
Package ‘seqinr’
July 23, 2025

Title Biological Sequences Retrieval and Analysis

Version 4.2-36

Depends R (>= 2.10.0)

Imports ade4,segmented

Maintainer Simon Penel <simon.penel@univ-lyon1.fr>

License GPL (>= 2)

Description Exploratory data analysis and data visualization
for biological sequence (DNA and protein) data. Seqinr includes
utilities for sequence data management under the ACNUC system
described in Gouy, M. et al. (1984) Nucleic Acids Res.
12:121-127 <doi:10.1093/nar/12.1Part1.121>.

URL https://seqinr.r-forge.r-project.org/,

https://github.com/lbbe-software/seqinr

BugReports https://github.com/lbbe-software/seqinr/issues

SystemRequirements zlib headers and library.

NeedsCompilation yes

Encoding UTF-8

Author Delphine Charif [aut],
Olivier Clerc [ctb],
Carolin Frank [ctb],
Jean R. Lobry [aut, cph],
Anamaria Necşulea [ctb],
Leonor Palmeira [ctb],
Simon Penel [cre],
Guy Perrière [ctb]

Repository CRAN

Date/Publication 2023-12-08 14:20:03 UTC

1

https://doi.org/10.1093/nar/12.1Part1.121
https://seqinr.r-forge.r-project.org/
https://github.com/lbbe-software/seqinr
https://github.com/lbbe-software/seqinr/issues

2 Contents

Contents
seqinr-package . 5
a . 5
aaa . 6
aacost . 8
aaindex . 10
AAstat . 23
acnucopen . 24
al2bp . 26
alllistranks . 27
amb . 28
AnoukResult . 30
as.alignment . 30
as.matrix.alignment . 31
autosocket . 32
baselineabif . 33
bma . 34
c2s . 35
cai . 36
caitab . 38
chargaff . 39
choosebank . 42
circle . 44
closebank . 45
clustal . 46
col2alpha . 47
comp . 48
computePI . 49
consensus . 50
count . 52
countfreelists . 54
countsubseqs . 56
crelistfromclientdata . 57
dia.bactgensize . 59
dinucl . 60
dinucleotides . 62
dist.alignment . 64
dotchart.uco . 65
dotPlot . 66
draw.oriloc . 68
draw.rearranged.oriloc . 70
draw.recstat . 71
ec999 . 72
ECH . 73
EXP . 74
extract.breakpoints . 77
extractseqs . 78

Contents 3

fasta . 80
fastacc . 81
G+C Content . 85
gb2fasta . 89
gbk2g2 . 90
gbk2g2.euk . 91
gcO2 . 92
gcT . 93
get.db.growth . 94
getAnnot . 96
getFrag . 97
getKeyword . 99
getLength . 100
getlistrank . 101
getliststate . 102
getLocation . 104
getName . 105
getSequence . 106
getTrans . 108
getType . 111
gfrag . 112
ghelp . 113
gs500liz . 114
identifiler . 115
isenum . 116
JLO . 117
kaks . 118
kaksTorture . 121
knowndbs . 122
lseqinr . 124
m16j . 124
mase . 126
modifylist . 127
move . 129
msf . 130
n2s . 131
oriloc . 132
parser.socket . 135
peakabif . 136
permutation . 137
phylip . 139
pK . 139
plot.SeqAcnucWeb . 141
plotabif . 142
plotladder . 144
plotPanels . 145
pmw . 146
prepgetannots . 148

4 Contents

prettyseq . 149
print.qaw . 150
print.SeqAcnucWeb . 151
prochlo . 152
query . 154
read.abif . 157
read.alignment . 159
read.fasta . 161
readBins . 165
readfirstrec . 167
readPanels . 168
readsmj . 169
rearranged.oriloc . 171
recstat . 173
residuecount . 175
revaligntest . 176
reverse.align . 176
rot13 . 179
s2c . 180
s2n . 181
savelist . 182
SeqAcnucWeb . 183
SeqFastaAA . 184
SeqFastadna . 185
SeqFrag . 186
SEQINR.UTIL . 187
setlistname . 188
splitseq . 190
stresc . 191
stutterabif . 192
swap . 194
syncodons . 195
synsequence . 197
tablecode . 198
test.co.recstat . 200
test.li.recstat . 201
toyaa . 202
toycodon . 203
translate . 204
trimSpace . 207
uco . 209
ucoweight . 211
waterabs . 212
where.is.this.acc . 214
words . 215
words.pos . 217
write.fasta . 218

Index 220

seqinr-package 5

seqinr-package Biological Sequences Retrieval and Analysis

Description

Exploratory data analysis and data visualization for biological sequence (DNA and protein) data.
Include also utilities for sequence data management under the ACNUC system.

Author(s)

Delphine Charif [aut], Olivier Clerc [ctb], Carolin Frank [ctb], Jean R. Lobry [aut], Anamaria
Necşulea [ctb], Leonor Palmeira [ctb], Simon Penel [cre], Guy Perrière [ctb]

References

citation(’seqinr’)

a Converts amino-acid three-letter code into the one-letter one

Description

This is a vectorized function to convert three-letters amino-acid code into the one-letter one, for
instance "Ala" into "A".

Usage

a(aa)

Arguments

aa A vector of string. All strings are 3 chars long.

Details

Allowed character values for aa are given by aaa(). All other values will generate a warning and
return NA. Called without arguments, a() returns the list of all possible output values.

Value

A vector of single characters.

Author(s)

D. Charif, J.R. Lobry

6 aaa

References

The IUPAC one-letter code for aminoacids is described at: https://www.bioinformatics.org/
sms/iupac.html
citation("seqinr")

See Also

aaa, translate

Examples

#
Show all possible input values:
#

aaa()

#
Convert them in one letter-code:
#

a(aaa())

#
Check consistency of results:
#

stopifnot(aaa(a(aaa())) == aaa())

#
Show what happens with non-allowed values:
#

a("SOS") # should be NA and a warning is generated

aaa Converts amino-acid one-letter code into the three-letter one

Description

This is a vectorized function to convert one-letter amino-acid code into the three-letter one, for
instance "A" into "Ala".

Usage

aaa(aa)

Arguments

aa A vector of single characters.

https://www.bioinformatics.org/sms/iupac.html
https://www.bioinformatics.org/sms/iupac.html

aaa 7

Details

Allowed character values for aa are given by a(). All other values will generate a warning and
return NA. Called without arguments, aaa() returns the list of all possible output values.

Value

A vector of char string. All strings are 3 chars long.

Author(s)

J.R. Lobry

References

The IUPAC one-letter code for aminoacids is described at: https://www.bioinformatics.org/
sms/iupac.html citation("seqinr")

See Also

a, translate

Examples

#
Show all possible input values:
#

a()

#
Convert them in one letter-code:
#

aaa(a())

#
Check consistency of results:
#

stopifnot(a(aaa(a())) == a())

#
Show what happens with non-allowed values:
#

aaa("Z") # should be NA and a warning is generated

https://www.bioinformatics.org/sms/iupac.html
https://www.bioinformatics.org/sms/iupac.html

8 aacost

aacost Aerobic cost of amino-acids in Escherichia coli and G+C classes

Description

The metabolic cost of amino-acid biosynthesis in E. coli under aerobic conditions from table 1 in
Akashi and Gojobori (2002). The G+C classes are from Lobry (1997).

Usage

data(aacost)

Format

A data frame with 20 rows for the amino-acids and the following 7 columns:

aaa amino-acid (three-letters code).

a amino-acid (one-letter code).

prec precursor metabolites (see details).

p number of high-energy phosphate bonds contained in ATP and GTP molecules.

h number of available hydrogen atoms carried in NADH, NADPH, and FADH2 molcules.

tot total metabolic cost assuming 2 high-energy phosphate bonds per hydrogen atom.

gc an ordered factor (l<m<h) for the G+C class of the amino-acid (see details)

Details

Precursor metabolites are: penP, ribose 5-phosphate; PRPP, 5-phosphoribosyl pyrophosphate; eryP,
erythrose 4-phosphate; 3pg, 3-phosphoglycerate; pep, phosphoenolpyruvate; pyr, pyruvate; acCoA,
acetyl-CoA; akg, alpha-ketoglutarate; oaa, oxaloacetate. Negative signs on precursor metabolites
indicate chemicals gained through biosynthetic pathways. Costs of precursors reflect averages for
growth on glucose, acetate, and malate (see Table 6 in the supporting information from Akashi and
Gojobori 2002).

The levels l<m<h for the gc ordered factor stand for Low G+C, Middle G+C, High G+C amino-
acid, respectively. The frequencies of Low G+C amino-acids monotonously decrease with G+C
content. The frequencies of High G+C amino- acids monotonously increase with G+C content.
The frequencies of Middle G+C amino-acids first increase and then decrease with G+C content.
These G+C classes are from Lobry (1997).

example(aacost) reproduces figure 2 from Lobry (2004).

aacost 9

Source

Akashi, H, Gojobori, T. (2002) Metabolic efficiency and amino acid composition in the proteomes
of Escherichia coli and Bacillus subtilis. Proceedings of the National Academy of Sciences of the
United States of America, 99:3695-3700.

Lobry, J.R. (1997) Influence of genomic G+C content on average amino-acid composition of pro-
teins from 59 bacterial species. Gene, 205:309-316.

Lobry, J.R. (2004) Life history traits and genome structure: aerobiosis and G+C content in bacteria.
Lecture Notes in Computer Sciences, 3039:679-686.

References

citation("seqinr")

Examples

data(aacost)
levels(aacost$gc) <- c("low G+C", "mid G+C", "high G+C")
stripchart(aacost$tot~aacost$gc, pch = 19, ylim = c(0.5,3.5),

xlim = c(0, max(aacost$tot)),
xlab = "Metabolic cost (high-energy phosphate bonds equivalent)",
main = "Metabolic cost of the 20 amino-acids\nas function of their G+C class")

boxplot(aacost$tot~aacost$gc, horizontal = TRUE, add = TRUE)

10 aaindex

aaindex List of 544 physicochemical and biological properties for the 20
amino-acids

Description

Data were imported from release 9.1 (AUG 2006) of the aaindex1 database. See the reference
section to cite this database in a publication.

Usage

data(aaindex)

Format

A named list with 544 elements having each the following components:

H String: Accession number in the aaindex database.

D String: Data description.

R String: LITDB entry number.

A String: Author(s).

T String: Title of the article.

J String: Journal reference and comments.

C String: Accession numbers of similar entries with the correlation coefficients of 0.8 (-0.8) or
more (less). Notice: The correlation coefficient is calculated with zeros filled for missing
values.

I Numeric named vector: amino acid index data.

Details

A short description of each entry is available under the D component:

alpha-CH chemical shifts (Andersen et al., 1992)
Hydrophobicity index (Argos et al., 1982)
Signal sequence helical potential (Argos et al., 1982)
Membrane-buried preference parameters (Argos et al., 1982)
Conformational parameter of inner helix (Beghin-Dirkx, 1975)
Conformational parameter of beta-structure (Beghin-Dirkx, 1975)
Conformational parameter of beta-turn (Beghin-Dirkx, 1975)
Average flexibility indices (Bhaskaran-Ponnuswamy, 1988)
Residue volume (Bigelow, 1967)
Information value for accessibility; average fraction 35 Information value for accessibility; average
fraction 23 Retention coefficient in TFA (Browne et al., 1982)
Retention coefficient in HFBA (Browne et al., 1982)
Transfer free energy to surface (Bull-Breese, 1974)

aaindex 11

Apparent partial specific volume (Bull-Breese, 1974)
alpha-NH chemical shifts (Bundi-Wuthrich, 1979)
alpha-CH chemical shifts (Bundi-Wuthrich, 1979)
Spin-spin coupling constants 3JHalpha-NH (Bundi-Wuthrich, 1979)
Normalized frequency of alpha-helix (Burgess et al., 1974)
Normalized frequency of extended structure (Burgess et al., 1974)
Steric parameter (Charton, 1981)
Polarizability parameter (Charton-Charton, 1982)
Free energy of solution in water, kcal/mole (Charton-Charton, 1982)
The Chou-Fasman parameter of the coil conformation (Charton-Charton, 1983)
A parameter defined from the residuals obtained from the best correlation of the Chou-Fasman pa-
rameter of beta-sheet (Charton-Charton, 1983)
The number of atoms in the side chain labelled 1+1 (Charton-Charton, 1983)
The number of atoms in the side chain labelled 2+1 (Charton-Charton, 1983)
The number of atoms in the side chain labelled 3+1 (Charton-Charton, 1983)
The number of bonds in the longest chain (Charton-Charton, 1983)
A parameter of charge transfer capability (Charton-Charton, 1983)
A parameter of charge transfer donor capability (Charton-Charton, 1983)
Average volume of buried residue (Chothia, 1975)
Residue accessible surface area in tripeptide (Chothia, 1976)
Residue accessible surface area in folded protein (Chothia, 1976)
Proportion of residues 95 Proportion of residues 100 Normalized frequency of beta-turn (Chou-
Fasman, 1978a)
Normalized frequency of alpha-helix (Chou-Fasman, 1978b)
Normalized frequency of beta-sheet (Chou-Fasman, 1978b)
Normalized frequency of beta-turn (Chou-Fasman, 1978b)
Normalized frequency of N-terminal helix (Chou-Fasman, 1978b)
Normalized frequency of C-terminal helix (Chou-Fasman, 1978b)
Normalized frequency of N-terminal non helical region (Chou-Fasman, 1978b)
Normalized frequency of C-terminal non helical region (Chou-Fasman, 1978b)
Normalized frequency of N-terminal beta-sheet (Chou-Fasman, 1978b)
Normalized frequency of C-terminal beta-sheet (Chou-Fasman, 1978b)
Normalized frequency of N-terminal non beta region (Chou-Fasman, 1978b)
Normalized frequency of C-terminal non beta region (Chou-Fasman, 1978b)
Frequency of the 1st residue in turn (Chou-Fasman, 1978b)
Frequency of the 2nd residue in turn (Chou-Fasman, 1978b)
Frequency of the 3rd residue in turn (Chou-Fasman, 1978b)
Frequency of the 4th residue in turn (Chou-Fasman, 1978b)
Normalized frequency of the 2nd and 3rd residues in turn (Chou-Fasman, 1978b)
Normalized hydrophobicity scales for alpha-proteins (Cid et al., 1992)
Normalized hydrophobicity scales for beta-proteins (Cid et al., 1992)
Normalized hydrophobicity scales for alpha+beta-proteins (Cid et al., 1992)
Normalized hydrophobicity scales for alpha/beta-proteins (Cid et al., 1992)
Normalized average hydrophobicity scales (Cid et al., 1992)
Partial specific volume (Cohn-Edsall, 1943)
Normalized frequency of middle helix (Crawford et al., 1973)
Normalized frequency of beta-sheet (Crawford et al., 1973)
Normalized frequency of turn (Crawford et al., 1973)

12 aaindex

Size (Dawson, 1972)
Amino acid composition (Dayhoff et al., 1978a)
Relative mutability (Dayhoff et al., 1978b)
Membrane preference for cytochrome b: MPH89 (Degli Esposti et al., 1990)
Average membrane preference: AMP07 (Degli Esposti et al., 1990)
Consensus normalized hydrophobicity scale (Eisenberg, 1984)
Solvation free energy (Eisenberg-McLachlan, 1986)
Atom-based hydrophobic moment (Eisenberg-McLachlan, 1986)
Direction of hydrophobic moment (Eisenberg-McLachlan, 1986)
Molecular weight (Fasman, 1976)
Melting point (Fasman, 1976)
Optical rotation (Fasman, 1976)
pK-N (Fasman, 1976)
pK-C (Fasman, 1976)
Hydrophobic parameter pi (Fauchere-Pliska, 1983)
Graph shape index (Fauchere et al., 1988)
Smoothed upsilon steric parameter (Fauchere et al., 1988)
Normalized van der Waals volume (Fauchere et al., 1988)
STERIMOL length of the side chain (Fauchere et al., 1988)
STERIMOL minimum width of the side chain (Fauchere et al., 1988)
STERIMOL maximum width of the side chain (Fauchere et al., 1988)
N.m.r. chemical shift of alpha-carbon (Fauchere et al., 1988)
Localized electrical effect (Fauchere et al., 1988)
Number of hydrogen bond donors (Fauchere et al., 1988)
Number of full nonbonding orbitals (Fauchere et al., 1988)
Positive charge (Fauchere et al., 1988)
Negative charge (Fauchere et al., 1988)
pK-a(RCOOH) (Fauchere et al., 1988)
Helix-coil equilibrium constant (Finkelstein-Ptitsyn, 1977)
Helix initiation parameter at posision i-1 (Finkelstein et al., 1991)
Helix initiation parameter at posision i,i+1,i+2 (Finkelstein et al., 1991)
Helix termination parameter at posision j-2,j-1,j (Finkelstein et al., 1991)
Helix termination parameter at posision j+1 (Finkelstein et al., 1991)
Partition coefficient (Garel et al., 1973)
Alpha-helix indices (Geisow-Roberts, 1980)
Alpha-helix indices for alpha-proteins (Geisow-Roberts, 1980)
Alpha-helix indices for beta-proteins (Geisow-Roberts, 1980)
Alpha-helix indices for alpha/beta-proteins (Geisow-Roberts, 1980)
Beta-strand indices (Geisow-Roberts, 1980)
Beta-strand indices for beta-proteins (Geisow-Roberts, 1980)
Beta-strand indices for alpha/beta-proteins (Geisow-Roberts, 1980)
Aperiodic indices (Geisow-Roberts, 1980)
Aperiodic indices for alpha-proteins (Geisow-Roberts, 1980)
Aperiodic indices for beta-proteins (Geisow-Roberts, 1980)
Aperiodic indices for alpha/beta-proteins (Geisow-Roberts, 1980)
Hydrophobicity factor (Goldsack-Chalifoux, 1973)
Residue volume (Goldsack-Chalifoux, 1973)
Composition (Grantham, 1974)

aaindex 13

Polarity (Grantham, 1974)
Volume (Grantham, 1974)
Partition energy (Guy, 1985)
Hydration number (Hopfinger, 1971), Cited by Charton-Charton (1982)
Hydrophilicity value (Hopp-Woods, 1981)
Heat capacity (Hutchens, 1970)
Absolute entropy (Hutchens, 1970)
Entropy of formation (Hutchens, 1970)
Normalized relative frequency of alpha-helix (Isogai et al., 1980)
Normalized relative frequency of extended structure (Isogai et al., 1980)
Normalized relative frequency of bend (Isogai et al., 1980)
Normalized relative frequency of bend R (Isogai et al., 1980)
Normalized relative frequency of bend S (Isogai et al., 1980)
Normalized relative frequency of helix end (Isogai et al., 1980)
Normalized relative frequency of double bend (Isogai et al., 1980)
Normalized relative frequency of coil (Isogai et al., 1980)
Average accessible surface area (Janin et al., 1978)
Percentage of buried residues (Janin et al., 1978)
Percentage of exposed residues (Janin et al., 1978)
Ratio of buried and accessible molar fractions (Janin, 1979)
Transfer free energy (Janin, 1979)
Hydrophobicity (Jones, 1975)
pK (-COOH) (Jones, 1975)
Relative frequency of occurrence (Jones et al., 1992)
Relative mutability (Jones et al., 1992)
Amino acid distribution (Jukes et al., 1975)
Sequence frequency (Jungck, 1978)
Average relative probability of helix (Kanehisa-Tsong, 1980)
Average relative probability of beta-sheet (Kanehisa-Tsong, 1980)
Average relative probability of inner helix (Kanehisa-Tsong, 1980)
Average relative probability of inner beta-sheet (Kanehisa-Tsong, 1980)
Flexibility parameter for no rigid neighbors (Karplus-Schulz, 1985)
Flexibility parameter for one rigid neighbor (Karplus-Schulz, 1985)
Flexibility parameter for two rigid neighbors (Karplus-Schulz, 1985)
The Kerr-constant increments (Khanarian-Moore, 1980)
Net charge (Klein et al., 1984)
Side chain interaction parameter (Krigbaum-Rubin, 1971)
Side chain interaction parameter (Krigbaum-Komoriya, 1979)
Fraction of site occupied by water (Krigbaum-Komoriya, 1979)
Side chain volume (Krigbaum-Komoriya, 1979)
Hydropathy index (Kyte-Doolittle, 1982)
Transfer free energy, CHP/water (Lawson et al., 1984)
Hydrophobic parameter (Levitt, 1976)
Distance between C-alpha and centroid of side chain (Levitt, 1976)
Side chain angle theta(AAR) (Levitt, 1976)
Side chain torsion angle phi(AAAR) (Levitt, 1976)
Radius of gyration of side chain (Levitt, 1976)
van der Waals parameter R0 (Levitt, 1976)

