Title: | Calculate Earth’s Obliquity and Precession in the Past |
Version: | 3.10.1 |
Description: | Easily calculate precession and obliquity from an orbital solution (defaults to ZB18a from Zeebe and Lourens (2019) <doi:10.1126/science.aax0612>) and assumed or reconstructed values for tidal dissipation (Td) and dynamical ellipticity (Ed). This is a translation and adaptation of the 'C'-code in the supplementary material to Zeebe and Lourens (2022) <doi:10.1029/2021PA004349>, with further details on the methodology described in Zeebe (2022) <doi:10.3847/1538-3881/ac80f8>. The name of the 'C'-routine is 'snvec', which refers to the key units of computation: spin vector s and orbit normal vector n. |
License: | GPL (≥ 3) |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Suggests: | astrochron, ggplot2, tidyr, testthat, roxygen2, knitr, withr, curl, rmarkdown |
Imports: | deSolve, cli (≥ 3.4.0), stats, dplyr, tibble, purrr, readr, tidyselect, rlang (≥ 0.4.11), glue, tools, backports (≥ 1.1.6), stringr |
Config/testthat/edition: | 3 |
Depends: | R (≥ 3.6.0) |
VignetteBuilder: | knitr |
URL: | https://japhir.github.io/snvecR/, https://github.com/japhir/snvecR |
BugReports: | https://github.com/japhir/snvecR/issues |
NeedsCompilation: | no |
Packaged: | 2025-03-05 15:07:09 UTC; japhir |
Author: | Ilja Kocken |
Maintainer: | Ilja Kocken <ikocken@hawaii.edu> |
Repository: | CRAN |
Date/Publication: | 2025-03-06 12:10:02 UTC |
snvecR: Calculate Earth’s Obliquity and Precession in the Past
Description
Easily calculate precession and obliquity from an orbital solution (defaults to ZB18a from Zeebe and Lourens (2019) doi:10.1126/science.aax0612) and assumed or reconstructed values for tidal dissipation (Td) and dynamical ellipticity (Ed). This is a translation and adaptation of the 'C'-code in the supplementary material to Zeebe and Lourens (2022) doi:10.1029/2021PA004349, with further details on the methodology described in Zeebe (2022) doi:10.3847/1538-3881/ac80f8. The name of the 'C'-routine is 'snvec', which refers to the key units of computation: spin vector s and orbit normal vector n.
Author(s)
Maintainer: Ilja Kocken ikocken@hawaii.edu (ORCID) [translator, copyright holder]
Authors:
Richard Zeebe zeebe@soest.hawaii.edu (ORCID)
See Also
Useful links:
Report bugs at https://github.com/japhir/snvecR/issues
Astronomical Solutions PT-ZB18a(x.xxxx,y.yyyy) for the past 100 Myr
Description
Astronomical Solutions PT-ZB18a(x.xxxx,y.yyyy) for the past 100 Myr
Format
get_solution("PT-ZB18a(1,1)")
A data frame with 249,480 rows and 4 columns:
- time
Time in thousands of years (kyr).
- epl
Obliqity
\epsilon
(radians).- phi
Axial Precession
phi
(radians).- cp
Climatic Precession
e sin(\bar{\omega})
(unitless).
Source
All astronomical solutions by Zeebe can be found on http://www.soest.hawaii.edu/oceanography/faculty/zeebe_files/Astro.html.
They can be loaded into R quickly, using get_solution()
.
References
Zeebe, R. E. and Lourens, L. J. (2022). Geologically constrained astronomical solutions for the Cenozoic era. Earth and Planetary Science Letters. doi:10.1016/j.epsl.2022.117595
Astronomical Solutions ZB17 for the past 100 Myr
Description
Astronomical Solutions ZB17 for the past 100 Myr
Format
get_solution("ZB17x")
A data frame with 62,501 rows and 3 columns:
- time
Time in thousands of years (kyr).
- ecc
Eccentricity
e
(unitless).- inc
Inclination
I
(degrees).
Source
All astronomical solutions by Zeebe can be found on http://www.soest.hawaii.edu/oceanography/faculty/zeebe_files/Astro.html.
They can be loaded into R quickly, using get_solution()
.
