Title: | Record Everything that Happens in a 'Shiny' Application |
Version: | 0.2.1 |
Description: | Track and record the use of applications and the user's interactions with 'Shiny' inputs. Allows to trace the inputs with which the user interacts, the outputs generated, as well as the errors displayed in the interface. |
License: | GPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.1.2 |
URL: | https://github.com/dreamRs/shinylogs |
BugReports: | https://github.com/dreamRs/shinylogs/issues |
Imports: | htmltools, shiny (≥ 1.1.0), jsonlite, data.table, bit64, nanotime, digest, anytime |
Suggests: | testthat, knitr, rmarkdown, covr, DBI, RSQLite, googledrive |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2022-04-18 16:03:54 UTC; perri |
Author: | Fanny Meyer [aut], Victor Perrier [aut, cre], Silex Technologies [fnd] (https://www.silex-ip.com) |
Maintainer: | Victor Perrier <victor.perrier@dreamrs.fr> |
Repository: | CRAN |
Date/Publication: | 2022-04-18 16:20:02 UTC |
Read a directory containing JSON logs
Description
Read a directory containing JSON logs
Usage
read_json_logs(path)
Arguments
path |
Path of the directory containing JSON files or a vector of path to JSON files. |
Value
a list
of data.table
Examples
# Read all JSON in a directory
path_directory <- system.file("extdata/json", package = "shinylogs")
logs <- read_json_logs(path = path_directory)
# Read a single file
single_file <- dir(
path = system.file("extdata/json", package = "shinylogs"),
full.names = TRUE
)[1]
logs <- read_json_logs(path = single_file)
Read a directory containing RDS logs
Description
Read a directory containing RDS logs
Usage
read_rds_logs(path)
Arguments
path |
Path of the directory containing RDS files or a vector of path to RDS files. |
Value
a list
of data.table
Examples
## Not run:
# Read all RDS in a directory
logs <- read_rds_logs(path = "path/to/directory")
# Read a single file
logs <- read_rds_logs(path = "path/to/log.rds")
## End(Not run)
Use custom function to save logs
Description
Store logs tracked where you want by providing a custom function to write them in your prefered location.
Usage
store_custom(FUN, ...)
Arguments
FUN |
A |
... |
Extra parameters that will be passed to |
Value
A list that can be used in track_usage()
.
Examples
library(shiny)
library(shinylogs)
# Classic Iris clustering with Shiny
ui <- fluidPage(
headerPanel("Iris k-means clustering"),
sidebarLayout(
sidebarPanel(
selectInput(
inputId = "xcol",
label = "X Variable",
choices = names(iris)
),
selectInput(
inputId = "ycol",
label = "Y Variable",
choices = names(iris),
selected = names(iris)[[2]]
),
numericInput(
inputId = "clusters",
label = "Cluster count",
value = 3,
min = 1,
max = 9
)
),
mainPanel(
plotOutput("plot1")
)
)
)
server <- function(input, output, session) {
# Just take a look at what is generated
track_usage(
storage_mode = store_custom(FUN = function(logs) {
str(logs, max.level = 3)
invisible()
})
)
# classic server logic
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(selectedData(), input$clusters)
})
output$plot1 <- renderPlot({
palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
}
if (interactive())
shinyApp(ui, server)
Use Google Drive as storage mode
Description
All logs will be written in the same file.
Usage
store_googledrive(path)
Arguments
path |
Path to folder on Drive where to send logs. |
Value
A list that can be used in track_usage()
.
Note
See the gargle package to manage authentication, and especially this vignette from gargle package to manage the process.
Examples
## Not run:
# In your global, manage Google Drive access
drive_auth(path = "/path/to/your/service-account-token.json")
# see https://gargle.r-lib.org/articles/articles/managing-tokens-securely.html
# to manage your token securely
# Then in server, use:
track_usage(storage_mode = store_googledrive(path = "my-logs/"))
# you may have to share my-logs/ folder with your service account
## End(Not run)
Use JSON files as storage mode
Description
One JSON will be written for each session of the application.
Usage
store_json(path)
Arguments
path |
Path where to write JSON files. |
Value
A list that can be used in track_usage()
.
Examples
library(shiny)
library(shinylogs)
# temp directory for writing logs
tmp <- tempdir()
# when app stop,
# navigate to the directory containing logs
onStop(function() {
browseURL(url = tmp)
})
# Classic Iris clustering with Shiny
ui <- fluidPage(
headerPanel("Iris k-means clustering"),
sidebarLayout(
sidebarPanel(
selectInput(
inputId = "xcol",
label = "X Variable",
choices = names(iris)
),
selectInput(
inputId = "ycol",
label = "Y Variable",
choices = names(iris),
selected = names(iris)[[2]]
),
numericInput(
inputId = "clusters",
label = "Cluster count",
value = 3,
min = 1,
max = 9
)
),
mainPanel(
plotOutput("plot1")
)
)
)
server <- function(input, output, session) {
# Store JSON with logs in the temp dir
track_usage(
storage_mode = store_json(path = tmp)
)
# classic server logic
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(selectedData(), input$clusters)
})
output$plot1 <- renderPlot({
palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
}
if (interactive())
shinyApp(ui, server)
No storage on disk
Description
Doesn't write anything, special inputs created by track_usage()
are available in server and optionally logs are printed in console.