14 aaindex

van der Waals parameter epsilon (Levitt, 1976)
Normalized frequency of alpha-helix, with weights (Levitt, 1978)
Normalized frequency of beta-sheet, with weights (Levitt, 1978)
Normalized frequency of reverse turn, with weights (Levitt, 1978)
Normalized frequency of alpha-helix, unweighted (Levitt, 1978)
Normalized frequency of beta-sheet, unweighted (Levitt, 1978)
Normalized frequency of reverse turn, unweighted (Levitt, 1978)
Frequency of occurrence in beta-bends (Lewis et al., 1971)
Conformational preference for all beta-strands (Lifson-Sander, 1979)
Conformational preference for parallel beta-strands (Lifson-Sander, 1979)
Conformational preference for antiparallel beta-strands (Lifson-Sander, 1979)
Average surrounding hydrophobicity (Manavalan-Ponnuswamy, 1978)
Normalized frequency of alpha-helix (Maxfield-Scheraga, 1976)
Normalized frequency of extended structure (Maxfield-Scheraga, 1976)
Normalized frequency of zeta R (Maxfield-Scheraga, 1976)
Normalized frequency of left-handed alpha-helix (Maxfield-Scheraga, 1976)
Normalized frequency of zeta L (Maxfield-Scheraga, 1976)
Normalized frequency of alpha region (Maxfield-Scheraga, 1976)
Refractivity (McMeekin et al., 1964), Cited by Jones (1975)
Retention coefficient in HPLC, pH7.4 (Meek, 1980)
Retention coefficient in HPLC, pH2.1 (Meek, 1980)
Retention coefficient in NaClO4 (Meek-Rossetti, 1981)
Retention coefficient in NaH2PO4 (Meek-Rossetti, 1981)
Average reduced distance for C-alpha (Meirovitch et al., 1980)
Average reduced distance for side chain (Meirovitch et al., 1980)
Average side chain orientation angle (Meirovitch et al., 1980)
Effective partition energy (Miyazawa-Jernigan, 1985)
Normalized frequency of alpha-helix (Nagano, 1973)
Normalized frequency of bata-structure (Nagano, 1973)
Normalized frequency of coil (Nagano, 1973)
AA composition of total proteins (Nakashima et al., 1990)
SD of AA composition of total proteins (Nakashima et al., 1990)
AA composition of mt-proteins (Nakashima et al., 1990)
Normalized composition of mt-proteins (Nakashima et al., 1990)
AA composition of mt-proteins from animal (Nakashima et al., 1990)
Normalized composition from animal (Nakashima et al., 1990)
AA composition of mt-proteins from fungi and plant (Nakashima et al., 1990)
Normalized composition from fungi and plant (Nakashima et al., 1990)
AA composition of membrane proteins (Nakashima et al., 1990)
Normalized composition of membrane proteins (Nakashima et al., 1990)
Transmembrane regions of non-mt-proteins (Nakashima et al., 1990)
Transmembrane regions of mt-proteins (Nakashima et al., 1990)
Ratio of average and computed composition (Nakashima et al., 1990)
AA composition of CYT of single-spanning proteins (Nakashima-Nishikawa, 1992)
AA composition of CYT2 of single-spanning proteins (Nakashima-Nishikawa, 1992)
AA composition of EXT of single-spanning proteins (Nakashima-Nishikawa, 1992)
AA composition of EXT2 of single-spanning proteins (Nakashima-Nishikawa, 1992)
AA composition of MEM of single-spanning proteins (Nakashima-Nishikawa, 1992)

aaindex 15

AA composition of CYT of multi-spanning proteins (Nakashima-Nishikawa, 1992)
AA composition of EXT of multi-spanning proteins (Nakashima-Nishikawa, 1992)
AA composition of MEM of multi-spanning proteins (Nakashima-Nishikawa, 1992)
8 A contact number (Nishikawa-Ooi, 1980)
14 A contact number (Nishikawa-Ooi, 1986)
Transfer energy, organic solvent/water (Nozaki-Tanford, 1971)
Average non-bonded energy per atom (Oobatake-Ooi, 1977)
Short and medium range non-bonded energy per atom (Oobatake-Ooi, 1977)
Long range non-bonded energy per atom (Oobatake-Ooi, 1977)
Average non-bonded energy per residue (Oobatake-Ooi, 1977)
Short and medium range non-bonded energy per residue (Oobatake-Ooi, 1977)
Optimized beta-structure-coil equilibrium constant (Oobatake et al., 1985)
Optimized propensity to form reverse turn (Oobatake et al., 1985)
Optimized transfer energy parameter (Oobatake et al., 1985)
Optimized average non-bonded energy per atom (Oobatake et al., 1985)
Optimized side chain interaction parameter (Oobatake et al., 1985)
Normalized frequency of alpha-helix from LG (Palau et al., 1981)
Normalized frequency of alpha-helix from CF (Palau et al., 1981)
Normalized frequency of beta-sheet from LG (Palau et al., 1981)
Normalized frequency of beta-sheet from CF (Palau et al., 1981)
Normalized frequency of turn from LG (Palau et al., 1981)
Normalized frequency of turn from CF (Palau et al., 1981)
Normalized frequency of alpha-helix in all-alpha class (Palau et al., 1981)
Normalized frequency of alpha-helix in alpha+beta class (Palau et al., 1981)
Normalized frequency of alpha-helix in alpha/beta class (Palau et al., 1981)
Normalized frequency of beta-sheet in all-beta class (Palau et al., 1981)
Normalized frequency of beta-sheet in alpha+beta class (Palau et al., 1981)
Normalized frequency of beta-sheet in alpha/beta class (Palau et al., 1981)
Normalized frequency of turn in all-alpha class (Palau et al., 1981)
Normalized frequency of turn in all-beta class (Palau et al., 1981)
Normalized frequency of turn in alpha+beta class (Palau et al., 1981)
Normalized frequency of turn in alpha/beta class (Palau et al., 1981)
HPLC parameter (Parker et al., 1986)
Partition coefficient (Pliska et al., 1981)
Surrounding hydrophobicity in folded form (Ponnuswamy et al., 1980)
Average gain in surrounding hydrophobicity (Ponnuswamy et al., 1980)
Average gain ratio in surrounding hydrophobicity (Ponnuswamy et al., 1980)
Surrounding hydrophobicity in alpha-helix (Ponnuswamy et al., 1980)
Surrounding hydrophobicity in beta-sheet (Ponnuswamy et al., 1980)
Surrounding hydrophobicity in turn (Ponnuswamy et al., 1980)
Accessibility reduction ratio (Ponnuswamy et al., 1980)
Average number of surrounding residues (Ponnuswamy et al., 1980)
Intercept in regression analysis (Prabhakaran-Ponnuswamy, 1982)
Slope in regression analysis x 1.0E1 (Prabhakaran-Ponnuswamy, 1982)
Correlation coefficient in regression analysis (Prabhakaran-Ponnuswamy, 1982)
Hydrophobicity (Prabhakaran, 1990)
Relative frequency in alpha-helix (Prabhakaran, 1990)
Relative frequency in beta-sheet (Prabhakaran, 1990)

16 aaindex

Relative frequency in reverse-turn (Prabhakaran, 1990)
Helix-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)
Beta-coil equilibrium constant (Ptitsyn-Finkelstein, 1983)
Weights for alpha-helix at the window position of -6 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of -5 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of -4 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of -3 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of -2 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of -1 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of 0 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of 1 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of 2 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of 3 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of 4 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of 5 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of 6 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of -6 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of -5 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of -4 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of -3 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of -2 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of -1 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of 0 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of 1 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of 2 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of 3 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of 4 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of 5 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of 6 (Qian-Sejnowski, 1988)
Weights for coil at the window position of -6 (Qian-Sejnowski, 1988)
Weights for coil at the window position of -5 (Qian-Sejnowski, 1988)
Weights for coil at the window position of -4 (Qian-Sejnowski, 1988)
Weights for coil at the window position of -3 (Qian-Sejnowski, 1988)
Weights for coil at the window position of -2 (Qian-Sejnowski, 1988)
Weights for coil at the window position of -1 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 0 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 1 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 2 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 3 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 4 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 5 (Qian-Sejnowski, 1988)
Weights for coil at the window position of 6 (Qian-Sejnowski, 1988)
Average reduced distance for C-alpha (Rackovsky-Scheraga, 1977)
Average reduced distance for side chain (Rackovsky-Scheraga, 1977)
Side chain orientational preference (Rackovsky-Scheraga, 1977)
Average relative fractional occurrence in A0(i) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in AR(i) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in AL(i) (Rackovsky-Scheraga, 1982)

aaindex 17

Average relative fractional occurrence in EL(i) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in E0(i) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in ER(i) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in A0(i-1) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in AR(i-1) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in AL(i-1) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in EL(i-1) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in E0(i-1) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in ER(i-1) (Rackovsky-Scheraga, 1982)
Value of theta(i) (Rackovsky-Scheraga, 1982)
Value of theta(i-1) (Rackovsky-Scheraga, 1982)
Transfer free energy from chx to wat (Radzicka-Wolfenden, 1988)
Transfer free energy from oct to wat (Radzicka-Wolfenden, 1988)
Transfer free energy from vap to chx (Radzicka-Wolfenden, 1988)
Transfer free energy from chx to oct (Radzicka-Wolfenden, 1988)
Transfer free energy from vap to oct (Radzicka-Wolfenden, 1988)
Accessible surface area (Radzicka-Wolfenden, 1988)
Energy transfer from out to in(95 Mean polarity (Radzicka-Wolfenden, 1988)
Relative preference value at N" (Richardson-Richardson, 1988)
Relative preference value at N’ (Richardson-Richardson, 1988)
Relative preference value at N-cap (Richardson-Richardson, 1988)
Relative preference value at N1 (Richardson-Richardson, 1988)
Relative preference value at N2 (Richardson-Richardson, 1988)
Relative preference value at N3 (Richardson-Richardson, 1988)
Relative preference value at N4 (Richardson-Richardson, 1988)
Relative preference value at N5 (Richardson-Richardson, 1988)
Relative preference value at Mid (Richardson-Richardson, 1988)
Relative preference value at C5 (Richardson-Richardson, 1988)
Relative preference value at C4 (Richardson-Richardson, 1988)
Relative preference value at C3 (Richardson-Richardson, 1988)
Relative preference value at C2 (Richardson-Richardson, 1988)
Relative preference value at C1 (Richardson-Richardson, 1988)
Relative preference value at C-cap (Richardson-Richardson, 1988)
Relative preference value at C’ (Richardson-Richardson, 1988)
Relative preference value at C" (Richardson-Richardson, 1988)
Information measure for alpha-helix (Robson-Suzuki, 1976)
Information measure for N-terminal helix (Robson-Suzuki, 1976)
Information measure for middle helix (Robson-Suzuki, 1976)
Information measure for C-terminal helix (Robson-Suzuki, 1976)
Information measure for extended (Robson-Suzuki, 1976)
Information measure for pleated-sheet (Robson-Suzuki, 1976)
Information measure for extended without H-bond (Robson-Suzuki, 1976)
Information measure for turn (Robson-Suzuki, 1976)
Information measure for N-terminal turn (Robson-Suzuki, 1976)
Information measure for middle turn (Robson-Suzuki, 1976)
Information measure for C-terminal turn (Robson-Suzuki, 1976)
Information measure for coil (Robson-Suzuki, 1976)
Information measure for loop (Robson-Suzuki, 1976)

18 aaindex

Hydration free energy (Robson-Osguthorpe, 1979)
Mean area buried on transfer (Rose et al., 1985)
Mean fractional area loss (Rose et al., 1985)
Side chain hydropathy, uncorrected for solvation (Roseman, 1988)
Side chain hydropathy, corrected for solvation (Roseman, 1988)
Loss of Side chain hydropathy by helix formation (Roseman, 1988)
Transfer free energy (Simon, 1976), Cited by Charton-Charton (1982)
Principal component I (Sneath, 1966)
Principal component II (Sneath, 1966)
Principal component III (Sneath, 1966)
Principal component IV (Sneath, 1966)
Zimm-Bragg parameter s at 20 C (Sueki et al., 1984)
Zimm-Bragg parameter sigma x 1.0E4 (Sueki et al., 1984)
Optimal matching hydrophobicity (Sweet-Eisenberg, 1983)
Normalized frequency of alpha-helix (Tanaka-Scheraga, 1977)
Normalized frequency of isolated helix (Tanaka-Scheraga, 1977)
Normalized frequency of extended structure (Tanaka-Scheraga, 1977)
Normalized frequency of chain reversal R (Tanaka-Scheraga, 1977)
Normalized frequency of chain reversal S (Tanaka-Scheraga, 1977)
Normalized frequency of chain reversal D (Tanaka-Scheraga, 1977)
Normalized frequency of left-handed helix (Tanaka-Scheraga, 1977)
Normalized frequency of zeta R (Tanaka-Scheraga, 1977)
Normalized frequency of coil (Tanaka-Scheraga, 1977)
Normalized frequency of chain reversal (Tanaka-Scheraga, 1977)
Relative population of conformational state A (Vasquez et al., 1983)
Relative population of conformational state C (Vasquez et al., 1983)
Relative population of conformational state E (Vasquez et al., 1983)
Electron-ion interaction potential (Veljkovic et al., 1985)
Bitterness (Venanzi, 1984)
Transfer free energy to lipophilic phase (von Heijne-Blomberg, 1979)
Average interactions per side chain atom (Warme-Morgan, 1978)
RF value in high salt chromatography (Weber-Lacey, 1978)
Propensity to be buried inside (Wertz-Scheraga, 1978)
Free energy change of epsilon(i) to epsilon(ex) (Wertz-Scheraga, 1978)
Free energy change of alpha(Ri) to alpha(Rh) (Wertz-Scheraga, 1978)
Free energy change of epsilon(i) to alpha(Rh) (Wertz-Scheraga, 1978)
Polar requirement (Woese, 1973)
Hydration potential (Wolfenden et al., 1981)
Principal property value z1 (Wold et al., 1987)
Principal property value z2 (Wold et al., 1987)
Principal property value z3 (Wold et al., 1987)
Unfolding Gibbs energy in water, pH7.0 (Yutani et al., 1987)
Unfolding Gibbs energy in water, pH9.0 (Yutani et al., 1987)
Activation Gibbs energy of unfolding, pH7.0 (Yutani et al., 1987)
Activation Gibbs energy of unfolding, pH9.0 (Yutani et al., 1987)
Dependence of partition coefficient on ionic strength (Zaslavsky et al., 1982)
Hydrophobicity (Zimmerman et al., 1968)
Bulkiness (Zimmerman et al., 1968)

aaindex 19

Polarity (Zimmerman et al., 1968)
Isoelectric point (Zimmerman et al., 1968)
RF rank (Zimmerman et al., 1968)
Normalized positional residue frequency at helix termini N4’(Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini N"’ (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini N" (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini N’(Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini Nc (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini N1 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini N2 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini N3 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini N4 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini N5 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini C5 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini C4 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini C3 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini C2 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini C1 (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini Cc (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini C’ (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini C" (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini C"’ (Aurora-Rose, 1998)
Normalized positional residue frequency at helix termini C4’ (Aurora-Rose, 1998)
Delta G values for the peptides extrapolated to 0 M urea (O’Neil-DeGrado, 1990)
Helix formation parameters (delta delta G) (O’Neil-DeGrado, 1990)
Normalized flexibility parameters (B-values), average (Vihinen et al., 1994)
Normalized flexibility parameters (B-values) for each residue surrounded by none rigid neighbours
(Vihinen et al., 1994)
Normalized flexibility parameters (B-values) for each residue surrounded by one rigid neighbours
(Vihinen et al., 1994)
Normalized flexibility parameters (B-values) for each residue surrounded by two rigid neighbours
(Vihinen et al., 1994)
Free energy in alpha-helical conformation (Munoz-Serrano, 1994)
Free energy in alpha-helical region (Munoz-Serrano, 1994)
Free energy in beta-strand conformation (Munoz-Serrano, 1994)
Free energy in beta-strand region (Munoz-Serrano, 1994)
Free energy in beta-strand region (Munoz-Serrano, 1994)
Free energies of transfer of AcWl-X-LL peptides from bilayer interface to water (Wimley-White,
1996)
Thermodynamic beta sheet propensity (Kim-Berg, 1993)
Turn propensity scale for transmembrane helices (Monne et al., 1999)
Alpha helix propensity of position 44 in T4 lysozyme (Blaber et al., 1993)
p-Values of mesophilic proteins based on the distributions of B values (Parthasarathy-Murthy, 2000)
p-Values of thermophilic proteins based on the distributions of B values (Parthasarathy-Murthy,
2000)
Distribution of amino acid residues in the 18 non-redundant families of thermophilic proteins (Ku-
mar et al., 2000)
Distribution of amino acid residues in the 18 non-redundant families of mesophilic proteins (Kumar

20 aaindex

et al., 2000)
Distribution of amino acid residues in the alpha-helices in thermophilic proteins (Kumar et al.,
2000)
Distribution of amino acid residues in the alpha-helices in mesophilic proteins (Kumar et al., 2000)
Side-chain contribution to protein stability (kJ/mol) (Takano-Yutani, 2001)
Propensity of amino acids within pi-helices (Fodje-Al-Karadaghi, 2002)
Hydropathy scale based on self-information values in the two-state model (5 Hydropathy scale
based on self-information values in the two-state model (9 Hydropathy scale based on self-information
values in the two-state model (16 Hydropathy scale based on self-information values in the two-state
model (20 Hydropathy scale based on self-information values in the two-state model (25 Hydropa-
thy scale based on self-information values in the two-state model (36 Hydropathy scale based on
self-information values in the two-state model (50 Averaged turn propensities in a transmembrane
helix (Monne et al., 1999)
Alpha-helix propensity derived from designed sequences (Koehl-Levitt, 1999)
Beta-sheet propensity derived from designed sequences (Koehl-Levitt, 1999)
Composition of amino acids in extracellular proteins (percent) (Cedano et al., 1997)
Composition of amino acids in anchored proteins (percent) (Cedano et al., 1997)
Composition of amino acids in membrane proteins (percent) (Cedano et al., 1997)
Composition of amino acids in intracellular proteins (percent) (Cedano et al., 1997)
Composition of amino acids in nuclear proteins (percent) (Cedano et al., 1997)
Surface composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-
Nishikawa, 2001)
Surface composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-
Nishikawa, 2001)
Surface composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-
Nishikawa, 2001)
Surface composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001)
Interior composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-
Nishikawa, 2001)
Interior composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-
Nishikawa, 2001)
Interior composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-
Nishikawa, 2001)
Interior composition of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001)
Entire chain composition of amino acids in intracellular proteins of thermophiles (percent) (Fukuchi-
Nishikawa, 2001)
Entire chain composition of amino acids in intracellular proteins of mesophiles (percent) (Fukuchi-
Nishikawa, 2001)
Entire chain composition of amino acids in extracellular proteins of mesophiles (percent) (Fukuchi-
Nishikawa, 2001)
Entire chain compositino of amino acids in nuclear proteins (percent) (Fukuchi-Nishikawa, 2001)
Screening coefficients gamma, local (Avbelj, 2000)
Screening coefficients gamma, non-local (Avbelj, 2000)
Slopes tripeptide, FDPB VFF neutral (Avbelj, 2000)
Slopes tripeptides, LD VFF neutral (Avbelj, 2000)
Slopes tripeptide, FDPB VFF noside (Avbelj, 2000)
Slopes tripeptide FDPB VFF all (Avbelj, 2000)
Slopes tripeptide FDPB PARSE neutral (Avbelj, 2000)

aaindex 21

Slopes dekapeptide, FDPB VFF neutral (Avbelj, 2000)
Slopes proteins, FDPB VFF neutral (Avbelj, 2000)
Side-chain conformation by gaussian evolutionary method (Yang et al., 2002)
Amphiphilicity index (Mitaku et al., 2002)
Volumes including the crystallographic waters using the ProtOr (Tsai et al., 1999)
Volumes not including the crystallographic waters using the ProtOr (Tsai et al., 1999)
Electron-ion interaction potential values (Cosic, 1994)
Hydrophobicity scales (Ponnuswamy, 1993)
Hydrophobicity coefficient in RP-HPLC, C18 with 0.1 Hydrophobicity coefficient in RP-HPLC,
C8 with 0.1 Hydrophobicity coefficient in RP-HPLC, C4 with 0.1 Hydrophobicity coefficient in
RP-HPLC, C18 with 0.1 Hydrophilicity scale (Kuhn et al., 1995)
Retention coefficient at pH 2 (Guo et al., 1986)
Modified Kyte-Doolittle hydrophobicity scale (Juretic et al., 1998)
Interactivity scale obtained from the contact matrix (Bastolla et al., 2005)
Interactivity scale obtained by maximizing the mean of correlation coefficient over single-domain
globular proteins (Bastolla et al., 2005)
Interactivity scale obtained by maximizing the mean of correlation coefficient over pairs of se-
quences sharing the TIM barrel fold (Bastolla et al., 2005)
Linker propensity index (Suyama-Ohara, 2003)
Knowledge-based membrane-propensity scale from 1D Helix in MPtopo databases (Punta-Maritan,
2003)
Knowledge-based membrane-propensity scale from 3D Helix in MPtopo databases (Punta-Maritan,
2003)
Linker propensity from all dataset (George-Heringa, 2003)
Linker propensity from 1-linker dataset (George-Heringa, 2003)
Linker propensity from 2-linker dataset (George-Heringa, 2003)
Linker propensity from 3-linker dataset (George-Heringa, 2003)
Linker propensity from small dataset (linker length is less than six residues) (George-Heringa, 2003)
Linker propensity from medium dataset (linker length is between six and 14 residues) (George-
Heringa, 2003)
Linker propensity from long dataset (linker length is greater than 14 residues) (George-Heringa,
2003)
Linker propensity from helical (annotated by DSSP) dataset (George-Heringa, 2003)
Linker propensity from non-helical (annotated by DSSP) dataset (George-Heringa, 2003)
The stability scale from the knowledge-based atom-atom potential (Zhou-Zhou, 2004)
The relative stability scale extracted from mutation experiments (Zhou-Zhou, 2004)
Buriability (Zhou-Zhou, 2004)
Linker index (Bae et al., 2005)
Mean volumes of residues buried in protein interiors (Harpaz et al., 1994)
Average volumes of residues (Pontius et al., 1996)
Hydrostatic pressure asymmetry index, PAI (Di Giulio, 2005)
Hydrophobicity index (Wolfenden et al., 1979)
Average internal preferences (Olsen, 1980)
Hydrophobicity-related index (Kidera et al., 1985)
Apparent partition energies calculated from Wertz-Scheraga index (Guy, 1985)
Apparent partition energies calculated from Robson-Osguthorpe index (Guy, 1985)
Apparent partition energies calculated from Janin index (Guy, 1985)
Apparent partition energies calculated from Chothia index (Guy, 1985)

22 aaindex

Hydropathies of amino acid side chains, neutral form (Roseman, 1988)
Hydropathies of amino acid side chains, pi-values in pH 7.0 (Roseman, 1988)
Weights from the IFH scale (Jacobs-White, 1989)
Hydrophobicity index, 3.0 pH (Cowan-Whittaker, 1990)
Scaled side chain hydrophobicity values (Black-Mould, 1991)
Hydrophobicity scale from native protein structures (Casari-Sippl, 1992)
NNEIG index (Cornette et al., 1987)
SWEIG index (Cornette et al., 1987)
PRIFT index (Cornette et al., 1987)
PRILS index (Cornette et al., 1987)
ALTFT index (Cornette et al., 1987)
ALTLS index (Cornette et al., 1987)
TOTFT index (Cornette et al., 1987)
TOTLS index (Cornette et al., 1987)
Relative partition energies derived by the Bethe approximation (Miyazawa-Jernigan, 1999)
Optimized relative partition energies - method A (Miyazawa-Jernigan, 1999)
Optimized relative partition energies - method B (Miyazawa-Jernigan, 1999)
Optimized relative partition energies - method C (Miyazawa-Jernigan, 1999)
Optimized relative partition energies - method D (Miyazawa-Jernigan, 1999)
Hydrophobicity index (Engelman et al., 1986)
Hydrophobicity index (Fasman, 1989)

Source

https://www.genome.jp/aaindex/

References

From the original aaindex documentation:

Please cite the following references when making use of the database:

Kawashima, S. and Kanehisa, M. (2000) AAindex: amino acid index database. Nucleic Acids Res.,
28:374.