References
Zeebe, R. E. (2017). Numerical Solutions for the orbital motion of the Solar System over the Past 100 Myr: Limits and new results. The Astronomical Journal. doi:10.3847/1538-3881/aa8cce
Astronomical Solution ZB18a for the Past 100 Myr
Description
Astronomical Solution ZB18a for the Past 100 Myr
Format
get_solution("ZB18a-100")
A data frame with 62,501 rows and 3 columns:
- time
Time in thousands of years (kyr).
- ecc
Eccentricity
e
(unitless).- inc
Inclination
I
(degrees).
Source
All astronomical solutions by Zeebe can be found on http://www.soest.hawaii.edu/oceanography/faculty/zeebe_files/Astro.html.
They can be loaded into R quickly, using get_solution()
.
References
Zeebe, R. E., & Lourens, L. J. (2019). Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science, 365(6456), 926–929. doi:10.1126/science.aax0612.'
Astronomical Solution ZB18a for the Past 300 Myr
Description
Astronomical Solution ZB18a for the Past 300 Myr
Format
get_solution("ZB18a-300")
A data frame with 187,501 rows and 3 columns:
- time
Time in thousands of years (kyr).
- ecc
Eccentricity
e
(unitless).- inc
Inclination
I
(degrees).
Source
All astronomical solutions by Zeebe can be found on http://www.soest.hawaii.edu/oceanography/faculty/zeebe_files/Astro.html.
They can be loaded into R quickly, using get_solution()
.
References
Zeebe, R. E., & Lourens, L. J. (2019). Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science, 365(6456), 926–929. doi:10.1126/science.aax0612.'
Zeebe, R. E. and Lourens, L. J. (2022). Geologically constrained astronomical solutions for the Cenozoic era. Earth and Planetary Science Letters. doi:10.1016/j.epsl.2022.117595
Astronomical Solutions ZB20 for the past 300 Myr
Description
Astronomical Solutions ZB20 for the past 300 Myr
Format
get_solution("ZB20x")
A data frame with 187,501 rows and 3 columns:
- time
Time in thousands of years (kyr).
- ee
Eccentricity
e
(unitless).- inc
Inclination
I
(degrees).
Source
All astronomical solutions by Zeebe can be found on http://www.soest.hawaii.edu/oceanography/faculty/zeebe_files/Astro.html.
They can be loaded into R quickly, using get_solution()
.
References
Zeebe, R. E. and Lourens, L. J. (2022). Geologically constrained astronomical solutions for the Cenozoic era. Earth and Planetary Science Letters. doi:10.1016/j.epsl.2022.117595
Astronomical Solutions ZB23.RXX for the past 3.6 Gyr
Description
Astronomical Solutions ZB23.RXX for the past 3.6 Gyr
Format
get_solution("ZB23.Rxx")
A data frame with 8,750,001 rows and 5 columns:
- time
Time in thousands of years (kyr).
- ecc
Eccentricity
e
(unitless).- inc
Inclination
I
(radians).- obliquity
Obliqity
\epsilon
(radians).- cp
Climatic Precession
e sin(\bar{\omega})
(unitless).
Source
All astronomical solutions by Zeebe can be found on http://www.soest.hawaii.edu/oceanography/faculty/zeebe_files/Astro.html.
They can be loaded into R quickly, using get_solution()
.
References
Zeebe, R. E. and Lourens, L. J. (2022). Geologically constrained astronomical solutions for the Cenozoic era. Earth and Planetary Science Letters. doi:10.1016/j.epsl.2022.117595
Full Astronomical Solution ZB18a for the past 100 Myr
Description
The HNBody output of Zeebe & Lourens (2019) after some pre-processing using
prepare_solution()
. The wikipedia page on Orbital elements describes what the
components relate to in order to uniquely specify an orbital plane. The
function asks to download the files to the user's cache directory so that
they can be accessed more quickly in the future.
Format
get_solution("full-ZB18a")
A data frame with 250,001 rows and 20 columns:
- t
Time
t
(days).- time
Time in thousands of years (kyr).
- aa
Semimajor axis
a
in astronomical units (au).- ee
Eccentricity
e
(unitless).- inc
Inclination
I
(degrees).- lph
Longitude of perihelion
\varpi
(degrees).- lan
Longitude of the ascending node
\Omega
(degrees).- arp
Argument of perihelion
\omega
(degrees).- mna
Mean anomaly
M
(degrees).
