numeric vector, daily global horizontal irradiation.
TambMax
a numeric vector, maximum ambient temperature.
TambMin
a numeric vector, minimum ambient temperature.
Source
http://helios.ies-def.upm.es/consulta.aspx
Productivity of a set of PV systems of a PV plant.
Description
A data.table
object with the time evolution of the final productivity of a set
of 22 systems of a large PV plant.
Usage
data(prodEx)
References
O. Perpiñán, Statistical analysis of the performance and simulation of a two-axis tracking PV system, Solar Energy, 83:11(2074–2085), 2009.https://oa.upm.es/1843/1/PERPINAN_ART2009_01.pdf
Coefficients of centrifugal pumps.
Description
Coefficients of centrifugal pumps
Usage
data(pumpCoef)
Format
A data.table
with 13 columns:
- Qn
rated flux
- stages
number of stages
- Qmax
maximum flux
- Pmn
rated motor power
- a, b, c
Coefficients of the equation
H=a \cdot f^2+b \cdot f \cdot Q+c \cdot Q^2
.- g, h, i
Coefficients of the efficiency curve of the motor (50 Hz):
\eta_{m}=g \cdot (\%P_{mn})^2+h \cdot (\%P{mn})+i
.- j, k, l
Coefficients of the efficiency curve of the pump (50 Hz):
\eta_{b}=j \cdot Q^2+k \cdot Q+l
.
Details
With this version only pumps from the manufacturer Grundfos are included.
Source
https://product-selection.grundfos.com/
References
Perpiñán, O, Energía Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpiñán, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, doi:10.18637/jss.v050.i09
solaR theme
Description
A customized theme for lattice. It is based on the custom.theme.2
function of the latticeExtra
package with the next values:
pch = 19
cex = 0.7
region = rev(brewer.pal(9, 'YlOrRd'))
strip.background$col = 'lightgray'
strip.shingle$col = 'transparent'