Tomii, K. and Kanehisa, M. (1996) Analysis of amino acid indices and mutation matrices for se-
quence comparison and structure prediction of proteins. Protein Eng., 9:27-36.

Nakai, K., Kidera, A., and Kanehisa, M. (1988) Cluster analysis of amino acid indices for predic-
tion of protein structure and function. Protein Eng. 2:93-100.

Examples

#
Load data:
#

data(aaindex)

https://www.genome.jp/aaindex/

AAstat 23

#
Supose that we need the Kyte & Doolittle Hydrophaty index. We first look
at the entries with Kyte as author:
#

which(sapply(aaindex, function(x) length(grep("Kyte", x$A)) != 0))

#
This should return that entry number 151 named KYTJ820101 is the only
one that fit our request. We can access to it by position or by name,
for instance:
#

aaindex[[151]]$I
aaindex[["KYTJ820101"]]$I
aaindex$KYTJ820101$I

AAstat To Get Some Protein Statistics

Description

Returns simple protein sequence information including the number of residues, the percentage
physico-chemical classes and the theoretical isoelectric point. The functions ignore ambiguous
amino acids (e.g. "B", "Z", "X", "J").

Usage

AAstat(seq, plot = TRUE)

Arguments

seq a protein sequence as a vector of upper-case chars

plot if TRUE, plots the presence of residues splited by physico-chemical classes along
the sequence.

Value

A list with the three following components:

Compo A factor giving the amino acid counts.

Prop A list giving the percentage of each physico-chemical classes (Tiny, Small,
Aliphatic, Aromatic, Non-polar, Polar, Charged, Positive, Negative).

Pi The theoretical isoelectric point

24 acnucopen

Author(s)

D. Charif, J.R. Lobry

References

citation("seqinr")

See Also

computePI, SEQINR.UTIL, SeqFastaAA

Examples

seqAA <- read.fasta(file = system.file("sequences/seqAA.fasta", package = "seqinr"),
seqtype = "AA")
AAstat(seqAA[[1]])

acnucopen open and close a remote access to an ACNUC database

Description

These are low level functions to start and stop a remote access to an ACNUC database.

Usage

acnucopen(db, socket, challenge = NA)
acnucclose(socket)
clientid(id = paste("seqinr_",
packageDescription("seqinr")$Version, sep = ""),
socket, verbose = FALSE)

quitacnuc(socket)

Arguments

db the remote ACNUC database name

socket an object of class sockconn connecting to an ACNUC server

challenge unimplemented yet

id client ID definition defaulting to seqinr + package version number

verbose logical, if TRUE mode verbose is on

Details

these low level functions are usually not used directly by the user. Use choosebank to open a remote
ACNUC database and closebank to close it.

acnucopen 25

Value

For openacnuc a list with the following components: type : the type of database that was opened.
totseqs, totspec, totkey : total number of seqs, species, keywords in opened database. ACC_LENGTH,
L_MNEMO, WIDTH_KW, WIDTH_SP, WIDTH_SMJ, WIDTH_AUT, WIDTH_BIB, lrtxt, SUBINLNG:
max lengths of record keys in database.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

choosebank, closebank

Examples

Not run: # Need internet connection
mysocket <- socketConnection(host = "pbil.univ-lyon1.fr",
port = 5558, server = FALSE, blocking = TRUE)

readLines(mysocket, n = 1) # OK acnuc socket started
acnucopen("emblTP", socket = mysocket) -> res
expected <- c("EMBL", "14138095", "236401", "1186228", "8",

"16", "40", "40", "20", "20", "40", "60", "504")
stopifnot(all(unlist(res) == expected))
tryalreadyopen <- try(acnucopen("emblTP", socket = mysocket))
stopifnot(inherits(tryalreadyopen, "try-error"))
Need a fresh socket because acnucopen() close it if error:
mysocket <- socketConnection(host = "pbil.univ-lyon1.fr",

port = 5558, server = FALSE, blocking = TRUE)
tryoff <- try(acnucopen("off", socket = mysocket))
stopifnot(inherits(tryoff, "try-error"))

mysocket <- socketConnection(host = "pbil.univ-lyon1.fr",
port = 5558, server = FALSE, blocking = TRUE)

tryinexistent <- try(acnucopen("tagadatagadatsointsoin", socket = mysocket))
stopifnot(inherits(tryinexistent, "try-error"))

mysocket <- socketConnection(host = "pbil.univ-lyon1.fr",
port = 5558, server = FALSE, blocking = TRUE)

trycloseunopened <- try(acnucclose(mysocket))
stopifnot(inherits(trycloseunopened, "try-error"))

End(Not run)

26 al2bp

al2bp To Convert a forensic microsatellite allele name into its length in base
pairs

Description

Conventions used to name forensic microsatellite alleles (STR) are described in Bar et al. (1994).
The name "9.3" means for instance that there are 9 repetitions of the complete base oligomer and
an incomplete repeat with 3 bp.

Usage

al2bp(allele.name, repeat.bp = 4, offLadderChars = "><", split = "\\.")

Arguments

allele.name The name of the allele, coerced to a string type.
repeat.bp The length in bp of the microsatellite base repeat, most of them are tetranu-

cleotides so that it defaults to 4. Do not forget to change this to 5 for loci based
on pentanucleotides such as Penta D or Penta E.

offLadderChars NA is returned when at least one of these characters are found in the allele name.
Off ladder alleles are typically reported as "<8" or ">19"

split The convention is to use a dot, as in "9.3", between the number of repeats and the
number of bases in the incomplete repeat. On some locales where the decimal
separator is a comma this could be a source of problem, try to use "," instead for
this argument which is forwarded to strsplit.

Details

Warnings generated by faulty numeric conversions are suppressed here.

Value

A single numeric value corresponding to the size in bp of the allele, or NA when characters spoting
off ladder alleles are encountedred or when numeric conversion is impossible (e.g. with "X" or "Y"
allele names at Amelogenin locus).

Author(s)

J.R. Lobry

References

Bar, W. and Brinkmann, B. and Lincoln, P. and Mayr, W.R. and Rossi, U. (1994) DNA recommen-
dations. 1994 report concerning further recommendations of the DNA Commission of the ISFH
regarding PCR-based polymorphisms in STR (short tandem repeat) systems. Int. J. Leg. Med.,
107:159-160.

citation("seqinR")

alllistranks 27

See Also

identifiler for forensic microsatellite allele name examples.

Examples

#
Quality check and examples:
#
stopifnot(al2bp("9") == 36) # 9 repeats of a tetranucleotide is 36 bp
stopifnot(al2bp(9) == 36) # also OK with numerical argument
stopifnot(al2bp(9, 5) == 45) # 9 repeats of a pentanucleotide is 45 bp
stopifnot(al2bp("9.3") == 39) # microvariant case
stopifnot(is.na(al2bp("<8"))) # off ladder case
stopifnot(is.na(al2bp(">19"))) # off ladder case
stopifnot(is.na(al2bp("X"))) # non STR case
#
Application to the alleles names in the identifiler data set where all loci are
tetranucleotide repeats:
#
data(identifiler)
al.names <- unlist(identifiler)
al.length <- sapply(al.names, al2bp)
loc.names <- unlist(lapply(identifiler, names))
loc.nall <-unlist(lapply(identifiler, function(x) lapply(x,length)))
loc.fac <- factor(rep(loc.names, loc.nall))
par(lend = "butt", mar = c(5,6,4,1)+0.1)
boxplot(al.length~loc.fac, las = 1, col = "lightblue",

horizontal = TRUE, main = "Range of allele lengths at forensic loci",
xlab = "Length (bp)", ylim = c(0, max(al.length, na.rm = TRUE)))

alllistranks To get the count of existing lists and all their ranks on server

Description

This is a low level function to get the total number of list and all their ranks in an opened database.

Usage

alllistranks(socket = autosocket(), verbose = FALSE)
alr(socket = autosocket(), verbose = FALSE)

Arguments

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

verbose if TRUE, verbose mode is on

28 amb

Details

This low level function is usually not used directly by the user.

Value

A list with two components:

count count of existing lists

rank their rank

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

choosebank, query

Examples

Not run: # Need internet connection
choosebank("emblTP")
tmp1 <- query("tmp1", "sp=Borrelia burgdorferi", virtual = TRUE)
tmp2 <- query("tmp2", "sp=Borrelia burgdorferi", virtual = TRUE)
tmp3 <- query("tmp3", "sp=Borrelia burgdorferi", virtual = TRUE)
(result <- alllistranks())
stopifnot(result$count == 3) # Three ACNUC lists
stopifnot(result$ranks == 2:4) # Starting at rank 2
#
Summay of current lists defined on the ACNUC server:
#
sapply(result$ranks, getliststate)
closebank()

End(Not run)

amb Expansion of IUPAC nucleotide symbols

Description

This function returns the list of nucleotide matching a given IUPAC nucleotide symbol, for instance
c("c", "g") for "s".

amb 29

Usage

amb(base, forceToLower = TRUE, checkBase = TRUE,
IUPAC = s2c("acgturymkswbdhvn"), u2t = TRUE)

Arguments

base an IUPAC symbol for a nucleotide as a single character

forceToLower if TRUE the base is forced to lower case

checkBase if TRUE the character is checked to belong to the allowed IUPAC symbol list

IUPAC the list of allowed IUPAC symbols

u2t if TRUE "u" for uracil in RNA are changed into "t" for thymine in DNA

Details

Non ambiguous bases are returned unchanged (except for "u" when u2t is TRUE).

Value

When base is missing, the list of IUPAC symbols is returned, otherwise a vector with expanded
symbols.

Author(s)

J.R. Lobry

References

The nomenclature for incompletely specified bases in nucleic acid sequences at: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC341218/

citation("seqinr")

See Also

See bma for the reverse operation. Use tolower to change upper case letters into lower case letters.

Examples

#
The list of IUPAC symbols:
#

amb()

#
And their expansion:
#

sapply(amb(), amb)

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC341218/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC341218/

30 as.alignment

AnoukResult Expected numeric results for Ka and Ks computation

Description

This data set is what should be obtained when runing kaks() on the test file Anouk.fasta in the
sequences directory of the seqinR package.

Usage

data(AnoukResult)

Format

A list with 4 components of class dist.

ka Ka

ks Ks

vka variance for Ka

vks variance for Ks

Details

See the example in kaks.

Source

The fasta test file was provided by Anamaria Necşulea.

References

citation("seqinr")

as.alignment Constructor for class alignment

Description

Returns an object of (S3) class alignment.

Usage

as.alignment(nb = NULL, nam = NULL, seq = NULL, com = NULL)

as.matrix.alignment 31

Arguments

nb integer. The number of sequences in the alignment.

nam vector of nb character strings. The sequence names.

seq vector of nb character strings. The aligned sequences.

com vector of nb character strings. The comments about sequences.

Value

An object of class alignment which is a list with the following components:

nb the number of aligned sequences

nam a vector of strings containing the names of the aligned sequences

seq a vector of strings containing the aligned sequences

com a vector of strings containing the commentaries for each sequence or NA if there
are no comments

Author(s)

D. Charif, J.R. Lobry

References

citation("seqinr")

See Also

read.alignment, as.matrix.alignment, read.fasta, write.fasta, reverse.align, dist.alignment.

Examples

as.alignment(nb = 2, nam = c("one", "two"),
seq = c("-ACGT", "GACG-"), com = c("un", "deux"))

as.matrix.alignment as.matrix.alignment

Description

Converts an alignment into a matrix of characters

Usage

S3 method for class 'alignment'
as.matrix(x, ...)

32 autosocket

Arguments

x an object of the class alignment.

... additional arguments to be passed to or from methods.

Value

A matrix of characters.

Author(s)

J.R. Lobry

See Also

read.alignment

Examples

phylip <- read.alignment(file = system.file("sequences/test.phylip",
package = "seqinr"), format = "phylip")
as.matrix(phylip)

autosocket Returns a socket to the last opened database

Description

This is a low level function that is mainly used to select automatically the last opened ACNUC
database for functions using sockets.

Usage

autosocket()

Value

An object of class sockconn.

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

https://doua.prabi.fr/databases/acnuc.html

baselineabif 33

See Also

choosebank, connections.

Examples

Not run: #Need internet connection
choosebank("emblTP")
autosocket()
closebank()

End(Not run)

baselineabif Estimation of baseline value

Description

This function tries to estimate the baseline value for RFU data from capillary electrophoresis whith
the heuristic that the most common value is the baseline.

Usage

baselineabif(rfu, maxrfu = 1000)

Arguments

rfu a numeric vector of signal value

maxrfu signal values greater or equal to maxrfu are forced to NA

Value

A single numeric value for the estimated baseline.

Author(s)

J.R. Lobry

See Also

JLO for a dataset example, plotabif to plot this kind of data, peakabif to estimate peak parameters.

34 bma

Examples

data(JLO)
rfu <- JLO$Data$DATA.1
bl <- baselineabif(rfu)
plot(1:length(rfu), rfu, type = "l",

xlab = "Time [datapoint units]",
ylab = "Signal [RFU]",
main = "Example of baseline estimates")

abline(h = bl, col="red", lty = 2)
legend("topright", inset = 0.02, "Baseline estimate", lty = 2, col = "red")

bma Computing an IUPAC nucleotide symbol

Description

This function returns the IUPAC symbol for a nucleotide sequence, for instance c("c", "c", "g")
is coded by "s".

Usage

bma(nucl, warn.non.IUPAC = TRUE, type = c("DNA", "RNA"))

Arguments

nucl a nucleotide sequence as a vector of single chars

warn.non.IUPAC if TRUE warns when no IUPAC symbol is possible

type whether this is a DNA or a RNA sequence

Details

The sequence is forced in lower case letters and ambiguous bases are expanded before trying to find
an IUPAC symbol.

Value

A single IUPAC symbol in lower case, or NA when this is not possible.

Author(s)

J.R. Lobry

References

The nomenclature for incompletely specified bases in nucleic acid sequences at: https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC341218/

citation("seqinr")

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC341218/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC341218/

c2s 35

See Also

See amb for the reverse operation. Use toupper to change lower case letters into upper case letters.

Examples

stopifnot(bma(s2c("atatattttata")) == "w")
stopifnot(bma(s2c("gcggcgcgcggc")) == "s")
stopifnot(bma(s2c("ACGT")) == "n")
stopifnot(is.na(bma(s2c("atatttt---tatat")))) # a warning is issued

c2s conversion of a vector of chars into a string

Description

This is a simple utility function to convert a vector of chars such as c("m", "e", "r", "g", "e", "d")
into a single string such as "merged".

Usage

c2s(chars = c("m", "e", "r", "g", "e", "d"))

Arguments

chars a vector of chars

Value

a string

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

s2c

Examples

c2s(c("m","e","r","g","e","d"))

36 cai

cai Codon Adaptation Index

Description

The Codon Adaptation Index (Sharp and Li 1987) is the most popular index of gene expressivity
with about 1000 citations 20 years after its publication. Its values range from 0 (low) to 1 (high).
The implementation here is intended to work exactly as in the program codonW written by by John
Peden during his PhD thesis under the supervision of P.M. Sharp.

Usage

cai(seq, w, numcode = 1, zero.threshold = 0.0001, zero.to = 0.01)

Arguments

seq a coding sequence as a vector of single characters

w a vector for the relative adaptiveness of each codon

numcode the genetic code number as in translate

zero.threshold a value in w below this threshold is considered as zero

zero.to a value considered as zero in w is forced to this value. The default is from Bulmer
(1988).

Details

Adapted from the documentation of the CAI function in the program codonW writen by John Peden:
CAI is a measurement of the relative adaptiveness of the codon usage of a gene towards the codon
usage of highly expressed genes. The relative adaptiveness (w) of each codon is the ratio of the
usage of each codon, to that of the most abundant codon for the same amino acid. The CAI index
is defined as the geometric mean of these relative adaptiveness values. Non-synonymous codons
and termination codons (genetic code dependent) are excluded. To aid computation, the CAI is
calculated as using a natural log summation, To prevent a codon having a relative adaptiveness
value of zero, which could result in a CAI of zero; these codons have fitness of zero (<.0001) are
adjusted to 0.01.

Value

A single numerical value for the CAI.

Author(s)

J.R. Lobry

cai 37

References

Sharp, P.M., Li, W.-H. (1987) The codon adaptation index - a measure of directional synonymous
codon usage bias, and its potential applications. Nucleic Acids Research, 15:1281-1295.

Bulmer, M. (1988). Are codon usage patterns in unicellular organisms determined by selection-
mutation balance. Journal of Evolutionary Biology, 1:15-26.

Peden, J.F. (1999) Analysis of codon usage. PhD Thesis, University of Nottingham, UK.

The program codonW used here for comparison is available at https://codonw.sourceforge.
net/ under a GPL licence.

citation("seqinr").

See Also

caitab for some w values from codonW. uco for codon usage tabulation.

Examples

#
How to reproduce the results obtained with the C program codonW
version 1.4.4 writen by John Peden. We use here the "input.dat"
test file from codonW (Saccharomyces cerevisiae).
#

inputdatfile <- system.file("sequences/input.dat", package = "seqinr")
input <- read.fasta(file = inputdatfile) # read the FASTA file

#
Import results obtained with codonW
#

scucofile <- system.file("sequences/scuco.txt", package = "seqinr")
scuco.res <- read.table(scucofile, header = TRUE) # read codonW result file

#
Use w for Saccharomyces cerevisiae
#

data(caitab)
w <- caitab$sc

#
Compute CAI and compare results:
#

cai.res <- sapply(input, cai, w = w)
plot(cai.res, scuco.res$CAI,
main = "Comparison of seqinR and codonW results",
xlab = "CAI from seqinR",
ylab = "CAI from codonW",
las = 1)

abline(c(0,1))

https://codonw.sourceforge.net/
https://codonw.sourceforge.net/

38 caitab

caitab Codon Adaptation Index (CAI) w tables

Description

Information about a preferred set of codons for highly expressed genes in three species.

Usage

data(caitab)

Format

A data frame with 64 rows for the codons and the following 3 columns:

ec Escherichia coli

bs Bacillus subtilis

sc Saccharomyces cerevisiae

Details

Codons are given by row.names(caitab).

Source

The data were hard-encoded in the C program codonW version 1.4.4 writen by John Peden available
at https://codonw.sourceforge.net/. The data are from the file codonW.h. According to this
source file, there were no reference for Escherichia coli and Bacillus subtilis and the reference for
Saccharomyces cerevisiae was Sharp and Cowe (1991).

It turns out that the data for Escherichia coli and Saccharomyces cerevisiae are identical to table 1
in Sharp and Li (1987) where the missing values for the stop codons are represented here by zeros.
All codons were documented by at least one count in both datasets.