The following columns were computed from the above input with prepare_solution()
:
- lphu
Unwrapped longitude of perihelion
\varpi
(degrees without jumps).- lanu
Unwrapped longitude of the ascending node
\Omega
(degrees without jumps).- hh
Variable:
e\sin(\varpi)
.- kk
Variable:
e\cos(\varpi)
.- pp
Variable:
2\sin(0.5I)\sin(\Omega)
.Variable:
2\sin(0.5I)\cos(\Omega)
.- cc
Helper:
\cos(I)
.- dd
Helper:
\cos(I)/2
.- nnx, nny, nnz
The
x
,y
, andz
-components of the Eart's orbit unit normal vector\vec{n}
, normal to Earth's instantaneous orbital plane.
Source
All astronomical solutions by Zeebe can be found on http://www.soest.hawaii.edu/oceanography/faculty/zeebe_files/Astro.html.
They can be loaded into R quickly, using get_solution()
.
References
Zeebe, R. E., & Lourens, L. J. (2019). Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science, 365(6456), 926–929. doi:10.1126/science.aax0612.
Zeebe, R. E. and Lourens, L. J. (2022). A deep-time dating tool for paleo-applications utilizing obliquity and precession cycles: The role of dynamical ellipticity and tidal dissipation. Paleoceanography and Paleoclimatology. doi:10.1029/2021PA004349
See Also
Get an Astronomical Solution
Description
Download supported astronomical solutions from the web and store it in the
user's cache directory. The next use of the function will load the data from
the cache rather than downloading it again. This also provides a wrapper for
astrochron::getLaskar()
if one of their supported solutions is specified,
but converts the output to a tibble. Note that we
do not cache these solutions locally, however.
Usage
get_solution(
astronomical_solution = "full-ZB18a",
quiet = FALSE,
force = FALSE
)
Arguments
astronomical_solution |
Character vector with the name of the desired
solution. Defaults to |
quiet |
Be quiet?
|
force |
Force re-downloading the results, even if the solution is saved to the cache. |
Value
A tibble with the astronomical solution (and some preprocessed new columns).
References
Zeebe, R. E., & Lourens, L. J. (2019). Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science, 365(6456), 926–929. doi:10.1126/science.aax0612.
Zeebe, R. E. and Lourens, L. J. (2022). A deep-time dating tool for paleo-applications utilizing obliquity and precession cycles: The role of dynamical ellipticity and tidal dissipation. Paleoceanography and Paleoclimatology. doi:10.1029/2021PA004349
See Also
full_ZB18a, ZB17, ZB18a_100, ZB18a_300 ZB20, PT_ZB18a, ZB23
Examples
get_solution("full-ZB18a") # input for snvec
get_solution("ZB18a-300") # eccentricity
get_solution("ZB20a")
get_solution("La11")
get_solution("PT-ZB18a(1,1)") # pre-computed precession-tilt
get_solution("ZB23.R01") # one of the 3.6 Gyr solutions
Prepare Astronomical Solution
Description
Calculates helper columns from an astronomical solution input.
Usage
prepare_solution(data, quiet = FALSE)
Arguments
data |
A data frame with the following columns:
The easiest way to get this is with |
quiet |
Be quiet?
|
Details
New columns include:
-
lphu
Unwrapped longitude of perihelion\varpi
(degrees without jumps). -
lanu
Unwrapped longitude of the ascending node\Omega
(degrees without jumps). -
hh
Variable:e\sin(\varpi)
. -
kk
Variable:e\cos(\varpi)
. -
pp
Variable:2\sin(0.5I)\sin(\Omega)
. -
qq
Variable:2\sin(0.5I)\cos(\Omega)
. -
cc
Helper:\cos(I)
. -
dd
Helper:\cos(I)/2
. -
nnx
,nny
,nnz
Thex
,y
, andz
-components of the Earth's orbit unit normal vector\vec{n}
, normal to Earth's instantaneous orbital plane.
Value
A tibble with the new columns added.
See Also
Calculate Earth’s Obliquity and Precession in the Past
Description
snvec()
computes climatic precession and obliquity (or tilt) from an
astronomical solution (AS) input and input values for dynamical ellipticity
(E_{d}
) and tidal dissipation (T_{d}
). It solves a set
of ordinary differential equations.
Usage
snvec(
tend = -1000,
ed = 1,
td = 0,
astronomical_solution = "full-ZB18a",
os_ref_frame = "HCI",
os_omt = NULL,
os_inct = NULL,
tres = -0.4,
atol = 1e-05,
rtol = 0,
solver = "vode",
quiet = FALSE,
output = "nice"
)
Arguments
tend |
Final timestep in thousands of years (kyr).