Usage
store_null(console = TRUE)
Arguments
console |
Print logs in R console. |
Value
A list that can be used in track_usage()
.
Examples
library(shiny)
library(shinylogs)
ui <- fluidPage(
tags$h2("Record inputs change"),
fluidRow(
column(
width = 3,
selectInput(
inputId = "select",
label = "Select input",
choices = month.name
),
numericInput(
inputId = "numeric",
label = "Numerci input",
value = 4,
min = 0, max = 20
),
checkboxGroupInput(
inputId = "checkboxGroup",
label = "Checkbox group input",
choices = LETTERS[1:5]
),
sliderInput(
inputId = "slider",
label = "Slider input",
min = 0, max = 100, value = 50
)
),
column(
width = 9,
tags$b("Last input:"),
verbatimTextOutput(outputId = "last_input"),
tags$b("All inputs:"),
verbatimTextOutput(outputId = "all_inputs")
)
)
)
server <- function(input, output, session) {
track_usage(
storage_mode = store_null() # dont store on disk
)
output$last_input <- renderPrint({
input$.shinylogs_lastInput # last input triggered
})
output$all_inputs <- renderPrint({
input$.shinylogs_input # all inputs that have changed
})
}
if (interactive())
shinyApp(ui, server)
Use RDS files as storage mode
Description
One RDS will be written for each session of the application.
Usage
store_rds(path)
Arguments
path |
Path where to write RDS files. |
Value
A list that can be used in track_usage()
.
Examples
library(shiny)
library(shinylogs)
# temp directory for writing logs
tmp <- tempdir()
# when app stop,
# navigate to the directory containing logs
onStop(function() {
browseURL(url = tmp)
})
# Classir Iris clustering with Shiny
ui <- fluidPage(
headerPanel("Iris k-means clustering"),
sidebarLayout(
sidebarPanel(
selectInput(
inputId = "xcol",
label = "X Variable",
choices = names(iris)
),
selectInput(
inputId = "ycol",
label = "Y Variable",
choices = names(iris),
selected = names(iris)[[2]]
),
numericInput(
inputId = "clusters",
label = "Cluster count",
value = 3,
min = 1,
max = 9
)
),
mainPanel(
plotOutput("plot1")
)
)
)
server <- function(input, output, session) {
# Store RDS with logs in the temp dir
track_usage(
storage_mode = store_rds(path = tmp)
)
# classic server logic
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(selectedData(), input$clusters)
})
output$plot1 <- renderPlot({
palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
}
if (interactive())
shinyApp(ui, server)
Use SQLite database as storage mode
Description
All logs will be written in the same file.
Usage
store_sqlite(path)
Arguments
path |
Path to the SQLite file or a directory where to create one. |
Value
A list that can be used in track_usage()
.
Examples
if (interactive()) {
library(shiny)
library(shinylogs)
# temp directory for writing logs
tmp <- tempdir()
# when app stop,
# navigate to the directory containing logs
onStop(function() {
browseURL(url = tmp)
})
# Classir Iris clustering with Shiny
ui <- fluidPage(
headerPanel("Iris k-means clustering"),
sidebarLayout(
sidebarPanel(
selectInput(
inputId = "xcol",
label = "X Variable",
choices = names(iris)
),
selectInput(
inputId = "ycol",
label = "Y Variable",
choices = names(iris),
selected = names(iris)[[2]]
),
numericInput(
inputId = "clusters",
label = "Cluster count",
value = 3,
min = 1,
max = 9
)
),
mainPanel(
plotOutput("plot1")
)
)
)
server <- function(input, output, session) {
# Store RDS with logs in the temp dir
track_usage(
storage_mode = store_sqlite(path = tmp)
)
# classic server logic
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(selectedData(), input$clusters)
})
output$plot1 <- renderPlot({
palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
}
shinyApp(ui, server)
}
Track usage of a Shiny app
Description
Used in Shiny server
it will record all inputs and
output changes and errors that occurs through an output.
Usage
track_usage(
storage_mode,
what = c("session", "input", "output", "error"),
exclude_input_regex = NULL,
exclude_input_id = NULL,
on_unload = FALSE,
app_name = NULL,
exclude_users = NULL,
get_user = NULL,
dependencies = TRUE,
session = getDefaultReactiveDomain()
)
Arguments
storage_mode |
Storage mode to use : |
what |
Elements to record between |
exclude_input_regex |
Regular expression to exclude inputs from tracking. |
exclude_input_id |
Vector of |
on_unload |
Logical, save log when user close the browser window or tab,
if |
app_name |
Name of the app as a character string.