The data for Bacillus subtilis are from table 2 in Shields and Sharp (1987). Missing values for
stops codons are represented as previously by zeros, missing values for single-box amino-acids
are represented by 1 here. Note that some codons were undocumented in this dataset and that a
0.5 value in absolute frequencies was already forced to avoid zeros. It is therefore impossible to
use directly these data to obtain the exact expected CAI values as documented in cai because of
overlapping with documented codons.

References

Sharp, P.M., Li, W.-H. (1987) The codon adaptation index - a measure of directional synonymous
codon usage bias, and its potential applications. Nucleic Acids Research, 15:1281-1295.

Shields, D.C., Sharp, P.M. (1987) Synonymous codon usage in Bacillus subtilis reflects both tradi-
tional selection and mutational biases. Nucleic Acids Research, 15:8023-8040.

https://codonw.sourceforge.net/

chargaff 39

Sharp, P. M., Cowe, E. (1991). Synonymous codon usage in Saccharomyces cerevisiae. Yeast,
7:657-678.

Peden, J.F. (1999) Analysis of codon usage. PhD Thesis, University of Nottingham, UK.

citation("seqinr")

See Also

cai for an example using this dataset to compute CAI values.

Examples

data(caitab)

chargaff Base composition in ssDNA for 7 bacterial DNA

Description

Long before the genomic era, it was possible to get some data for the global composition of single-
stranded DNA chromosomes by direct chemical analyses. These data are from Chargaff’s lab and
give the base composition of the L (Ligth) strand for 7 bacterial chromosomes.

Usage

data(chargaff)

Format

A data frame with 7 observations on the following 4 variables.

[A] frequencies of A bases in percent

[G] frequencies of G bases in percent

[C] frequencies of C bases in percent

[T] frequencies of T bases in percent

Details

Data are from Table 2 in Rudner et al. (1969) for the L-strand. Data for Bacillus subtilis were taken
from a previous paper: Rudner et al. (1968). This is in fact the average value observed for two
different strains of B. subtilis: strain W23 and strain Mu8u5u16.
Denaturated chromosomes can be separated by a technique of intermitent gradient elution from a
column of methylated albumin kieselguhr (MAK), into two fractions, designated, by virtue of their
buoyant densities, as L (light) and H (heavy). The fractions can be hydrolyzed and subjected to
chromatography to determined their global base composition.
The surprising result is that we have almost exactly A=T and C=G in single stranded-DNAs. The
second paragraph page 157 in Rudner et al. (1969) says: "Our previous work on the complementary
strands of B. subtilis DNA suggested an additional, entirely unexpected regularity, namely, the

40 chargaff

equality in either strand of 6-amino and 6-keto nucleotides (A + C = G + T). This relationship,
which would normally have been regarded merely as the consequence of base-pairing in DNA
duplex and would not have been predicted as a likely property of a single strand, is shown here to
apply to all strand specimens isolated from denaturated DNA of the AT type (Table 2, preps. 1-4).
It cannot yet be said to be established for the DNA specimens from the equimolar and GC types
(nos. 5-7)."

Try example(chargaff) to mimic figure page 17 in Lobry (2000) :

Note that example(chargaff) gives more details: the red areas correspond to non-allowed values
beause the sum of the four bases frequencies cannot exceed 100%. The white areas correspond to
possible values (more exactly to the projection from R^4 to the corresponding R^2 planes of the
region of allowed values). The blue lines correspond to the very small subset of allowed values for
which we have in addition PR2 state, that is [A]=[T] and [C]=[G]. Remember, these data are for
ssDNA!

Source

Rudner, R., Karkas, J.D., Chargaff, E. (1968) Separation of B. subtilis DNA into complementary
strands, III. Direct Analysis. Proceedings of the National Academy of Sciences of the United States
of America, 60:921-922.
Rudner, R., Karkas, J.D., Chargaff, E. (1969) Separation of microbial deoxyribonucleic acids into

chargaff 41

complementary strands. Proceedings of the National Academy of Sciences of the United States of
America, 63:152-159.

References

Lobry, J.R. (2000) The black hole of symmetric molecular evolution. Habilitation thesis, Université
Claude Bernard - Lyon 1. https://pbil.univ-lyon1.fr/members/lobry/articles/HDR.pdf.

citation("seqinr")

Examples

data(chargaff)
op <- par(no.readonly = TRUE)
par(mfrow = c(4,4), mai = rep(0,4), xaxs = "i", yaxs = "i")
xlim <- ylim <- c(0, 100)

for(i in 1:4)
{

for(j in 1:4)
{
if(i == j)
{

plot(chargaff[,i], chargaff[,j],t = "n", xlim = xlim, ylim = ylim,
xlab = "", ylab = "", xaxt = "n", yaxt = "n")
polygon(x = c(0, 0, 100, 100), y = c(0, 100, 100, 0), col = "lightgrey")
for(k in seq(from = 0, to = 100, by = 10))
{

lseg <- 3
segments(k, 0, k, lseg)
segments(k, 100 - lseg, k, 100)
segments(0, k, lseg, k)
segments(100 - lseg, k, 100, k)

}
string <- paste(names(chargaff)[i],"\n\n",xlim[1],"% -",xlim[2],"%")
text(x=mean(xlim),y=mean(ylim), string, cex = 1.5)

}
else
{

plot(chargaff[,i], chargaff[,j], pch = 1, xlim = xlim, ylim = ylim,
xlab = "", ylab = "", xaxt = "n", yaxt = "n", cex = 2)
iname <- names(chargaff)[i]
jname <- names(chargaff)[j]
direct <- function() segments(0, 0, 50, 50, col="blue")
invers <- function() segments(0, 50, 50, 0, col="blue")
PR2 <- function()
{

if(iname == "[A]" & jname == "[T]") { direct(); return() }
if(iname == "[T]" & jname == "[A]") { direct(); return() }
if(iname == "[C]" & jname == "[G]") { direct(); return() }
if(iname == "[G]" & jname == "[C]") { direct(); return() }
invers()

https://pbil.univ-lyon1.fr/members/lobry/articles/HDR.pdf

42 choosebank

}
PR2()
polygon(x = c(0, 100, 100), y = c(100, 100, 0), col = "pink4")
polygon(x = c(0, 0, 100), y = c(0, 100, 0))

}
}

}
Clean up
par(op)

choosebank To select a database structured under ACNUC and located on the web

Description

This function allows to select one of the databases structured under ACNUC and located on the
web. Called without arguments, choosebank(), will return the list of available databases. Then,
you can use query to make your query and get a list of sequence names. Remote access to ACNUC
databases works by opening a socket connection on a port (for example on port number 5558 at
pbil.univ-lyon1.fr) and by communicating on this socket following the protocol described in the
section references.

Usage

choosebank(bank = NA, host = "pbil.univ-lyon1.fr", port = 5558, server = FALSE,
blocking = TRUE, open = "a+", encoding = "", verbose = FALSE,
timeout = 5, infobank = FALSE, tagbank = NA)

Arguments

bank string. The name of the bank. If NA, choosebank will return the names of all
database known by the server.

host string. Host name for port (see socketConnection)
port integer. The TCP port number (see socketConnection)
server logical. Should the socket be a client or a server? (see socketConnection)
blocking logical. (see socketConnection)
open string. A description of how to open the connection (see socketConnection)
encoding string. The name of the encoding to be used. (see socketConnection)
verbose logical. If TRUE, verbose mode is on
timeout integer. The timeout in seconds for socketConnection. Default 5 seconds.
infobank logical. If infobank is TRUE and bank is NA, a data.frame with all database

informations will be returned
tagbank string. If bank is NA and tagbank is documented, the names of special purposes

databases are returned. Current allowed values are TP for frozen databases (TP
is an acronym for "travaux pratiques" which means practicals in french, these
databases are useful mainly for teaching so as to have stable results), TEST for
test databases, and DEV for databases under development (unstable).

choosebank 43

Details

When called without arguments, choosebank() returns a list of all the databases names known by
the server, as a vector of string. When called with choosebank(infobank = TRUE), a data.frame
with more information is returned.The environment .seqinrEnv is used to save several variables
such as socket and sequence list.

Value

When called with a regular bank name, an (invisible) list with 6 components:

socket an object of class socket
bankname the name of the bank
banktype the type of the bank (GENBANK, EMBL, SWISSPROT, NBRF)
totseqs the total number of sequences present in the opened database
totspecs the total number of species present in the opened database
totkeys the total number of keywords present in the opened database

When called with bank = NA:

names A vector of all available bank names.

When called with bank = NA and infobank = TRUE, a data.frame with three columns:

bank The name of the bank.
status The bank status (on/of).
info Short description of bank with last release date.

Note

The invisible list returned when a database is opened is stored in the variable banknameSocket in
the global environment.

Author(s)

D. Charif, J.R. Lobry

References

For more information about the socket communication protocol with ACNUC please get at https:
//doua.prabi.fr/databases/acnuc/remote_acnuc.html.
Gouy, M., Milleret, F., Mugnier, C., Jacobzone, M., Gautier,C. (1984) ACNUC: a nucleic acid se-
quence data base and analysis system. Nucl. Acids Res., 12:121-127.
Gouy, M., Gautier, C., Attimonelli, M., Lanave, C., Di Paola, G. (1985) ACNUC - a portable re-
trieval system for nucleic acid sequence databases: logical and physical designs and usage. Comput.
Appl. Biosci., 3:167-172.
Gouy, M., Gautier, C., Milleret, F. (1985) System analysis and nucleic acid sequence banks. Biochimie,
67:433-436.

citation("seqinr")

https://doua.prabi.fr/databases/acnuc/remote_acnuc.html
https://doua.prabi.fr/databases/acnuc/remote_acnuc.html

44 circle

See Also

where.is.this.acc if you have a sequence accession number but you don’t know which database
to open, query to make a query when a database is opened, connection, socketConnection

Examples

Not run: # Need internet connection
Show available databases:
choosebank()
Show frozen databases:
choosebank(tag = "TP")
Select a database:
choosebank("emblTP", tag = "TP")
Do something with the database:
myseq <- gfrag("LMFLCHR36", start = 1, length = 30)
stopifnot(myseq == "cgcgtgctggcggcaatgaagcgttcgatg")
Close the database:
closebank()

End(Not run)

circle Draws a circle

Description

Draws a circle or an arc-circle on the current graphic device

Usage

circle(x = 0, y = 0, r = 1, theta = c(0, 360), n = 100, ...)

Arguments

x x coordinate for the center of the circle

y y coordinate for the center of the circle

r radius of the circle

theta start and stop angle

n number of points for polygon object

... arguments passed to polygon

Value

none

Author(s)

J.R. Lobry

closebank 45

See Also

polygon

Examples

par(mfrow = c(2, 2), mar = c(0,0,2,0))
setup <- function(){

plot.new()
plot.window(xlim = c(-1,1), ylim = c(-1,1), asp = 1)

}

setup()
circle(col = "lightblue")
title(main = "theta = c(0, 360)")

setup()
circle(col = "lightblue", theta = c(0, 270))
title(main = "theta = c(0, 270)")

setup()
circle(col = "lightblue", theta = c(-90, 180))
title(main = "theta = c(-90, 180)")

setup()
n <- 20
for(i in seq(0, 360, length = n)){

circle(col = "lightblue", theta = c(i, i+360/(2*n)))
}
title(main = "many thetas")

closebank To close a remote ACNUC database

Description

This function tries to close a remote ACNUC database.

Usage

closebank(socket = autosocket(), verbose = FALSE)

Arguments

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

verbose Logical. If TRUE, verbose mode is on

Author(s)

J.R. Lobry

46 clustal

References

citation("seqinr")

See Also

choosebank

Examples

Not run: # Need internet connection
choosebank("emblTP")
closebank()

End(Not run)

clustal Example of results obtained after a call to read.alignment

Description

This data set gives an example of a protein alignment obtained after a call to the function read.alignment
on an alignment file in "clustal" format.

Usage

data(clustal)

Format

A List of class alignment

Source

http://www.clustal.org/

References

Thompson, J.D., Higgins D.G., Gibson T.J. (1994) CLUSTAL W: improving the sensitivity of pro-
gressive multiple sequence alignment through sequence weighting, position specific gap penalties
and weight matrix choice. Nucleic Acids Res. 22(22):4673-80.

col2alpha 47

col2alpha To use a standard color with an alpha transparency chanel

Description

Takes as input a standard R color and an alpha value to return its rgb coding.

Usage

col2alpha(color, alpha = 0.5)

Arguments

color A standard R color as in colors.

alpha An alpha transparency value in the interval [0,1].

Value

same as in rgb.

Author(s)

J.R. Lobry

See Also

colors, col2rgb, rgb.

Examples

#
Need alpha transparency channel
#
par(mar = c(0, 0, 2, 2)+0.1, oma = c(0, 0, 2, 0), mfrow = c(3,2))
for(testcol in c("blue", "red", "green", "yellow", "purple", "darkgreen")){
plot(0,0, type="n", xlim=0:1, ylim = 0:1, axes = FALSE, xlab = "", ylab = "", main = testcol)
n <- 11
for(i in seq(0, 1, length = n)){
col <- col2alpha(testcol, i)
rect(i, 0, i + 1/n, 1, col = col, border = "black", xpd = NA)
text(i+0.5/n, 0.5, round(i,2), xpd = NA)

}
}
mtext("Effect of alpha on some colors\nNote: need alpha transparency channel",
side = 3, outer = TRUE)

#
The substractive color scheme:
#
par(mar = c(0,0,3,0))

48 comp

plot.new()
plot.window(xlim = c(-1.5, 1.5), ylim = c(-1,1.75), asp = 1)
n <- 10
alpha <- 1/n
for(i in 1:(2*n)){

circle(x = -0.5, y = 0, col = col2alpha("yellow", alpha))
circle(x = 0.5, y = 0, col = col2alpha("cyan", alpha))
circle(x = 0, y = 3/4, col = col2alpha("magenta", alpha))

}
title("Substractive color scheme\nNote: need alpha transparency channel")

comp complements a nucleic acid sequence

Description

Complements a sequence, for instance if the sequence is "a","c","g","t" it returns "t","g","c","a".
This is not the reverse complementary strand. This function can handle ambiguous bases if required.

Usage

comp(seq, forceToLower = TRUE, ambiguous = FALSE)

Arguments

seq a DNA sequence as a vector of single chars

forceToLower if TRUE characters in seq are forced to lower case

ambiguous if TRUE ambiguous bases in seq are handled

Value

a vector of characters which is the complement of the sequence, not the reverse complementary
strand. Undefined values are returned as NA.

Author(s)

D. Charif, J.R. Lobry

References

citation("seqinr")

See Also

Because ssDNA sequences are always written in the 5’->3’ direction, use rev(comp(seq)) to get the
reverse complementary strand (see rev).

computePI 49

Examples

##
Show that comp() does *not* return the reverve complementary strand:
##

c2s(comp(s2c("aaaattttggggcccc")))

##
Show how to get the reverse complementary strand:
##

c2s(rev(comp(s2c("aaaattttggggcccc"))))

##
Show what happens with non allowed values:
##

c2s(rev(comp(s2c("aaaaXttttYggggZcccc"))))

##
Show what happens with ambiguous bases:
##

allbases <- s2c("abcdghkmstvwn")
comp(allbases) # NA are produced
comp(allbases, ambiguous = TRUE) # No more NA

##
Routine sanity checks:
##

stopifnot(identical(comp(allbases, ambiguous = TRUE), s2c("tvghcdmksabwn")))
stopifnot(identical(comp(c("A", "C", "G", "T"), forceToLower = FALSE), c("T", "G", "C", "A")))

computePI To Compute the Theoretical Isoelectric Point

Description

This function calculates the theoretical isoelectric point of a protein. Isoelectric point is the pH at
which the protein has a neutral charge. This estimate does not account for the post-translational
modifications.

Usage

computePI(seq)

Arguments

seq Protein sequence as a vector of single chars in upper case

50 consensus

Value

The theoretical isoelectric point (pI) as a numerical vector of length one.

Note

Protein pI is calculated using pK values of amino acids described in Bjellqvist et al. See also
SEQINR.UTIL for more details.

Author(s)

D. Charif, J.R. Lobry

References

The algorithm is the same as the one which is implemented at the following url: https://web.
expasy.org/compute_pi/pi_tool-doc.html but with many trials in case of convergence failure
of the non-linear regression procedure. citation("seqinr")

See Also

SEQINR.UTIL

Examples

#
Simple sanity check with all 20 amino-acids in one-letter code alphabetical order:
#
prot <- s2c("ACDEFGHIKLMNPQRSTVWY")
stopifnot(all.equal(computePI(prot), 6.78454))
#
Read a protein sequence in a FASTA file and then compute its pI :
#
myProts <- read.fasta(file = system.file("sequences/seqAA.fasta",
package = "seqinr"), seqtype = "AA")

computePI(myProts[[1]]) # Should be 8.534902

consensus Consensus and profiles for sequence alignments

Description

This function returns a consensus using variuous methods (see details) or a profile from a sequence
alignment.

Usage

consensus(matali, method = c("majority", "threshold", "IUPAC", "profile"),
threshold = 0.60, warn.non.IUPAC = FALSE, type = c("DNA", "RNA"))

con(matali, method = c("majority", "threshold", "IUPAC", "profile"),
threshold = 0.60, warn.non.IUPAC = FALSE, type = c("DNA", "RNA"))

https://web.expasy.org/compute_pi/pi_tool-doc.html
https://web.expasy.org/compute_pi/pi_tool-doc.html

consensus 51

Arguments

matali an object of class alignment as returned by read.alignment, or a matrix of
characters.

method select the method to use, see details.

threshold for the threshold method, a numeric value beteen 0 and 1 indicating the mini-
mum relative frequency for a character to be returned as the consensus character.
If none, NA is returned.

warn.non.IUPAC for the IUPAC method this argument is passed to bma with a default value set to
FALSE to avoid warnings due to gap characters in the alignment.

type for the IUPAC method this argument is passed to bma.

Details

"majority" The character with the higher frequency is returned as the consensus character.

"threshold" As above but in addition the character relative frequency must be higher than the
value controled by the threshold argument. If none, NA id returned.

"IUPAC" Make sense only for nucleic acid sequences (DNA or RNA). The consensus character is
defined if possible by an IUPAC symbol by function bma. If this is not possible, when there is
a gap character for instance, NA is returned.

"profile" With this method a matrix with the count of each possible character at each position is
returned.

con is a short form for consensus.

Value

Either a vector of single characters with possible NA or a matrix with the method profile.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

See read.alignment to import alignment from files.

Examples

#
Read 5 aligned DNA sequences at 42 sites:
#

phylip <- read.alignment(file = system.file("sequences/test.phylip",
package = "seqinr"), format = "phylip")

#

52 count

Show data in a matrix form:
#

(matali <- as.matrix(phylip))
#
With the majority rule:
#

res <- consensus(phylip)
stopifnot(c2s(res) == "aaaccctggccgttcagggtaaaccgtggccgggcagggtat")

#
With a threshold:
#

res.thr <- consensus(phylip, method = "threshold")
res.thr[is.na(res.thr)] <- "." # change NA into dots

stopifnot(c2s(res.thr) == "aa.c..t.gc.gtt..g..t.a.cc..ggccg.......ta.")
stopifnot(c2s(res.thr) == "aa.cc.tggccgttcagggtaaacc.tggccgg.cagggtat")

#
With an IUPAC summary:
#

res.iup <- consensus(phylip, method = "IUPAC")
stopifnot(c2s(res.iup) == "amvsbnkkgcmkkkmmgsktrmrssndkgcmrkdmmvskyaw")
replace 3 and 4-fold symbols by dots:
res.iup[match(res.iup, s2c("bdhvn"), nomatch = 0) > 0] <- "."
stopifnot(c2s(res.iup) == "am.s..kkgcmkkkmmgsktrmrss..kgcmrk.mm.skyaw")

#
With a profile method:
#

(res <- consensus(phylip, method = "profile"))
#
Show the connection between the profile and some consensus:
#

bxc <- barplot(res, col = c("green", "blue", "orange", "white", "red"), border = NA,
space = 0, las = 2, ylab = "Base count",
main = "Profile of a DNA sequence alignment",
xlab = "sequence position", xaxs = "i")

text(x = bxc, y = par("usr")[4],lab = res.thr, pos = 3, xpd = NA)
text(x = bxc, y = par("usr")[1],lab = res.iup, pos = 1, xpd = NA)

count Composition of dimer/trimer/etc oligomers

Description

Counts the number of times dimer/trimer/etc oligomers occur in a sequence. Note that the oligomers
are overlapping by default.

Usage

count(seq, wordsize, start = 0, by = 1,
freq = FALSE, alphabet = s2c("acgt"), frame = start)

count 53

Arguments

seq a vector of single characters.

wordsize an integer giving the size of word (n-mer) to count.

start an integer (0, 1, 2,...) giving the starting position to consider in the sequence.
The default value 0 means that we start at the first nucleotide in the sequence.

by an integer defaulting to 1 for the window step.

freq if TRUE, word relative frequencies (summing to 1) are returned instead of counts

alphabet a vector of single characters used to build the oligomer set.

frame synonymous for start

Details

count counts the occurence of all words by moving a window of length word. The window step is
controlled by the argument by. start controls the starting position in the sequence for the count.

Value

This function returns a table whose dimnames are all the possible oligomers. All oligomers are
returned, even if absent from the sequence.

Author(s)

D. Charif, J.R. Lobry with suggestions from Gabriel Valiente, Stefanie Hartmann and Christian
Gautier

References

citation("seqinr")

See Also

table for the class of the returned objet. See rho and zscore for dinucleotide statistics.