Defaults to |
ed |
Dynamical ellipticity |
td |
Tidal dissipation |
astronomical_solution |
Character vector with the name of the desired
solution. Defaults to |
os_ref_frame |
Character vector with the reference frame of the astronomical
solution. Either |
os_omt |
Longitude of ascending node of the solar equator relative to ECLIPJ2000. |
os_inct |
Inclination of the solar equator relative to ECLIPJ2000. |
tres |
Output timestep resolution in thousands of years (kyr). Defaults
to |
atol |
Numerical absolute tolerance passed to |
rtol |
Numerical relative tolerance passed to |
solver |
Character vector specifying the method passed to
|
quiet |
Be quiet?
|
output |
Character vector with name of desired output. One of: |
Details
This is a re-implementation of the C-code in the supplementary information of Zeebe & Lourens (2022). The terms are explained in detail in Zeebe (2022).
Value
snvec()
returns different output depending on the outputs
argument.
If output = "nice"
(the default), returns a
tibble with the following columns:
-
time
Time in thousands of years (kyr). -
epl
Calculated Obliquity\epsilon
(radians). -
phi
Calculated Precession\phi
(radians) from ECLIPJ2000. -
lpx
Calculated Longitude of Perihelion with respect to the moving node\bar{\omega}
. -
cp
Calculated Climatic precession (-) ase\sin\bar{\omega}
.
where \bar{\omega}
is the longitude of perihelion relative to the moving equinox.
If output = "all"
(for developers), additional columns are included,
typically interpolated to output timescale.
-
sx
,sy
,sz
Thex
,y
, andz
-components of Earth's spin axis unit vector\vec{s}
in the heliocentric inertial reference frame.
See the source code for descriptions of all the intermediate computational steps.
If output = "ode"
, it will return the raw output of the ODE solver, which
is an object of class deSolve
and matrix
, with columns time
, sx
,
sy
, and sz
. This can be useful for i.e. deSolve::diagnostics()
.
Reference Frames of Astronomical Solutions
NASA provides their asteroid and planet positions in the ecliptic J2000 reference frame, while long-term astronomical solution integrations are often performed in the heliocentric inertial reference frame (HCI) or in the inertial reference frame. This is to align the reference frame with the spin vector of the Sun, making J2 corrections intuitive to implement.
Obliquity is typically given in the ecliptic reference frame, so snvec
converts all outputs to J2000 if the os_ref_frame
is equal to "HCI"
and
does no transformations if it is already in "J2000"
.
For this, it uses \Omega_{\odot} = 75.5940
and
i_{\odot} = 7.155
as in Zeebe (2017). You can overwrite
these defaults with os_omt
and os_inct
if desired.
ODE Solver
Note that the different ODE solver algorithm we use (Soetaert et al.,
2010) means that the R routine returns an evenly-spaced time grid, whereas
the C-routine has a variable time-step.
This means we need to explicitly set the stepsize tres
.
References
Zeebe, R.E. (2017). Numerical Solutions for the Orbital Motion of the Solar System over the Past 100 Myr: Limits and New Results. The Astronomical Journal, 154(5), doi:10.3847/1538-3881/aa8cce.
Zeebe, R. E., & Lourens, L. J. (2019). Solar System chaos and the Paleocene–Eocene boundary age constrained by geology and astronomy. Science, 365(6456), 926–929. doi:10.1126/science.aax0612.
Zeebe, R. E., & Lourens, L. J. (2022). A deep-time dating tool for paleo-applications utilizing obliquity and precession cycles: The role of dynamical ellipticity and tidal dissipation. Paleoceanography and Paleoclimatology, e2021PA004349. doi:10.1029/2021PA004349.
Zeebe, R. E. (2022). Reduced Variations in Earth’s and Mars’ Orbital Inclination and Earth’s Obliquity from 58 to 48 Myr ago due to Solar System Chaos. The Astronomical Journal, 164(3), doi:10.3847/1538-3881/ac80f8.
Wikipedia page on Orbital Elements: https://en.wikipedia.org/wiki/Orbital_elements
Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer (2010). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software, 33(9), 1–25. doi:10.18637/jss.v033.i09.
See Also
-
deSolve::ode()
from Soetaert et al., (2010) for the ODE solver that we use. -
get_solution()
Get astronomical solutions.
Examples
# default call
snvec(tend = -1e3, ed = 1, td = 0, tres = -0.4)