If |
exclude_users |
Character vectors of user for whom it is not necessary to save the log. |
get_user |
A |
dependencies |
Load dependencies in client, can be set to |
session |
The shiny session. |
Note
The following input
s will be accessible in the server:
-
.shinylogs_lastInput : last
input
used by the user -
.shinylogs_input : all
input
s send from the browser to the server -
.shinylogs_error : all errors generated by
output
s elements -
.shinylogs_output : all
output
s generated from the server -
.shinylogs_browserData : information about the browser where application is displayed.
Examples
# Save logs on disk ----------------------------------
if (interactive()) {
# temporary directory for writing logs
tmp <- tempdir()
# when app stop,
# navigate to the directory containing logs
onStop(function() {
browseURL(url = tmp)
})
# Classic Iris clustering with Shiny
ui <- fluidPage(
headerPanel("Iris k-means clustering"),
sidebarLayout(
sidebarPanel(
selectInput(
inputId = "xcol",
label = "X Variable",
choices = names(iris)
),
selectInput(
inputId = "ycol",
label = "Y Variable",
choices = names(iris),
selected = names(iris)[[2]]
),
numericInput(
inputId = "clusters",
label = "Cluster count",
value = 3,
min = 1,
max = 9
)
),
mainPanel(
plotOutput("plot1")
)
)
)
server <- function(input, output, session) {
# Store JSON with logs in the temp dir
track_usage(
storage_mode = store_json(path = tmp)
)
# classic server logic
selectedData <- reactive({
iris[, c(input$xcol, input$ycol)]
})
clusters <- reactive({
kmeans(selectedData(), input$clusters)
})
output$plot1 <- renderPlot({
palette(c("#E41A1C", "#377EB8", "#4DAF4A", "#984EA3",
"#FF7F00", "#FFFF33", "#A65628", "#F781BF", "#999999"))
par(mar = c(5.1, 4.1, 0, 1))
plot(selectedData(),
col = clusters()$cluster,
pch = 20, cex = 3)
points(clusters()$centers, pch = 4, cex = 4, lwd = 4)
})
}
shinyApp(ui, server)
}
# Logs in console & special inputs ------------------------
if (interactive()) {
library(shiny)
library(shinylogs)
ui <- fluidPage(
tags$h2("Record inputs change"),
fluidRow(
column(
width = 3,
selectInput(
inputId = "select",
label = "Select input",
choices = month.name
),
numericInput(
inputId = "numeric",
label = "Numerci input",
value = 4,
min = 0, max = 20
),
checkboxGroupInput(
inputId = "checkboxGroup",
label = "Checkbox group input",
choices = LETTERS[1:5]
),
sliderInput(
inputId = "slider",
label = "Slider input",
min = 0, max = 100, value = 50
)
),
column(
width = 9,
tags$b("Last input triggered:"),
verbatimTextOutput(outputId = "last_input"),
tags$b("All inputs:"),
verbatimTextOutput(outputId = "all_inputs")
)
)
)
server <- function(input, output, session) {
# dont store on disk, just show in R console
track_usage(
storage_mode = store_null()
)
# last input triggered
output$last_input <- renderPrint({
input$.shinylogs_lastInput
})
# all inputs that have changed
output$all_inputs <- renderPrint({
input$.shinylogs_input
})
}
shinyApp(ui, server)
}
Insert dependencies to track usage of a Shiny app
Description
If used in UI of an application,
this will create new input
s available in the server.
Set dependencies = FALSE
in track_usage()
server-side to load dependencies only once.
Usage
use_tracking(
what = c("session", "input", "output", "error"),
exclude_input_regex = NULL,
exclude_input_id = NULL,
on_unload = FALSE,
app_name = NULL
)
Arguments
what |
Elements to record between |
exclude_input_regex |
Regular expression to exclude inputs from tracking. |
exclude_input_id |
Vector of |
on_unload |
Logical, save log when user close the browser window or tab,
if |
app_name |
Name of the app as a character string.
If |
Note
The following input
s will be accessible in the server (according to what is used in record
argument):
-
.shinylogs_lastInput : last
input
used by the user -
.shinylogs_input : all
input
s send from the browser to the server -
.shinylogs_error : all errors generated by
output
s elements -
.shinylogs_output : all
output
s generated from the server -
.shinylogs_browserData : information about the browser where application is displayed.
Examples
if (interactive()) {
library(shiny)
library(shinylogs)
ui <- fluidPage(
# Load tracking dependencies
use_tracking(),
splitLayout(
cellArgs = list(style = "height: 250px"),
radioButtons("radio", "Radio:", names(iris)),
checkboxGroupInput("checkbox", "Checkbox:", names(iris)),
selectInput("select", "Select:", names(iris))
),
tags$p("Last input used, the 'name' slot correspond to inputId:"),
verbatimTextOutput("last")
)
server <- function(input, output, session) {
output$last <- renderPrint({
input$.shinylogs_lastInput
})
}
shinyApp(ui, server)
}