Examples

a <- s2c("acgggtacggtcccatcgaa")
##
To count dinucleotide occurrences in sequence a:
##
count(a, word = 2)
##
To count trinucleotide occurrences in sequence a, with start = 2:
##
count(a, word = 3, start = 2)
##
To count dinucleotide relative frequencies in sequence a:
##
count(a, word = 2, freq = TRUE)
##

54 countfreelists

To count dinucleotides in codon positions III-I in a coding sequence:
##
alldinuclIIIpI <- s2c("NNaaNatNttNtgNgtNtcNctNtaNagNggNgcNcgNgaNacNccNcaNN")
resIIIpI <- count(alldinuclIIIpI, word = 2, start = 2, by = 3)
stopifnot(all(resIIIpI == 1))
##
Simple sanity check:
##
#alldinucl <- "aattgtctaggcgacca"
#stopifnot(all(count(s2c(alldinucl), 2) == 1))
#alldiaa <- "aaxxzxbxvxyxwxtxsxpxfxmxkxlxixhxgxexqxcxdxnxrxazzbzvzyzwztzszpzfzmzkzlzizhzgzezqzczdznz
#rzabbvbybwbtbsbpbfbmbkblbibhbgbebqbcbdbnbrbavvyvwvtvsvpvfvmvkvlvivhvgvevqvcvdvnvrvayywytysypyfymyky
#lyiyhygyeyqycydynyryawwtwswpwfwmwkwlwiwhwgwewqwcwdwnwrwattstptftmtktltithtgtetqtctdtntrtasspsfsmsks
#lsishsgsesqscsdsnsrsappfpmpkplpiphpgpepqpcpdpnprpaffmfkflfifhfgfefqfcfdfnfrfammkmlmimhmgmemqmcmdmnm
#rmakklkikhkgkekqkckdknkrkallilhlglelqlcldlnlrlaiihigieiqicidiniriahhghehqhchdhnhrhaggegqgcgdgngrgae
#eqecedenereaqqcqdqnqrqaccdcncrcaddndrdannrnarra"
#stopifnot(all(count(s2c(alldiaa), 2, alphabet = s2c("arndcqeghilkmfpstwyvbzx")) == 1))
##
Example with dinucleotide count in the complete Human mitochondrion genome:
##
humanMito <- read.fasta(file = system.file("sequences/humanMito.fasta", package = "seqinr"))
##
Get the dinucleotide count:
##
dinu <- count(humanMito[[1]], 2)
##
Put the results in a 4 X 4 array:
##
dinu2 <- dinu
dim(dinu2) <- c(4, 4)
nucl <- s2c("ACGT")
dimnames(dinu2) <- list(paste(nucl, "-3\'", sep = ""), paste("5\'-", nucl, sep = ""))
##
Show that CpG and GpT dinucleotides are depleted:
##
mosaicplot(t(dinu2), shade = TRUE,

main = "Dinucleotide XpY frequencies in the Human\nmitochondrion complete genome",
xlab = "First nucleotide: Xp",
ylab = "Second nucleotide: pY", las = 1, cex = 1)

mtext("Note the depletion in CpG and GpT dinucleotides", side = 1, line = 3)

countfreelists The number of free lists available and annotation lines in an ACNUC
server

Description

Returns the number of free lists available list of names of annotation lines in the opened ACNUC
database.

countfreelists 55

Usage

countfreelists(socket = autosocket())
cfl(socket = autosocket())

Arguments

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

Value

a list with the following 2 components:

free numeric. The number of free lists

annotlines vector of strings. Names of annotation lines

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query

Examples

Not run: # Need internet connection
choosebank("emblTP")
(rescountfreelists <- countfreelists())
stopifnot(all(rescountfreelists$annotlines ==
c("ALL", "AC", "PR", "DT", "KW", "OS", "OC",
"OG", "RN", "RC", "RP", "RX", "RG", "RA", "RT", "RL", "DR",
"CC", "AH", "AS", "FH", "FT", "CO", "SQ", "SEQ")))
closebank()

End(Not run)

https://doua.prabi.fr/databases/acnuc.html

56 countsubseqs

countsubseqs Number of subsequences in an ACNUC list

Description

Returns the number of subsequences in the ACNUC list of rank lrank.

Usage

countsubseqs(lrank, socket = autosocket())
css(lrank, socket = autosocket())

Arguments

lrank the rank of the ACNUC list to consider.

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

Value

Numeric.

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query, glr to get a list rank from its name.

Examples

Not run: # Need internet connection
choosebank("emblTP")
mylist<-query("mylist", "N=@", virtual = TRUE) # select all (seqs + subseqs)
mylist$nelem # 14138094 seqs + subseqs
stopifnot(mylist$nelem == 14138094)
css(glr("mylist")) # 1604500 subsequences only
stopifnot(css(glr("mylist")) == 1604500)
closebank()

End(Not run)

https://doua.prabi.fr/databases/acnuc.html

crelistfromclientdata 57

crelistfromclientdata To create on server an ACNUC list from data lines sent by client

Description

This function is usefull if you have a local file with sequence names (sequence ID), or sequence
accession numbers, or species names, or keywords. This allows you to create on the server a list
with the corresponding items.

Usage

crelistfromclientdata(listname, file, type,
socket = autosocket(), invisible = TRUE,
verbose = FALSE, virtual = FALSE)

clfcd(listname, file, type, socket = autosocket(),
invisible = TRUE, verbose = FALSE, virtual = FALSE)

Arguments

listname The name of the list as a quoted string of chars
file The local file name
type Could be one of "SQ", "AC", "SP", "KW", see examples
socket an object of class sockconn connecting to a remote ACNUC database (default

is a socket to the last opened database).
invisible if FALSE, the result is returned visibly.
verbose if TRUE, verbose mode is on
virtual if TRUE, no attempt is made to retrieve the information about all the elements of

the list. In this case, the req component of the list is set to NA.

Details

clfcd is a shortcut for crelistfromclientdata.

Value

The result is directly assigned to the object listname in the user workspace. This is an objet of
class qaw, a list with the following 6 components:

call the original call
name the ACNUC list name
nelem the number of elements (for instance sequences) in the ACNUC list
typelist the type of the elements of the list. Could be SQ for a list of sequence names,

KW for a list of keywords, SP for a list of species names.
req a list of sequence names that fit the required criteria or NA when called with

parameter virtual is TRUE
socket the socket connection that was used

58 crelistfromclientdata

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

choosebank, query, savelist for the reverse operation with an ACNUC list of sequences.

Examples

Not run: # Need internet connection
choosebank("emblTP")
#
Example with a file that contains sequence names:
#
fileSQ <- system.file("sequences/bb.mne", package = "seqinr")
listSQ <- crelistfromclientdata("listSQ", file = fileSQ, type = "SQ")
sapply(listSQ$req, getName)
#
Example with a file that contains sequence accession numbers:
#
fileAC <- system.file("sequences/bb.acc", package = "seqinr")
listAC <- crelistfromclientdata("listAC", file = fileAC, type = "AC")
sapply(listAC$req, getName)
#
Example with a file that contains species names:
#
fileSP <- system.file("sequences/bb.sp", package = "seqinr")
listSP <- crelistfromclientdata("listSP", file = fileSP, type = "SP")
sapply(listSP$req, getName)
#
Example with a file that contains keywords:
#
fileKW <- system.file("sequences/bb.kwd", package = "seqinr")
listKW <- crelistfromclientdata("listKW", file = fileKW, type = "KW")
sapply(listKW$req, getName)
#
Summary of ACNUC lists:
#
sapply(alr()$rank, getliststate)
closebank()

End(Not run)

dia.bactgensize 59

dia.bactgensize Distribution of bacterial genome size from GOLD

Description

This function tries to download the last update of the GOLD (Genomes OnLine Database) to extract
bacterial genomes sizes when available. The histogram and the default density() output is produced.
Optionally, a maximum likelihood estimate of a superposition of two or three normal distributions
is also represented.

Usage

dia.bactgensize(fit = 2, p = 0.5, m1 = 2000, sd1 = 600, m2 = 4500,
sd2 = 1000, p3 = 0.05, m3 = 9000, sd3 = 1000, maxgensize = 20000,

source = c("https://pbil.univ-lyon1.fr/datasets/seqinr/data/goldtable15Dec07.txt"))

Arguments

fit integer value. If fit == O no normal fit is produced, if fit == 2 try to fit a
superposition of two normal distributions, if fit == 3 try to fit a superposition
of three normal distributions.

p initial guess for the proportion of the first population.

m1 initial guess for the mean of the first population.

sd1 initial guess for the standard deviation of the first population.

m2 initial guess for the mean of the second population.

sd2 initial guess for the standard deviation of the second population.

p3 initial guess for the proportion of the third population.

m3 initial guess for the mean of the third population.

sd3 initial guess for the standard deviation of the third population.

maxgensize maximum admissive value in bp for a bacterial genome size: only value less or
equal to this threshold are considrered.

source the file with raw data. By default a local (outdated) copy is used.

Value

An invisible dataframe with three components:

genus genus name

species species names

gs genome size in Kb

Author(s)

J.R. Lobry

60 dinucl

References

Please cite the following references when using data from GOLD:

Kyrpides, N.C. (1999) Genomes OnLine Database (GOLD 1.0): a monitor of complete and ongoing
genome projects world-wide. Bioinformatics, 15:773-774.

Bernal, A., Ear, U., Kyrpides, N. (2001) Genomes OnLine Database (GOLD): a monitor of genome
projects world-wide. Nucleic Acids Research, 29:126-127.

Liolios, K., Tavernarakis, N., Hugenholtz, P., Kyrpides, N.C. (2006) The Genomes On Line Database
(GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Research, 34:D332-D334.

Liolios, K., Mavrommatis, K., Tavernarakis, N., Kyrpides, N.C. (2008) The Genomes On Line
Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated meta-
data. Nucleic Acids Research, in press:D000-D000.

citation("seqinr")

See Also

density

Examples

Not run: # Need internet connection
#
With a local outdated copy from GOLD:
#

dia.bactgensize()
#
With last GOLD data:
#

The URL is no more accessible.
dia.bactgensize(source = "http://www.genomesonline.org/DBs/goldtable.txt")

End(Not run)

dinucl Mean zscore on 242 complete bacterial chromosomes

Description

This dataset contains the mean zscores as computed on all intergenic sequences (intergenic) and on
all CDS (coding) from 242 complete bacterial chromosomes (as retrieved from Genome Reviews
database on June 16, 2005).

dinucl 61

Usage

data(dinucl)

Format

List of two dataframes of 242 chromosomes and 16 dinucleotides: one for intergenic, one for coding
sequences.

intergenic the mean of zscore computed with the base model on each intergenic sequence

coding the mean of zscore computed with the codon model on each coding sequence

References

Palmeira, L., Guéguen, L. and Lobry JR. (2006) UV-targeted dinucleotides are not depleted in light-
exposed Prokaryotic genomes. Molecular Biology and Evolution, 23:2214-2219.
https://academic.oup.com/mbe/article/23/11/2214/1335460

citation("seqinr")

See Also

zscore

Examples

data(dinucl)
par(mfrow = c(2, 2), mar = c(4,4,0.5,0.5)+0.1)
myplot <- function(x){

plot(dinucl$intergenic[, x], dinucl$coding[, x],
xlab = "intergenic", ylab = "coding",
las = 1, ylim = c(-6, 4),
xlim = c(-3, 3), cex = 0)
rect(-10,-10,-1.96,10,col="yellow", border = "yellow")
rect(1.96,-10,10,10,col="yellow", border = "yellow")
rect(-10,-10,10,-1.96,col="yellow", border = "yellow")
rect(-10,1.96,10,10,col="yellow", border = "yellow")
abline(v=0,lty=3)
abline(h=0,lty=3)
abline(h=-1.96,lty=2)
abline(h=+1.96,lty=2)
abline(v=-1.96,lty=2)
abline(v=+1.96,lty=2)
points(dinucl$intergenic[, x], dinucl$coding[, x], pch = 21,
col = rgb(.1,.1,.1,.5), bg = rgb(.5,.5,.5,.5))
legend("bottomright", inset = 0.02,
legend = paste(substr(x,1,1), "p",
substr(x,2,2), " bias", sep = ""), cex = 1.25, bg = "white")

box()
}
myplot("CT")

https://academic.oup.com/mbe/article/23/11/2214/1335460

62 dinucleotides

myplot("TC")
myplot("CC")
myplot("TT")

dinucleotides Statistical over- and under- representation of dinucleotides in a se-
quence

Description

These two functions compute two different types of statistics for the measure of statistical din-
culeotide over- and under-representation : the rho statistic, and the z-score, each computed for all
16 dinucleotides.

Usage

rho(sequence, wordsize = 2, alphabet = s2c("acgt"))
zscore(sequence, simulations = NULL, modele, exact = FALSE, alphabet = s2c("acgt"), ...)

Arguments

sequence a vector of single characters.

wordsize an integer giving the size of word (n-mer) to consider.

simulations If NULL, analytical solution is computed when available (models base and codon).
Otherwise, it should be the number of permutations for the z-score computation

modele A string of characters describing the model chosen for the random generation

exact Whether exact analytical calculation or an approximation should be used

alphabet A vector of single characters.

... Optional parameters for specific model permutations are passed on to permutation
function.

Details

The rho statistic, as presented in Karlin S., Cardon LR. (1994), can be computed on each of the 16
dinucleotides. It is the frequence of dinucleotide xy divided by the product of frequencies of nu-
cleotide x and nucleotide y. It is equal to 1.00 when dinucleotide xy is formed by pure chance, and
it is superior (respectively inferior) to 1.00 when dinucleotide xy is over- (respectively under-) rep-
resented. Note that if you want to reproduce Karlin’s results you have to compute the statistic from
the sequence concatenated with its inverted complement that is with something like rho(c(myseq,
rev(comp(myseq)))).

The zscore statistic, as presented in Palmeira, L., Guéguen, L. and Lobry JR. (2006). The statistic
is the normalization of the rho statistic by its expectation and variance according to a given ran-
dom sequence generation model, and follows the standard normal distribution. This statistic can be
computed with several models (cf. permutation for the description of each of the models). We pro-
vide analytical calculus for two of them: the base permutations model and the codon permutations
model.

dinucleotides 63

The base model allows for random sequence generation by shuffling (with/without replacement)
of all bases in the sequence. Analytical computations are available for this model: either as an
approximation for large sequences (cf. Palmeira, L., Guéguen, L. and Lobry JR. (2006)), either as
the exact analytical formulae (cf. Schbath, S. (1995)).

The position model allows for random sequence generation by shuffling (with/without replace-
ment) of bases within their position in the codon (bases in position I, II or III stay in position I, II
or III in the new sequence.

The codon model allows for random sequence generation by shuffling (with/without replacement)
of codons. Analytical computation is available for this model (Gautier, C., Gouy, M. and Louail, S.
(1985)).

The syncodon model allows for random sequence generation by shuffling (with/without replace-
ment) of synonymous codons.

Value

a table containing the computed statistic for each dinucleotide

Author(s)

L. Palmeira, J.R. Lobry with suggestions from A. Coghlan.

References

Gautier, C., Gouy, M. and Louail, S. (1985) Non-parametric statistics for nucleic acid sequence
study. Biochimie, 67:449-453.

Karlin S. and Cardon LR. (1994) Computational DNA sequence analysis. Annu Rev Microbiol,
48:619-654.

Schbath, S. (1995) Étude asymptotique du nombre d’occurrences d’un mot dans une chaîne de
Markov et application à la recherche de mots de fréquence exceptionnelle dans les séquences
d’ADN. Thèse de l’Université René Descartes, Paris V

Palmeira, L., Guéguen, L. and Lobry, J.R. (2006) UV-targeted dinucleotides are not depleted in
light-exposed Prokaryotic genomes. Molecular Biology and Evolution, 23:2214-2219. https:
//academic.oup.com/mbe/article/23/11/2214/1335460

citation("seqinr")

See Also

permutation

Examples

Not run:
sequence <- sample(x = s2c("acgt"), size = 6000, replace = TRUE)
rho(sequence)
zscore(sequence, modele = "base")
zscore(sequence, modele = "base", exact = TRUE)
zscore(sequence, modele = "codon")
zscore(sequence, simulations = 1000, modele = "syncodon")

https://academic.oup.com/mbe/article/23/11/2214/1335460
https://academic.oup.com/mbe/article/23/11/2214/1335460

64 dist.alignment

End(Not run)

dist.alignment Pairwise Distances from Aligned Protein or DNA/RNA Sequences

Description

These functions compute a matrix of pairwise distances from aligned sequences using similarity
(Fitch matrix, for protein sequences only) or identity matrix (for protein and DNA sequences). The
resulting matrix contains the squared root of the pairwise distances. For example, if identity between
2 sequences is 80 the squared root of (1.0 - 0.8) i.e. 0.4472136. Note: seqinr::dist.alignment is the
square root version of ape::dist.gene (and not ape::dist.dna).

Usage

dist.alignment(x, matrix = c("identity", "similarity"),gap)

Arguments

x an object of class alignment, as returned by read.alignment for instance

matrix the matrix distance to be used, partial matching allowed

gap -optional- logical, with identity matrix, if set to TRUE, gaps will be counted in
the identity measure

Value

The distance matrix, object of class dist, computed by using the specified distance measure.

Author(s)

D. Charif, J.R. Lobry

References

The reference for the similarity matrix is :
Fitch, W.M. (1966) An improved method of testing for evolutionary homology. J. Mol. Biol., 16:9-
16.

citation("seqinr")

See Also

read.alignment

dotchart.uco 65

Examples

myseqs <- read.alignment(file = system.file("sequences/test.mase",
package = "seqinr"), format = "mase")
dist.alignment(myseqs, matrix = "identity")
as.matrix(dist.alignment(myseqs, matrix = "identity"))

dotchart.uco Cleveland plot for codon usage tables

Description

Draw a Cleveland dot plot for codon usage tables

Usage

dotchart.uco(x, numcode = 1, aa3 = TRUE, pt.cex = 0.7, alphabet =
s2c("tcag"), pch = 21, gpch = 20, bg = par("bg"), cex
= 0.7, color = "black", gcolor = "black", lcolor =
grey(0.9), xlim, offset = 0.4, ...)

Arguments

x table of codon usage as computed by uco.

numcode the number of the code to be used by translate.

aa3 logical. If TRUE use the three-letter code for amino- acids. If FALSE use the
one-letter code for amino-acids.

pt.cex the character size to be used for points.

alphabet character for codons labels

pch the plotting character or symbol to be used.

gpch the plotting character or symbol to be used for group values.

bg the background color to be used.

cex the character expansion size passed to dotchart.

color the color(s) to be used for points an labels.

gcolor the single color to be used for group labels and values.

lcolor the color(s) to be used for the horizontal lines.

xlim horizontal range for the plot

offset offset in inches of ylab and labels; was hardwired to 0.4 before R 4.0.0

... graphical parameters can also be specified as arguments

66 dotPlot

Value

An invisible list with components:

x table of codon usage
labels codon names
groups amino acid factor
gdata sums by amino acid
ypg the y-axis coordinates for amino acids
ypi the y-axis coordinates for codons

Author(s)

J.R. Lobry

References

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth. citation("seqinr")

See Also

dotchart, uco, aaa, translate

Examples

Load dataset:
data(ec999)
Compute codon usage for all coding sequences:
ec999.uco <- lapply(ec999, uco, index="eff")
Put it in a dataframe:
df <- as.data.frame(lapply(ec999.uco, as.vector))
Add codon names:
row.names(df) <- names(ec999.uco[[1]])
Compute global codon usage:
global <- rowSums(df)
Choose a title for the graph:
title <- "Codon usage in 999 E. coli coding sequences"
Plot data:
dotchart.uco(global, main = title)

dotPlot Dot Plot Comparison of two sequences

Description

Dot plots are most likely the oldest visual representation used to compare two sequences (see Maizel
and Lenk 1981 and references therein). In its simplest form, a dot is produced at position (i,j) iff
character number i in the first sequence is the same as character number j in the second sequence.
More eleborated forms use sliding windows and a threshold value for two windows to be considered
as matched.

dotPlot 67

Usage

dotPlot(seq1, seq2, wsize = 1, wstep = 1, nmatch = 1, shift = 0,
col = c("white", "black"), xlab = deparse(substitute(seq1)),
ylab = deparse(substitute(seq2)), ...)

Arguments

seq1 the first sequence (x-axis) as a vector of single chars.

seq2 the second sequence (y-axis) as a vector of single char.

wsize the size in chars of the moving window.

wstep the size in chars for the steps of the moving window. Use wstep == wsize for
non-overlapping windows.

nmatch if the number of match per window is greater than or equal to nmatch then a dot
is produced.

shift the number of chars to shift in seq2 when generating the moving window.

col color of points passed to image.

xlab label of x-axis passed to image.

ylab label of y-axis passed to image.

... further arguments passed to image.

Value

NULL.

Author(s)

J.R. Lobry

References

Maizel, J.V. and Lenk, R.P. (1981) Enhanced Graphic Matrix Analysis of Nucleic Acid and Protein
Sequences. Proceedings of the National Academy of Science USA, 78:7665-7669.

citation("seqinr")

See Also

image

Examples

#
Identity is on the main diagonal:
#
dotPlot(letters, letters, main = "Direct repeat")
#
Internal repeats are off the main diagonal:

68 draw.oriloc

#
dotPlot(rep(letters, 2), rep(letters, 2), main = "Internal repeats")
#
Inversions are orthogonal to the main diagonal:
#
dotPlot(letters, rev(letters), main = "Inversion")
#
Insertion in the second sequence yields a vertical jump:
#
dotPlot(letters, c(letters[1:10], s2c("insertion"), letters[11:26]),

main = "Insertion in the second sequence", asp = 1)
#
Insertion in the first sequence yields an horizontal jump:
#
dotPlot(c(letters[1:10], s2c("insertion"), letters[11:26]), letters,

main = "Insertion in the first sequence", asp = 1)
#
Protein sequences have usually a good signal/noise ratio because there
are 20 possible amino-acids:
#
aafile <- system.file("sequences/seqAA.fasta", package = "seqinr")
protein <- read.fasta(aafile)[[1]]
dotPlot(protein, protein, main = "Dot plot of a protein\nwsize = 1, wstep = 1, nmatch = 1")
#
Nucleic acid sequences have usually a poor signal/noise ratio because
there are only 4 different bases:
#
dnafile <- system.file("sequences/malM.fasta", package = "seqinr")
dna <- protein <- read.fasta(dnafile)[[1]]
dotPlot(dna[1:200], dna[1:200],
main = "Dot plot of a nucleic acid sequence\nwsize = 1, wstep = 1, nmatch = 1")

#
Play with the wsize, wstep and nmatch arguments to increase the
signal/noise ratio:
#
dotPlot(dna[1:200], dna[1:200], wsize = 3, wstep = 3, nmatch = 3,
main = "Dot plot of a nucleic acid sequence\nwsize = 3, wstep = 3, nmatch = 3")

draw.oriloc Graphical representation for nucleotide skews in prokaryotic chromo-
somes.

Description

Graphical representation for nucleotide skews in prokaryotic chromosomes.

Usage

draw.oriloc(ori, main = "Title",
xlab = "Map position in Kb",

draw.oriloc 69

ylab = "Cumulated combined skew in Kb", las = 1, las.right = 3,
ta.mtext = "Cumul. T-A skew", ta.col = "pink", ta.lwd = 1,
cg.mtext = "Cumul. C-G skew", cg.col = "lightblue", cg.lwd = 1,
cds.mtext = "Cumul. CDS skew", cds.col = "lightgreen", cds.lwd = 1,
sk.col = "black", sk.lwd = 2,
add.grid = TRUE, ...)

Arguments

ori A data frame obtained with the oriloc function.

main The main title of the plot.

xlab The x-axis title.

ylab The y-axis title.

las The style of axis labels for the bottom and left axes.

las.right The style of axis labels for the right axis.

ta.mtext The marginal legend for the TA skew.

ta.col The color for the TA skew.

ta.lwd The line width for the TA skew.

cg.mtext The marginal legend for the CG skew.

cg.col The color for the CG skew.

cg.lwd The line width for the CG skew.

cds.mtext The marginal legend for the CDS skew.

cds.col The color for the CDS skew.

cds.lwd The line width for the CDS skew.

sk.col The color for the cumulated combined skew.

sk.lwd The line width for the cumulated combined skew.

add.grid Logical, if TRUE a vertical grid is added to the plot.

... Further arguments are passed to the function plot.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

oriloc, rearranged.oriloc, extract.breakpoints

70 draw.rearranged.oriloc

Examples

Not run: # need internet connection
#
Example with Chlamydia trachomatis complete genome
#

ori <- oriloc()
draw.oriloc(ori)

#
The same, using more options from function draw.oriloc()
#
draw.oriloc(ori,

main = expression(italic(Chlamydia~~trachomatis)~~complete~~genome),
ta.mtext = "TA skew", ta.col = "red",
cg.mtext = "CG skew", cg.col = "blue",
cds.mtext = "CDS skew", cds.col = "seagreen",
add.grid = FALSE)

End(Not run)

draw.rearranged.oriloc

Graphical representation for rearranged nucleotide skews in prokary-
otic chromosomes.

Description

Graphical representation for rearranged nucleotide skews in prokaryotic chromosomes.

Usage

draw.rearranged.oriloc(rearr.ori, breaks.gcfw = NA,
breaks.gcrev = NA, breaks.atfw = NA, breaks.atrev = NA)

Arguments

rearr.ori A data frame obtained with the rearranged.oriloc function.

breaks.gcfw The coordinates of the breakpoints in the GC-skew, for forward transcribed pro-
tein coding sequences. These coordinates can be obtained with the extract.breakpoints
function.

breaks.gcrev The coordinates of the breakpoints in the GC-skew, for reverse transcribed pro-
tein coding sequences. These coordinates can be obtained with the extract.breakpoints
function.

breaks.atfw The coordinates of the breakpoints in the AT-skew, for forward transcribed pro-
tein coding sequences. These coordinates can be obtained with the extract.breakpoints
function.

breaks.atrev The coordinates of the breakpoints in the AT-skew, for reverse transcribed pro-
tein coding sequences. These coordinates can be obtained with the extract.breakpoints
function.

draw.recstat 71

Author(s)

J.R. Lobry, A. Necşulea

References

Necşulea, A. and Lobry, J.R. (2007) A New Method for Assessing the Effect of Replication on
DNA Base Composition Asymmetry. Molecular Biology and Evolution, 24:2169-2179.

See Also

rearranged.oriloc, extract.breakpoints

Examples

Not run:
Example for Chlamydia trachomatis

Rearrange the chromosome and compute the nucleotide skews

#r.ori <- rearranged.oriloc(seq.fasta = system.file("sequences/ct.fasta.gz", package = "seqinr"),
g2.coord = system.file("sequences/ct.coord", package = "seqinr"))

r.ori <- rearranged.oriloc(seq.fasta = system.file("sequences/ct.fasta.gz", package = "seqinr"),
g2.coord = system.file("sequences/ct.coord", package = "seqinr"))

Extract the breakpoints for the rearranged nucleotide skews

breaks <- extract.breakpoints(r.ori, type = c("gcfw", "gcrev"),
nbreaks = c(2, 2), gridsize = 50, it.max = 100)

Draw the rearranged nucleotide skews and
place the position of the breakpoints on the graphics

draw.rearranged.oriloc(r.ori, breaks.gcfw = breaks$gcfw$breaks,
breaks.gcrev = breaks$gcrev$breaks)

End(Not run)

draw.recstat Graphical representation of a recstat analysis.

Description

This function displays the results returned by recstat with two plots. The first one shows the factor
scores of a CA computed on the codon composition of a DNA sequence. The second one shows the
locations of all Start and Stop codons in this sequence.

72 ec999

Usage

draw.recstat(rec, fac = 1, direct = TRUE, xlim = c(1, seqsize),
col = c("red", "blue", "purple"))

Arguments

rec list of elements returned by recstat function.

fac axis of the CA to use for display (4 ≥ fac ≥ 1).

direct a logical for the choice of direct or reverse strand.

xlim starting and ending positions in the sequence for the plot.

col vector of colour codes for the three frames of the sequence.

Details

The first plot shows the factor scores of the sliding windows, this for the three possible frames of
the strand selected by the user. The second shows the Start (filled grey triangles pointing up) and
Stop (solid black triangles pointing down) codons positions. Note that the standard genetic code is
used for that purpose. Visual detection of putative CDS is performed through the simultaneous use
of these two graphics. If a CDS is located within the sequence, the factor scores for the windows
located in the corresponding reading frame will be significantly separated from the two others.
Moreover, the region where this separation is seen should be located between a Start and a Stop
codon.

Author(s)

O. Clerc, G. Perrière

See Also

test.li.recstat, test.co.recstat

Examples

ff <- system.file("sequences/ECOUNC.fsa", package = "seqinr")
seq <- read.fasta(ff)
rec <- recstat(seq[[1]], seqname = getName(seq))
draw.recstat(rec)

ec999 999 coding sequences from E. coli

Description

This dataset contains 999 coding sequences from the Escherichia coli chromosome

ECH 73

Usage

data(ec999)

Format

List of 999 vectors of characters, one for each coding sequence.

ECFOLE.FOLE chr [1:672] "A" "T" "G" "C" ...

ECMSBAG.MSBA chr [1:1749] "A" "T" "G" "C" ...

ECNARZYW-C.NARV chr [1:681] "A" "T" "G" "A" ...

... ... TRUNCATED ...

XYLEECOM.MALK chr [1:1116] "A" "T" "G" "G" ...

XYLEECOM.LAMB chr [1:1341] "A" "T" "G" "A" ...

XYLEECOM.MALM chr [1:921] "A" "T" "G" "A" ...

References

Lobry, J.R., Gautier, C. (1994) Hydrophobicity, expressivity and aromaticity are the major trends of
amino-acid usage in 999 Escherichia coli chromosome-encode genes. Nucleic Acids Research,22:3174-
3180.

citation("seqinr")

Examples

data(ec999)
#
How to export sequences in a FASTA file:
#
fname <- tempfile(pattern = "ecc999", tmpdir = tempdir(), fileext = "ffn")
tempdir(check = FALSE)
write.fasta(ec999, names(ec999), file = fname)

ECH Forensic Genetic Profile Allelic Ladder Raw Data

Description

This is an example of allelic ladder raw data for a human STR genetic profile at 16 loci (viz.
D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433,
vWA, TPOX, D18S51, Amelogenin, D5S818, FGA) which are commonly used in forensic sciences
for individual identifications.

Usage

data(ECH)

74 EXP

Format

A list with 3 components as in JLO

Author(s)

J.R. Lobry

Source

Data were kindly provided by the INPS (Institut National de Police Scientifique) which is the na-
tional forensic sciences institute in France. Experiments were done at the LPS (Laboratoire de
Police Scientifique de Lyon) in 2008.

References

citation("seqinr")

Anonymous (2006) Applied Biosystem Genetic Analysis Data File Format. Available at https://
www.thermofisher.com/de/de/home/brands/applied-biosystems.html. Last visited on 03-
NOV-2008.

See Also

function read.abif to import files in ABIF format, data gs500liz for internal size standards, data
identifiler for allele names in the allelic ladder, data JLO for an example of an individual sample
file.

Examples

data(JLO)

EXP Vectors of coefficients to compute linear forms.

Description

This dataset is used to compute linear forms on codon frequencies: if codfreq is a vector of codon
frequencies then drop(freq %*% EXP$CG3) will return for instance the G+C content in third codon
positions. Base order is the lexical order: a, c, g, t (or u).

Usage

data(EXP)

https://www.thermofisher.com/de/de/home/brands/applied-biosystems.html
https://www.thermofisher.com/de/de/home/brands/applied-biosystems.html

EXP 75

Format

List of 24 vectors of coefficients

A num [1:4] 1 0 0 0

A3 num [1:64] 1 0 0 0 1 0 0 0 1 0 ...

AGZ num [1:64] 0 0 0 0 0 0 0 0 1 0 ...

ARG num [1:64] 0 0 0 0 0 0 0 0 1 0 ...

AU3 num [1:64] 1 0 0 1 1 0 0 1 1 0 ...

BC num [1:64] 0 1 0 0 0 0 0 0 0 0 ...

C num [1:4] 0 1 0 0

C3 num [1:64] 0 1 0 0 0 1 0 0 0 1 ...

CAI num [1:64] 0.00 0.00 -1.37 -2.98 -2.58 ...

CG num [1:4] 0 1 1 0

CG1 num [1:64] 0 0 0 0 0 0 0 0 0 0 ...

CG12 num [1:64] 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 ...

CG2 num [1:64] 0 0 0 0 1 1 1 1 1 1 ...

CG3 num [1:64] 0 1 1 0 0 1 1 0 0 1 ...

CGN num [1:64] 0 0 0 0 0 0 0 0 0 0 ...

F1 num [1:64] 1.026 0.239 1.026 0.239 -0.097 ...

G num [1:4] 0 0 1 0

G3 num [1:64] 0 0 1 0 0 0 1 0 0 0 ...

KD num [1:64] -3.9 -3.5 -3.9 -3.5 -0.7 -0.7 -0.7 -0.7 -4.5 -0.8 ...

Q num [1:64] 0 0 0 0 1 1 1 1 0 0 ...

QA3 num [1:64] 0 0 0 0 1 0 0 0 0 0 ...

QC3 num [1:64] 0 0 0 0 0 1 0 0 0 0 ...

U num [1:4] 0 0 0 1

U3 num [1:64] 0 0 0 1 0 0 0 1 0 0 ...

Details

It’s better to work directly at the amino-acid level when computing linear forms on amino-acid fre-
quencies so as to have a single coefficient vector. For instance EXP$KD to compute the Kyte and
Doolittle hydrophaty index from codon frequencies is valid only for the standard genetic code.

An alternative for drop(freq %*% EXP$CG3) is sum(freq * EXP$CG3), but this is less efficient
in terms of CPU time. The advantage of the latter, however, is that thanks to recycling rules you can
use either sum(freq * EXP$A) or sum(freq * EXP$A3). To do the same with the %*% operator
you have to explicit the recycling rule as in drop(freq %*% rep(EXP$A, 16)).

Source

ANALSEQ EXPFILEs for command EXP.
http://pbil.univ-lyon1.fr/software/doclogi/docanals/manuel.html

http://pbil.univ-lyon1.fr/software/doclogi/docanals/manuel.html

76 EXP

References

citation("seqinr")

A content in A nucleotide

A3 content in A nucleotide in third position of codon

AGZ Arg content (aga and agg codons)

ARG Arg content

AU3 content in A and U nucleotides in third position of codon

BC Good choice (Bon choix). Gouy M., Gautier C. (1982) codon usage in bacteria : Correlation
with gene expressivity. Nucleic Acids Research,10(22):7055-7074.

C content in C nucleotides

C3 content in A nucleotides in third position of codon

CAI Codon adaptation index for E. coli. Sharp, P.M., Li, W.-H. (1987) The codon adaptation
index - a measure of directionam synonymous codon usage bias, and its potential applications.
Nucleic Acids Research,15:1281-1295.

CG content in G + C nucleotides

CG1 content in G + C nucleotides in first position of codon

CG12 content in G + C nucleotides in first and second position of codon

CG2 content in G + C nucleotides in second position of codon

CG3 content in G + C nucleotides in third position of codon

CGN content in CGA + CGU + CGA + CGG

F1 From Table 2 in Lobry, J.R., Gautier, C. (1994) Hydrophobicity, expressivity and aromaticity
are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encode genes.
Nucleic Acids Research,22:3174-3180.

G3 content in G nucleotides in third position of codon

KD Kyte, J., Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a
protein. J. Mol. Biol.,157 :105-132.

Q content in quartet

QA3 content in quartet with the A nucleotide in third position

QC3 content in quartet with the A nucleotide in third position

U content in U nucleotide

U3 content in U nucleotides in third position of codon

Examples

data(EXP)

extract.breakpoints 77

extract.breakpoints Extraction of breakpoint positions on the rearranged nucleotide skews.

Description

Extraction of breakpoint positions on the rearranged nucleotide skews.

Usage

extract.breakpoints(rearr.ori,
type = c("atfw", "atrev", "gcfw", "gcrev"),
nbreaks, gridsize = 100, it.max = 500)

Arguments

rearr.ori A data frame obtained with the rearranged.oriloc function.

type The type of skew for which to extract the breakpoints; must be a subset of
c("atfw","atrev","gcfw","gcrev").

nbreaks The number of breakpoints to extract for each type of skew. Provide a vector of
the same length as type.

gridsize To make sure that the best breakpoints are found, and to avoid finding only a
local extremum of the likelihood and residual sum of square functions, a grid
search is performed. The search for breakpoints is repeated gridsize times,
with different starting values for the breakpoints.

it.max The maximum number of iterations to be performed when searching for the
breakpoints. This argument corresponds to the it.max argument in segmented.

Details

This method uses the segmented function in the segmented package to extract the breakpoints posi-
tions in the rearranged nucleotide skews obtained with the rearranged.oriloc function. To make
sure that the best breakpoints are found, and to avoid finding only a local extremum of the likeli-
hood and residual sum of square functions, a grid search is performed. The search for breakpoints
is repeated gridsize times, with different starting values for the breakpoints.

Value

This function returns a list, with as many elements as the type argument (for example $gcfw will
contain the results for the rearranged GC-skew, for forward-encoded genes). Each element of this
list is also a list, containing the following information: in $breaks the position of the breakpoints
on the rearranged chromosome; in $slopes.left the slopes of the segments on the left side of each
breakpoint; in $slopes.right the slopes of the segments on the right side of each breakpoint; in
$real.coord, the coordinates of the breakpoints on the real chromosome (before rearrangement).

Author(s)

A. Necşulea

78 extractseqs

References

citation("segmented")

Necşulea, A. and Lobry, J.R. (in prep) A novel method for assessing the effect of replication on
DNA base composition asymmetry. Molecular Biology and Evolution,24:2169-2179.

See Also

oriloc, draw.rearranged.oriloc, rearranged.oriloc

Examples

Example for Chlamydia trachomatis

Rearrange the chromosome and compute the nucleotide skews

Not run: r.ori <- rearranged.oriloc(seq.fasta = system.file("sequences/ct.fasta.gz", package = "seqinr"),
g2.coord = system.file("sequences/ct.coord",package = "seqinr"))

End(Not run)

Extract the breakpoints for the rearranged nucleotide skews

Not run: breaks <- extract.breakpoints(r.ori,type = c("gcfw", "gcrev"),
nbreaks = c(2, 2), gridsize = 50, it.max = 100)

End(Not run)

Draw the rearranged nucleotide skews and
place the position of the breakpoints on the graphics

Not run: draw.rearranged.oriloc(r.ori, breaks.gcfw = breaks$gcfw$breaks,
breaks.gcrev = breaks$gcrev$breaks)

End(Not run)

extractseqs To extract the sequences information of a sequence or a list of se-
quence in different formats

Description

The function allows to extract large amount of data as whole genome sequences,using different
output formats and types of extraction. This function is not yet available for windows in zlib mode.

Usage

extractseqs(listname,socket = autosocket(), format="fasta",
operation="simple",feature="xx", bounds="xx", minbounds="xx",
verbose = FALSE, nzlines=1000, zlib = FALSE)

extractseqs 79

exseq(listname,socket = autosocket(),
format="fasta",operation="simple", feature="xx",
bounds="xx", minbounds="xx", verbose = FALSE, nzlines=1000, zlib = FALSE)

Arguments

listname the name of list on server (may be a virtual list)

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

format the format of output.Can be acnuc, fasta,flat or coordinates

operation the type of extraction. Can be simple, translate, fragment, feature or
region

feature -optional- the feature to be extracted (for operations "feature" or "region"): a
feature table item (CDS, mRNA,...)

bounds -optional- the bounds for extraction (for operations "fragment" or "region")

minbounds -optional- the minimal bounds for extraction (for operations "fragment" or "re-
gion")

verbose if TRUE, verbose mode is on

nzlines number of line in zlib mode

zlib logical. If TRUE sequences are download in zlib compress mode.

Details

To extract a list of sequences (lrank argument) or a single sequence (seqnum argument) using dif-
ferent output formats and types of extraction. All formats except "coordinates" extract sequence
data. Format "coordinates" extract coordinate data; start > end indicates the complementary strand.

listname sequence list name.

socket a socket of class connection and sockconn returned by choosebank. Default value (auto)
means that the socket will be set to to the socket component of the banknameSocket variable.

format acnuc, fasta, flat or coordinates

operation simple, translate, fragment, feature or region

feature (for operations "feature" or "region") a feature table item (CDS, mRNA,...).

simple each sequence or subsequence is extracted.
translate meaningful only for protein-coding (sub)sequences that are extracted as protein se-

quences. Nothing is extracted for non-protein coding sequences.
fragment Allows to extract any part of the sequence(s) in list. Such part is specified by the

bounds and minbounds arguments according to the syntax suggested by these examples:

132,1600 to extract from nucl. 132 to nucl 1600 of the sequence. If applied to a subsequence, coordinates are in the parent seq relatively to the subsequence start point.
-10,10 to extract from 10 nucl. BEFORE the 5’ end of the sequence to nucl. 10 of it. Useful only for subsequences, and produces a fragment extracted from its parent sequence.
e-20,e+10 to extract from 20 nucl. BEFORE the 3’ end of the sequence to 10 nucl. AFTER its 3’ end. Useful only for subsequences, and produces a fragment extracted from its parent sequence.
-20,e+5 to extract from 20 nucl. BEFORE the 5’ end of the sequence to 5 nucl. AFTER its 3’ end.

bounds (for operations "fragment" or "region") see syntax above.

80 fasta

minbounds same syntax as bounds. When the sequence data is too short for this quantity to be
extracted, nothing is extracted. When the sequence data is between minbounds and bounds,
extracted sequence data is extended by N’s to the desired length.

Value

Sequence data.

Author(s)

S. Penel

References

citation("seqinr")

See Also

choosebank, query getlistrank

Examples

Not run: # Need internet connection
choosebank("emblTP")
mylist <- query("mylist", "k=globin", virtual = TRUE)
mylist.fasta <- exseq("mylist", verbose = TRUE)
103 lines of FASTA
stopifnot(length(mylist.fasta) == 103)
closebank()

End(Not run)

fasta Example of results obtained after a call to read.alignment

Description

This data set gives an example of a amino acids alignment obtained after a call to the function
read.alignment on an alignment file in "fasta" format.

Usage

data(fasta)

Format

A List of class alignment

fastacc 81

Source

https://pbil.univ-lyon1.fr/help/formats.html/

References

Pearson W.R. and Lipman D.J. (1988) Improved tools for biological sequence comparison..Proc
Natl Acad Sci U S A. 85(8):2444-8.

fastacc Fast Allele in Common Count

Description

The purpose of this function is to compute as fast as possible the number of allele in common
between a target (typically the genetic profile observed at a crime scene, possibly a mixture with
dropouts) and a database reference (typically genetic profile of individuals). Both are assumed to
be pre-encoded at the bit level in a consistent way.

Usage

fastacc(target, database)

Arguments

target the raw encoding of the target, typically 40 octets for a core-CODIS profile in
2009

database the raw encoding of the database. If there are n entries in the database, then the
database must n times longer than the target.

Details

This function is an RFC state. Comments are welcome.

Genetic profiles are encoded at the bit level. One bit represents one allele. Count is based on a
logical AND at bit level. Bit count is encoded at C level using the precomputed approach: one
indirection with an auxiliary table of size 256 called bits_in_char which is pre-computed at R
level and passed at C level.

Value

A vector of integer giving for each entry in the database how many alleles are in common between
the entry and the target.

Warning

Experimental, first release schedulded for seqinr 2.0-6 by the end of 2009

82 fastacc

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

FIXME

Examples

#
NOTE:
#
This example section is a proof-of-concept stuff. Most code should be
enbeded in documented functions to avoid verbosity. But at the RFC stage
this is perhaps not a too bad idea to show how powerfull R is.
#

#
Let's start from the 16 loci available in the AmpFLSTR kit:
#

path <- system.file("abif/AmpFLSTR_Bins_v1.txt", package = "seqinr")
resbin <- readBins(path)
codis <- resbin[["Identifiler_CODIS_v1"]]
names(codis)

#
We count how many different alleles are present per locus:
#

na <- unlist(lapply(codis, function(x) length(x[[1]])))
na

#
The number of octets required to encode a genetic for each locus is then:
#

ceiling(na/8)

#
We need then a total of 40 octets to code these profiles:
#

sum(ceiling(na/8))

#
Let's definene a function to encode a profile at a given locus, and vice versa :
#

fastacc 83

prof2raw <- function(profile, alleles) {
if (!is.ordered(alleles)) stop("ordered factor expected for alleles")
if (!is.character(profile)) stop("vector of character expected for profile")
noctets <- ceiling(length(alleles)/8)
res.b <- rawToBits(raw(noctets))
for (i in 1:length(profile)) {
res.b[which(profile[i] == alleles)] <- as.raw(1)

}
return(packBits(res.b, type = "raw"))

}

raw2prof <- function(rawdata, alleles) {
if (!is.ordered(alleles)) stop("ordered factor expected for alleles")
if (!is.raw(rawdata)) stop("vector of raw expected for rawdata")
res <- as.character(alleles)[as.logical(rawToBits(rawdata))]
return(paste(res, collapse = ", "))

}

#
Let now code all alleles present in codis as ordered factors:
#

allalleles <- lapply(codis, function(x) factor(x[, 1], levels = x[, 1], ordered = TRUE))

#
Let's play with our encoding/decoding utilities with first locus:
#

allalleles[[1]] # <8 8 9 10 11 12 13 14 15 16 17 18 19 >19
res <- prof2raw(c("8", "9", "13", "14", ">19"), allalleles[[1]])
res # c6 20
rawToBits(res) # 00 01 01 00 00 00 01 01 00 00 00 00 00 01 00 00
raw2prof(res, allalleles[[1]]) # "8, 9, 13, 14, >19"

#
Let define a profile with all possible alleles:
#

ladder <- unlist(lapply(allalleles, function(x) prof2raw(as.character(x),x)))
names(ladder) <- NULL
stopifnot(identical(as.integer(ladder),
c(255L, 63L, 255L, 255L, 255L, 63L, 255L, 63L, 255L, 31L, 255L,
63L, 255L, 255L, 7L, 255L, 3L, 255L, 63L, 255L, 255L, 255L, 255L,
15L, 255L, 127L, 255L, 3L, 255L, 255L, 255L, 255L, 3L, 3L, 255L,
15L, 255L, 255L, 255L, 7L))) # simple sanity check

#
Let's make a simulated database. Here we use a random sampling
with a uniform distribution between all possible profile possible
at a given locus. A more realist sampling for an individual database
would be to sample only two alleles at each locus according to
observed frequencies in populations.

84 fastacc

#

n <- 10^5 # the number of records in the database
DB <- sapply(ladder, function(x) as.raw(sample(0:as.integer(x), size = n, replace = TRUE)))

#
Now we make sure that the target is in the database:
#

target <- DB[666,]
DB <- as.vector(t(DB)) # put DB as a flat database (is it usefull?)

#
Now we compute the number of alleles in common between the
target and all the entries in the DB:
#

system.time(res <- fastacc(target,DB)) # Fast, isn't it ?
stopifnot(which.max(res) == 666) # sanity check

#
Don't run : too tedious for routine check. We check here that complexity is
linear in time up to a 10 10^6 database size (roughly the size of individual
profiles at the EU level)
#

Not run:
maxn <- 10^7
DB <- sapply(ladder, function(x) as.raw(sample(0:as.integer(x),

size = maxn, replace = T)))
target <- DB[666,]
DB <- as.vector(t(DB))

np <- 10
nseq <- seq(from = 10^5, to = maxn, length = np)
res <- numeric(np)
i <- 1
for (n in nseq) {

print(i)
res[i] <- system.time(tmp <- fastacc(target, DB[1:n]))[1]
stopifnot(which.max(tmp) == 666)
i <- i + 1

}
dbse <- data.frame(list(nseq = nseq, res = res))

x <- dbse$nseq
y <- dbse$res
plot(x, y, type = "b", xlab = "Number of entries in DB", ylab = "One query time [s]",
las = 1, xlim = c(0, maxn), ylim = c(0, max(y)), main = "Data base size effect on query time")
lm1 <- lm(y ~ x - 1)
abline(lm1, col = "red")
legend("topleft", inset = 0.01, legend = paste("y =", formatC(lm1$coef[1],
digits = 3), "x"), col = "red", lty = 1)

G+C Content 85

#
On my laptop the slope is 2.51e-08, that is a 1/4 of second to scan a database
with 10 10^6 entries.
#

End(Not run)

end

G+C Content Calculates the fractional G+C content of nucleic acid sequences.

Description

Calculates the fraction of G+C bases of the input nucleic acid sequence(s). It reads in nucleic acid
sequences, sums the number of ’g’ and ’c’ bases and writes out the result as the fraction (in the
interval 0.0 to 1.0) to the total number of ’a’, ’c’, ’g’ and ’t’ bases. Global G+C content GC, G+C
in the first position of the codon bases GC1, G+C in the second position of the codon bases GC2,
and G+C in the third position of the codon bases GC3 can be computed. All functions can take
ambiguous bases into account when requested.

Usage

GC(seq, forceToLower = TRUE, exact = FALSE, NA.GC = NA, oldGC = FALSE,
alphabet = s2c("acgtswmkryvhdb"))
GC1(seq, frame = 0, ...)
GC2(seq, frame = 0, ...)
GC3(seq, frame = 0, ...)
GCpos(seq, pos, frame = 0, ...)

Arguments

seq a nucleic acid sequence as a vector of single characters

frame for coding sequences, an integer (0, 1, 2) giving the frame

forceToLower logical. if TRUE force sequence characters in lower-case. Turn this to FALSE to
save time if your sequence is already in lower-case (cpu time is approximately
divided by 3 when turned off)

exact logical: if TRUE ambiguous bases are taken into account when computing the
G+C content (see details). Turn this to FALSE to save time if your you can
neglect ambiguous bases in your sequence (cpu time is approximately divided
by 3 when turned off)

NA.GC what should be returned when the GC is impossible to compute from data, for
instance with NNNNNNN. This behaviour could be different when argument
exact is TRUE, for instance the G+C content of WWSS is NA by default, but is
0.5 when exact is set to TRUE

86 G+C Content

... arguments passed to the function GC

pos for coding sequences, the codon position (1, 2, 3) that should be taken into
account to compute the G+C content

oldGC logical defaulting to FALSE: should the GC content computed as in seqinR <=
1.0-6, that is as the sum of ’g’ and ’c’ bases divided by the length of the se-
quence. As from seqinR >= 1.1-3, this argument is deprecated and a warning is
issued.

alphabet alphabet used. This allows you to choose ambiguous bases used during GC
calculation.

Details

When exact is set to TRUE the G+C content is estimated with ambiguous bases taken into account.
Note that this is time expensive. A first pass is made on non-ambiguous bases to estimate the
probabilities of the four bases in the sequence. They are then used to weight the contributions of
ambiguous bases to the G+C content. Let note nx the total number of base ’x’ in the sequence. For
instance suppose that there are nb bases ’b’. ’b’ stands for "not a", that is for ’c’, ’g’ or ’t’. The
contribution of ’b’ bases to the GC base count will be:

nb*(nc + ng)/(nc + ng + nt)

The contribution of ’b’ bases to the AT base count will be:

nb*nt/(nc + ng + nt)

All ambiguous bases contributions to the AT and GC counts are weighted is similar way and then
the G+C content is computed as ngc/(nat + ngc).

Value

GC returns the fraction of G+C (in [0,1]) as a numeric vector of length one. GCpos returns GC
at position pos. GC1, GC2, GC3 are wrappers for GCpos with the argument pos set to 1, 2, and
3, respectively. NA is returned when seq is NA. NA.GC defaulting to NA is returned when the G+C
content can not be computed from data.

Author(s)

D. Charif, L. Palmeira, J.R. Lobry

References

citation("seqinr").

The program codonW used here for comparison is available at https://codonw.sourceforge.
net/.

See Also

You can use s2c to convert a string into a vetor of single character and tolower to convert upper-
case characters into lower-case characters. Do not confuse with gc for garbage collection.

https://codonw.sourceforge.net/
https://codonw.sourceforge.net/

G+C Content 87

Examples

mysequence <- s2c("agtctggggggccccttttaagtagatagatagctagtcgta")
GC(mysequence) # 0.4761905
GC1(mysequence) # 0.6428571
GC2(mysequence) # 0.3571429
GC3(mysequence) # 0.4285714

#
With upper-case characters:
#

myUCsequence <- s2c("GGGGGGGGGA")
GC(myUCsequence) # 0.9

#
With ambiguous bases:
#

GC(s2c("acgt")) # 0.5
GC(s2c("acgtssss")) # 0.5
GC(s2c("acgtssss"), exact = TRUE) # 0.75

#
Missing data:
#

stopifnot(is.na(GC(s2c("NNNN"))))
stopifnot(is.na(GC(s2c("NNNN"), exact = TRUE)))
stopifnot(is.na(GC(s2c("WWSS"))))
stopifnot(GC(s2c("WWSS"), exact = TRUE) == 0.5)

#
Coding sequences tests:
#

cdstest <- s2c("ATGATG")
stopifnot(GC3(cdstest) == 1)
stopifnot(GC2(cdstest) == 0)
stopifnot(GC1(cdstest) == 0)

#
How to reproduce the results obtained with the C program codonW
version 1.4.4 writen by John Peden. We use here the "input.dat"
test file from codonW (there are no ambiguous base in these
sequences).
#

inputdatfile <- system.file("sequences/input.dat", package = "seqinr")
input <- read.fasta(file = inputdatfile) # read the FASTA file
inputoutfile <- system.file("sequences/input.out", package = "seqinr")
input.res <- read.table(inputoutfile, header = TRUE) # read codonW result file

#
remove stop codon before computing G+C content (as in codonW)
#

GC.codonW <- function(dnaseq, ...){
GC(dnaseq[seq_len(length(dnaseq) - 3)], ...)

}
input.gc <- sapply(input, GC.codonW, forceToLower = FALSE)
max(abs(input.gc - input.res$GC)) # 0.0004946237

plot(x = input.gc, y = input.res$GC, las = 1,
xlab = "Results with GC()", ylab = "Results from codonW",

88 G+C Content

main = "Comparison of G+C content results")
abline(c(0, 1), col = "red")
legend("topleft", inset = 0.01, legend = "y = x", lty = 1, col = "red")

Not run:
Too long for routine check
This is a benchmark to compare the effect of various parameter
setting on computation time
n <- 10
from <-10^4
to <- 10^5
size <- seq(from = from, to = to, length = n)
res <- data.frame(matrix(NA, nrow = n, ncol = 5))
colnames(res) <- c("size", "FF", "FT", "TF", "TT")
res[, "size"] <- size

for(i in seq_len(n)){
myseq <- sample(x = s2c("acgtws"), size = size[i], replace = TRUE)
res[i, "FF"] <- system.time(GC(myseq, forceToLower = FALSE, exact = FALSE))[3]
res[i, "FT"] <- system.time(GC(myseq, forceToLower = FALSE, exact = TRUE))[3]
res[i, "TF"] <- system.time(GC(myseq, forceToLower = TRUE, exact = FALSE))[3]
res[i, "TT"] <- system.time(GC(myseq, forceToLower = TRUE, exact = TRUE))[3]

}

par(oma = c(0,0,2.5,0), mar = c(4,5,0,2) + 0.1, mfrow = c(2, 1))
plot(res$size, res$TT, las = 1,
xlab = "Sequence size [bp]",
ylim = c(0, max(res$TT)), xlim = c(0, max(res$size)), ylab = "")
title(ylab = "Observed time [s]", line = 4)
abline(lm(res$TT~res$size))
points(res$size, res$FT, col = "red")
abline(lm(res$FT~res$size), col = "red", lty = 3)
points(res$size, res$TF, pch = 2)
abline(lm(res$TF~res$size))
points(res$size, res$FF, pch = 2, col = "red")
abline(lm(res$FF~res$size), lty = 3, col = "red")

legend("topleft", inset = 0.01,
legend = c("forceToLower = TRUE", "forceToLower = FALSE"),
col = c("black", "red"), lty = c(1,3))

legend("bottomright", inset = 0.01, legend = c("exact = TRUE", "exact = FALSE"),
pch = c(1,2))

mincpu <- lm(res$FF~res$size)$coef[2]

barplot(
c(lm(res$FF~res$size)$coef[2]/mincpu,

lm(res$TF~res$size)$coef[2]/mincpu,
lm(res$FT~res$size)$coef[2]/mincpu,
lm(res$TT~res$size)$coef[2]/mincpu),

horiz = TRUE, xlab = "Increase of CPU time",
col = c("red", "black", "red", "black"),
names.arg = c("(F,F)", "(T,F)", "(F,T)", "(T,T)"), las = 1)

gb2fasta 89

title(ylab = "forceToLower,exact", line = 4)

mtext("CPU time as function of options", outer = TRUE, line = 1, cex = 1.5)

End(Not run)

gb2fasta Conversion of GenBank file into fasta file

Description

Converts a single entry in GenBank format into a fasta file.

Usage

gb2fasta(source.file, destination.file)

Arguments

source.file GenBank file
destination.file

Fasta file

Details

Multiple entries in GenBank file are not supported.

Value

none

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

oriloc

90 gbk2g2

Examples

myGenBankFile <- system.file("sequences/ct.gbk.gz", package = "seqinr")
#myFastaFileName <- "Acinetobacter_ADP1_uid61597.fasta"
myFastaFileName <-tempfile(pattern = "Acinetobacter_ADP1_uid61597",
tmpdir = tempdir(), fileext = "fasta")
tempdir(check = FALSE)
gb2fasta(myGenBankFile, myFastaFileName)
readLines(myFastaFileName)[1:5]
#
Should be :
#
[1] ">CHLTCG 1042519 bp"
[2] "gcggccgcccgggaaattgctaaaagatgggagcaaagagttagagatctacaagataaa"
[3] "ggtgctgcacgaaaattattaaatgatcctttaggccgacgaacacctaattatcagagc"
[4] "aaaaatccaggtgagtatactgtagggaattccatgttttacgatggtcctcaggtagcg"
[5] "aatctccagaacgtcgacactggtttttggctggacatgagcaatctctcagacgttgta"
#

gbk2g2 Conversion of a GenBank format file into a glimmer-like one

Description

This function reads a file in GenBank format and converts the features corresponding to CDS (Cod-
ing Sequences) into a format similar to glimmer program output.

Usage

gbk2g2(gbkfile = "https://pbil.univ-lyon1.fr/datasets/seqinr/data/ct.gbk",
g2.coord = "g2.coord")

Arguments

gbkfile The name of the GenBank file

g2.coord The name of the output file in glimmer-like format

Details

Partial CDS (either 5’ or 3’) and join in features are discarded.

Value

The input file is returned invisibly.

Author(s)

J.R. Lobry

gbk2g2.euk 91

References

citation("seqinr")

See Also

oriloc which uses glimmer-like files, gbk2g2.euk for eukaryotic sequences with introns.

Examples

Not run: # need internet connection
suppressWarnings(gbk2g2(g2.coord = "gbk2g2.test"))
res <- read.table("gbk2g2.test")
head(res)
stopifnot(nrow(res) == 892)

End(Not run)

gbk2g2.euk Conversion of a GenBank format file into a glimmer-like one. Eukary-
otic version.

Description

This function reads a file in GenBank format and converts the features corresponding to CDS (Cod-
ing Sequences) into a format similar to glimmer program output. This function is specifically made
for eukaryotic sequences, i.e. with introns.

Usage

gbk2g2.euk(gbkfile = system.file("sequences/ame1.gbk", package ="seqinr"),
g2.coord = "g2.coord")

Arguments

gbkfile The name of the GenBank file

g2.coord The name of the output file

Details

This function returns the coordinates of the exons annotated in the GenBank format file.

Value

A data frame with three columns will be written to the g2.coord file. The first column corresponds
to the name of the gene, given in the GenBank file through the /gene feature. The second and third
column contain the start and the stop position of the exon.

92 gcO2

Author(s)

J.R. Lobry, A. Necşulea

References

citation("seqinr")

See Also

oriloc, gbk2g2

Examples

Not run: gbk2g2.euk()

gcO2 GC content and aerobiosis in bacteria

Description

This data set was used in Naya et al. (2002) to study the relationship between the genomic G+C
content of bacteria and whether they are (stricly) aerobes or anaerobes.

Format

gcO2 is a data frame.

Source

Naya, H., Romero, H., Zavala, A., Alvarez, B. and Musto, H. (2002) Aerobiosis increases the
Genomic Guanine Plus Cytosine Content (GC

Data imported into seqinr by J.R. Lobry on 09-OCT-2016. Original source location given in the
article was http://oeg.fcien.edu.uy/GCprok/ but is no more active. Data were copied at http:
//pbil.univ-lyon1.fr/R/donnees/gcO2.txt (cf. section 2.1 in Lobry, J.R (2004) Life history
traits and genome structure: aerobiosis and G+C content in bacteria. Lecture Notes in Computer
Sciences, 3039:679-686). Import was from this last ressource. There are 130 aerobic genera in this
data set while fig. 1 in Naya et al. (2002) gives 126. There is no way to track down the reason for
this difference because the original data set was lost (Héctor Musto pers. comm.). The number of
anaerobic genera (n = 69) is consistent between the present data set and fig. 1 in Naya et al. (2002).

References

citation("seqinr")

Examples

data(gcO2)

http://pbil.univ-lyon1.fr/R/donnees/gcO2.txt
http://pbil.univ-lyon1.fr/R/donnees/gcO2.txt

gcT 93

gcT GC content and temperature in bacteria

Description

This data set was used in Galtier and Lobry (1997) to study the relationship between the optimal
growth temperature of bacteria and their G+C content at the genomic level and locally were selec-
tion is active to maintain secondary structures in the stems of RNAs.

Format

gcT is a list containing the 9 following components:

species is a data frame containing the optimal growth temperature and genomic G+C content for
772 bacterial species. Detailled explanations for this table and the following are available in
the README component.

genus is a data frame containing the optimal growth temperature and genomic G+C content for
224 bacterial genus.

details is a data frame with more information, see README.
gc16S is a data frame containing the optimal growth temperature and stems G+C content for 16S

RNA from 165 bacterial genus.
gctRNA is a data frame containing the optimal growth temperature and stems G+C content for

tRNA from 51 bacterial genus.
gc23S is a data frame containing the optimal growth temperature and stems G+C content for 23S

RNA from 38 bacterial genus.
gc5S is a data frame containing the optimal growth temperature and stems G+C content for 5S

RNA from 71 bacterial genus.
README is the original README file from ftp://biom3.univ-lyon1.fr/pub/datasets/JME97/

last updated 13-MAY-2002.
importgcT is the R script used to import data.

Source

Galtier, N. & Lobry, J.R. (1997). Relationships between genomic G+C content, RNA secondary
structures, and optimal growth temperature in prokaryotes. Journal of Molecular Evolution 44:632-
636.

Data imported into seqinr with the R script given in the last component of the dataset by J.R. Lobry
on 09-OCT-2016.

References

citation("seqinr")

Examples

data(gcT)

94 get.db.growth

get.db.growth Get the exponential growth of nucleic acid database content

Description

Connects to the embl database to read the last release note about the number of nucleotides in the
DDBJ/EMBL/Genbank database content. A log-linear fit is represented by dia.bd.gowth() with an
estimate of the doubling time in months.

Usage

get.db.growth(
where = "ftp://ftp.ebi.ac.uk/pub/databases/embl/doc/relnotes.txt")
dia.db.growth(get.db.growth.out = get.db.growth(), Moore = TRUE, ...)

Arguments

where the file containig the database growth table.
get.db.growth.out

the output from get.db.growth()

Moore logical, if TRUE add lines corresponding to an exponential growth rate with a
doubling time of 18 months, that is Moore’s law.

... further arguments to plot

Details

This is a screenshot from fig. 1 in Lobry (2004):

At that time the doubling time was 16.9 months. This is an update in 2016 from release 3.1-5 of the
seqinr tutorial https://seqinr.r-forge.r-project.org/seqinr_3_1-5.pdf:

https://seqinr.r-forge.r-project.org/seqinr_3_1-5.pdf

get.db.growth 95

1985 1990 1995 2000 2005 2010 2015

6

7

8

9

10

11

12

Update of Fig. 1 from Lobry (2004) LNCS, 3039:679:
The exponential growth of genome sequence data

Year

Lo
g1

0
nu

m
be

r
of

 n
uc

le
ot

id
es

The doubling time was 18.8 monts in this update. The fit to Moore’s law is still striking over such
a long period.

Value

A dataframe with the statistics from the embl site.

Author(s)

J.R. Lobry

References

https://www.ebi.ac.uk/ena/browser/

Lobry, J.R. (2004) Life History Traits and Genome Structure: Aerobiosis and G+C Content in
Bacteria. Lectures Notes in Computer Sciences, 3039:679-686.

citation("seqinr")

Examples

Not run:
Need internet connection
data <- get.db.growth()
dia.db.growth(data)

End(Not run)

https://www.ebi.ac.uk/ena/browser/

96 getAnnot

getAnnot Generic Function to get sequence annotations

Description

Annotations are taken from the Annot attribute for sequences imported from a FASTA file and
retrieved from an ACNUC server for objects of the SeqAcnucWeb class.

Usage

getAnnot(object, ...)
S3 method for class 'SeqAcnucWeb'
getAnnot(object, ..., nbl = 100, socket = autosocket())

Arguments

object an object of the class SeqAcnucWeb or SeqFastadna, or SeqFastaAA or a list of
these objects

nbl the maximum number of line of annotation to read. Reading of lines stops when
nbl lines have been transmitted or at the last annotation line of the sequence (SQ
or ORIGIN line).

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

... further arguments passed to or from other methods

Value

getAnnot returns a vector of string of characters containing the annotations for the sequences.

Author(s)

D. Charif, J.R. Lobry, L. Palmeira

References

citation("seqinr")

See Also

query, SeqAcnucWeb, c2s, translate and prepgetannots to select the annotation lines.

getFrag 97

Examples

#
List all available methods for getAnnot generic function:
#

methods(getAnnot)
#
SeqAcnucWeb class example:
#

Not run:
Need internet connection
choosebank("emblTP")
fc<-query("fc", "sp=felis catus et t=cds et O=mitochondrion et Y>2001 et no k=partial")
get the first 5 lines annotating the first sequence:
annots <- getAnnot(fc$req[[1]], nbl = 5)
cat(annots, sep = "\n")
or use the list method to get them all at once:
annots <- getAnnot(fc$req, nbl = 5)
cat(annots, sep = "\n")
closebank()

End(Not run)
#
SeqFastaAA class example:
#

aafile <- system.file("sequences/seqAA.fasta", package = "seqinr")
sfaa <- read.fasta(aafile, seqtype = "AA")
getAnnot(sfaa[[1]])

#
SeqFastadna class example:
#

dnafile <- system.file("sequences/malM.fasta", package = "seqinr")
sfdna <- read.fasta(file = dnafile)
getAnnot(sfdna[[1]])

#
Example with a FASTA file with multiple entries:
#

ff <- system.file("sequences/someORF.fsa", package = "seqinr")
fs <- read.fasta(ff)
getAnnot(fs) # the list method is used here to get them all at once

#
Default getAnnot method example. An error is produced because
there are no annotations by default:
#

result <- try(getAnnot(letters))
stopifnot(!inherits("result", "try-error"))

getFrag Generic function to extract sequence fragments

98 getFrag

Description

getFrag is used to extract the sequence fragment starting at the begin position and ending at the
end position.

Usage

getFrag(object, begin, end, ...)
S3 method for class 'SeqAcnucWeb'
getFrag(object, begin, end, ..., socket = autosocket(), name = getName(object))
S3 method for class 'SeqFastadna'
getFrag(object, begin, end, ..., name = getName(object))
S3 method for class 'SeqFastaAA'
getFrag(object, begin, end, ..., name = getName(object))
S3 method for class 'SeqFrag'
getFrag(object, begin, end, ..., name = getName(object))

Arguments

object an object of the class SeqAcnucWeb or SeqFastadna, or SeqFastaAA or SeqFrag
or a list of these objects

begin First position of the fragment to extract. This position is included. Numerotation
starts at 1.

end Last position of the fragment to extract. This position is included.

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database by choosebank).

name the sequence name

... further arguments passed to or from other methods

Value

getFrag returns an object of class SeqFrag.

Author(s)

D. Charif, J.R. Lobry, L. Palmeira

References

citation("seqinr")

See Also

SeqAcnucWeb, SeqFastadna, SeqFastaAA, SeqFrag

getKeyword 99

Examples

#
List all available methods for getFrag generic function:
#

methods(getFrag)
#
Example with a DNA sequence from a FASTA file:
#

dnafile <- system.file("sequences/malM.fasta", package = "seqinr")
sfdna <- read.fasta(file = dnafile)
myfrag <- getFrag(sfdna[[1]], begin = 1, end = 10)
stopifnot(getSequence(myfrag, as.string = TRUE) == "atgaaaatga")

getKeyword Generic function to get keywords associated to sequences

Description

Get keywords from an ACNUC server.

Usage

getKeyword(object, ...)
S3 method for class 'SeqAcnucWeb'
getKeyword(object, ..., socket = autosocket())

Arguments

object an object of the class SeqAcnucWeb, or a list of them, or the object resulting from
query

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database by choosebank).

... further arguments passed to or from other methods

Value

getKeyword returns a vector of strings containing the keyword(s) associated to a sequence.

Author(s)

D. Charif, J.R. Lobry, L. Palmeira

References

citation("seqinr")

100 getLength

See Also

SeqAcnucWeb

Examples

#
List all available methods for getKeyword generic function:
#

methods(getKeyword)
#
Example of keyword extraction from an ACNUC server:
#

Not run:
Need internet connection
choosebank("emblTP")
fc<-query("fc", "sp=felis catus et t=cds et o=mitochondrion")
getKeyword(fc$req[[1]])
Should be:
[1] "DIVISION ORG" "RELEASE 62" "CYTOCHROME B" "SOURCE" "CDS"
closebank()

End(Not run)

getLength Generic function to get the length of sequences

Description

getLength returns the total number of bases or amino-acids in a sequence.

Usage

getLength(object, ...)

Arguments

object an object of the class SeqAcnucWeb or SeqFastadna, or SeqFastaAA or SeqFrag
or a list of these objects

... further arguments passed to or from other methods

Value

getLength returns a numeric vector giving the length of the sequences.

Author(s)

D. Charif, J.R. Lobry, L. Palmeira

getlistrank 101

References

citation("seqinr")

See Also

SeqAcnucWeb, SeqFastadna, SeqFastaAA, SeqFrag

Examples

#
List all available methods for getLength generic function:
#

methods(getLength)
#
Example with seven DNA sequences from a FASTA file:
#

ff <- system.file("sequences/someORF.fsa", package = "seqinr")
fs <- read.fasta(file = ff)
stopifnot(all(getLength(fs) == c(5573, 5825, 2987, 3929, 2648, 2597, 2780)))

#
Example with 49 sequences from an ACNUC server:
#

Not run:
Need internet connection
choosebank("emblTP")
fc <- query("fc", "sp=felis catus et t=cds et o=mitochondrion")
getLength(fc)
closebank()

End(Not run)

getlistrank To get the rank of a list from its name

Description

This is a low level function to get the rank of a list on server from its name.

Usage

getlistrank(listname, socket = autosocket(), verbose = FALSE)
glr(listname, socket = autosocket(), verbose = FALSE)

Arguments

listname the name of list on server

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

verbose if TRUE, verbose mode is on

102 getliststate

Details

This low level function is usually not used directly by the user.

Value

The rank of list named listname on server, or 0 if no list with this name exists.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

choosebank, query

Examples

Not run:
Need internet connection
choosebank("emblTP")
MyListName <- query("MyListName", "sp=Borrelia burgdorferi", virtual = TRUE)
(result <- getlistrank("MyListName"))
stopifnot(result == 2)
closebank()

End(Not run)

getliststate Asks for information about an ACNUC list of specified rank

Description

Reply gives the type of list, its name, the number of elements it contains, and, for sequence lists,
says whether the list contains only parent seqs (locus=T).

Usage

getliststate(lrank, socket = autosocket())
gls(lrank, socket = autosocket())
gln(lrank, ...)

getliststate 103

Arguments

lrank the name of the ACNUC list to modify

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

... arguments passed to getliststate

Value

NA in case of problem and an warning is issued. When there is no problem a list with the following
4 components:

type string. Type of ACNUC list (SQ, KW, SP)

name string. ACNUC list name

count numeric. Number of elements in ACNUC list

locus logical. For ACNUC sequence lists TRUE means that the list contains only
parent sequences. NA otherwise.

gln is a shortcut for getliststate(lrank, ...)$name

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query, alr, glr

Examples

Not run:
Need internet connection
choosebank("emblTP")
mylist <- query("mylist", "sp=felis catus et t=cds", virtual=TRUE)
getliststate(glr("mylist")) # SQ, MYLIST, 603, FALSE
gln(glr("mylist")) # MYLIST (upper case letters on server)
closebank()

End(Not run)

https://doua.prabi.fr/databases/acnuc.html

104 getLocation

getLocation Generic function to get the location of subsequences on the parent
sequence

Description

This function works only with subsequences from an ACNUC server.

Usage

getLocation(object, ...)
S3 method for class 'SeqAcnucWeb'
getLocation(object, ..., socket = autosocket())

Arguments

object an object of the class SeqAcnucWeb, or a list of them, or an object created by
query

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database by choosebank).

... further arguments passed to or from other methods

Value

A list giving the positions of the sequence on the parent sequence. If the sequence is a subsequence
(e.g. coding sequence), the function returns the position of each exon on the parent sequence. NA
is returned for parent sequences and a warning is isued.

Author(s)

D. Charif, J.R. Lobry, L. Palmeira

References

citation("seqinr")

See Also

SeqAcnucWeb

Examples

#
List all available methods for getLocation generic function:
#

methods(getLocation)
#
Example with a subsequence from an ACNUC server:

getName 105

#
Not run:
Need internet connection
choosebank("emblTP")
fc <- query("fc", "sp=felis catus et t=cds et o=mitochondrion")
getLocation(fc$req[[5]])
closebank()

End(Not run)

getName Generic function to get the names of sequences

Description

GetName returns the sequence names.

Usage

getName(object, ...)

Arguments

object an object of the class SeqAcnucWeb or SeqFastadna, or SeqFastaAA or SeqFrag
or a list of these objects

... further arguments passed to or from other methods

Value

an object of class character containing the names of the sequences

Author(s)

D. Charif, J.R. Lobry, L. Palmeira

References

citation("seqinr")

See Also

SeqAcnucWeb, SeqFastadna, SeqFastaAA, SeqFrag

106 getSequence

Examples

#
List all available methods for getName generic function:
#

methods(getName)
#
Example with seven DNA sequences from a FASTA file:
#

ff <- system.file("sequences/someORF.fsa", package = "seqinr")
fs <- read.fasta(file = ff)
stopifnot(all(getName(fs) == c("YAL001C", "YAL002W", "YAL003W",
"YAL005C", "YAL007C", "YAL008W", "YAL009W")))

#
Example with 49 sequences from an ACNUC server:
#

Not run:
Need internet connection
choosebank("emblTP")
fc <- query("fc", "sp=felis catus et t=cds et o=mitochondrion")
getName(fc)
closebank()

End(Not run)

getSequence Generic function to get sequence data

Description

getSequence returns the sequence either as vector of single chararacters or as a single string of
multiple characters.

Usage

getSequence(object, as.string = FALSE, ...)
S3 method for class 'SeqAcnucWeb'
getSequence(object, as.string = FALSE, ..., socket = autosocket())

Arguments

object an object of the class SeqAcnucWeb or SeqFastadna, or SeqFastaAA or SeqFrag
or a list of these objects, or an object of class qaw created by query

as.string if TRUE sequences are returned as strings of multiple characters instead of a
vector of single characters

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

... further arguments passed to or from other methods

getSequence 107

Value

For a single sequence an object of class character containing the characters of the sequence, either
of length 1 when as.string is TRUE, or of the length of the sequence when as.string is FALSE.
For many sequences, a list of these.

Author(s)

D. Charif, J.R. Lobry, L. Palmeira

References

citation("seqinr")

See Also

SeqAcnucWeb, SeqFastadna, SeqFastaAA, SeqFrag

Examples

#
List all available methods for getSequence generic function:
#

methods(getSequence)
#
SeqAcnucWeb class example:
#

Not run: # Need internet connection
choosebank("emblTP")
fc <- query("fc", "sp=felis catus et t=cds et o=mitochondrion")
getSequence(fc$req[[1]])
getSequence(fc$req[[1]], as.string = TRUE)
closebank()

End(Not run)
#
SeqFastaAA class example:
#

aafile <- system.file("sequences/seqAA.fasta", package = "seqinr")
sfaa <- read.fasta(aafile, seqtype = "AA")
getSequence(sfaa[[1]])
getSequence(sfaa[[1]], as.string = TRUE)

#
SeqFastadna class example:
#

dnafile <- system.file("sequences/someORF.fsa", package = "seqinr")
sfdna <- read.fasta(file = dnafile)
getSequence(sfdna[[1]])
getSequence(sfdna[[1]], as.string = TRUE)

#
SeqFrag class example:
#

sfrag <- getFrag(object = sfdna[[1]], begin = 1, end = 10)

108 getTrans

getSequence(sfrag)
getSequence(sfrag, as.string = TRUE)

getTrans Generic function to translate coding sequences into proteins

Description

This function translates nucleic acid sequences into the corresponding peptide sequence. It can
translate in any of the 3 forward or three reverse sense frames. In the case of reverse sense, the
reverse-complement of the sequence is taken. It can translate using the standard (universal) genetic
code and also with non-standard codes. Ambiguous bases can also be handled.

Usage

getTrans(object, sens = "F", NAstring = "X", ambiguous = FALSE, ...)
S3 method for class 'SeqAcnucWeb'
getTrans(object, sens = "F", NAstring = "X", ambiguous = FALSE, ...,
frame = "auto", numcode = "auto")

S3 method for class 'SeqFastadna'
getTrans(object, sens = "F", NAstring = "X", ambiguous = FALSE, ...,
frame = 0, numcode = 1)

S3 method for class 'SeqFrag'
getTrans(object, sens = "F", NAstring = "X", ambiguous = FALSE, ...,
frame = 0, numcode = 1)

Arguments

object an object of the class SeqAcnucWeb or SeqFastadna, or SeqFrag or a list of
these objects, or an object of class qaw created by query

numcode The ncbi genetic code number for translation. By default the standard genetic
code is used, and for sequences coming from an ACNUC server the relevant
genetic code is used by default.

NAstring How to translate amino-acids when there are ambiguous bases in codons.

ambiguous If TRUE, ambiguous bases are taken into account so that for instance GGN is
translated to Gly in the standard genetic code.

frame Frame(s) (0,1,2) to translate. By default the frame 0 is used.

sens Direction for translation: F for the direct strand e and R for the reverse comple-
mentary strand.

... further arguments passed to or from other methods

getTrans 109

Details

The following genetic codes are described here. The number preceding each code corresponds to
numcode.

1 standard

2 vertebrate.mitochondrial

3 yeast.mitochondrial

4 protozoan.mitochondrial+mycoplasma

5 invertebrate.mitochondrial

6 ciliate+dasycladaceal

9 echinoderm+flatworm.mitochondrial

10 euplotid

11 bacterial+plantplastid

12 alternativeyeast

13 ascidian.mitochondrial

14 alternativeflatworm.mitochondrial

15 blepharism

16 chlorophycean.mitochondrial

21 trematode.mitochondrial

22 scenedesmus.mitochondrial

23 hraustochytrium.mitochondria

Value

For a single sequence an object of class character containing the characters of the sequence, either
of length 1 when as.string is TRUE, or of the length of the sequence when as.string is FALSE.
For many sequences, a list of these.

Author(s)

D. Charif, J.R. Lobry, L. Palmeira

References

citation("seqinr")

See Also

SeqAcnucWeb, SeqFastadna, SeqFrag
The genetic codes are given in the object SEQINR.UTIL, a more human readable form is given by
the function tablecode. Use aaa to get the three-letter code for amino-acids.

110 getTrans

Examples

#
List all available methods for getTrans generic function:
#

methods(getTrans)
#
Toy CDS example invented by Leonor Palmeira:
#

toycds <- s2c("tctgagcaaataaatcgg")
getTrans(toycds) # should be c("S", "E", "Q", "I", "N", "R")

#
Toy CDS example with ambiguous bases:
#

toycds2 <- s2c("tcngarcarathaaycgn")
getTrans(toycds2) # should be c("X", "X", "X", "X", "X", "X")
getTrans(toycds2, ambiguous = TRUE) # should be c("S", "E", "Q", "I", "N", "R")
getTrans(toycds2, ambiguous = TRUE, numcode = 2) # should be c("S", "E", "Q", "X", "N", "R")

#
Real CDS example:
#
realcds <- read.fasta(file = system.file("sequences/malM.fasta", package ="seqinr"))[[1]]
getTrans(realcds)

Biologically correct, only one stop codon at the end
getTrans(realcds, frame = 3, sens = "R", numcode = 6)

Biologically meaningless, note the in-frame stop codons

Read from an alignment as suggested by Dr. H. Suzuki
fasta.res <- read.alignment(file = system.file("sequences/Anouk.fasta", package = "seqinr"),
format = "fasta")

AA1 <- seqinr::getTrans(s2c(fasta.res$seq[[1]]))
AA2 <- seqinr::translate(s2c(fasta.res$seq[[1]]))
identical(AA1, AA2)

AA1 <- lapply(fasta.res$seq, function(x) seqinr::getTrans(s2c(x)))
AA2 <- lapply(fasta.res$seq, function(x) seqinr::translate(s2c(x)))
identical(AA1, AA2)

#
Complex transsplicing operations, the correct frame and the correct
genetic code are automatically used for translation into protein for
sequences coming from an ACNUC server:
#
Not run:

Need internet connection.
Translation of the following EMBL entry:
#
FT CDS join(complement(153944..154157),complement(153727..153866),
FT complement(152185..153037),138523..138735,138795..138955)
FT /codon_start=1
choosebank("emblTP")
trans <- query("trans", "N=AE003734.PE35")

getType 111

getTrans(trans$req[[1]])

End(Not run)

getType To get available subsequence types in an opened ACNUC database

Description

This function returns all subsequence types (e.g. CDS, TRNA) present in an opened ACNUC
database, using default database if no socket is provided.

Usage

getType(socket = autosocket())

Arguments

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

Value

a list containing a short description for each subsequence type.

Author(s)

D. Charif, J.R. Lobry

References

citation("seqinr")

See Also

choosebank, query

Examples

Not run:
Need internet connection

choosebank("emblTP")
getType()

End(Not run)

112 gfrag

gfrag Extract sequence identified by name or by number from an ACNUC
server

Description

Get length characters from sequence identified by name or by number starting from position start
(counted from 1).

Usage

gfrag(what, start, length, idby = c("name", "number"), socket = autosocket())

Arguments

what A sequence name or number

start Start position from 1

length Number of requested characters (answer may be shorter)

idby Is the sequence identified by name or number? Default to name

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

Value

A string of characters with at most length characters (may be shorter than asked for). NA is
returned and a warning is issued in case of problem (non existent sequence for instance).

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query

https://doua.prabi.fr/databases/acnuc.html

ghelp 113

Examples

Not run: # Need internet connection
choosebank("emblTP")
gfrag("LMFLCHR36", start = 1, length = 3529852) -> myseq
stopifnot(nchar(myseq) == 3529852)
closebank()

End(Not run)

ghelp Get help from an ACNUC server

Description

Reads one item of information in specified help file from an ACNUC server. The are differences
between ACNUC clients so that this help could be confusing. However, the query language is
common to all clients so that the most recent documentation is most likely here.

Usage

ghelp(item = c("GENERAL", "SELECT", "SPECIES", "KEYWORD"),
file = c("HELP", "HELP_WIN"), socket = autosocket(), catresult = TRUE)

Arguments

item the name of the desired help item

file the name of the help file on server side.

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

catresult logical. If TRUE output is redirected to the console.

Value

A vector of string which is returned invisibly and "cated" to the console by default.

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

https://doua.prabi.fr/databases/acnuc.html

114 gs500liz

See Also

choosebank, query

Examples

Not run:
Need internet connection
choosebank("emblTP")
ghelp()
ghelp("SELECT")
To get info about current database:
ghelp("CONT")

End(Not run)

gs500liz GS500LIZ size standards

Description

GS500LIZ is an internal size standard often used in capillary electrophoresis. It contains 16 frag-
ments ranging in size from 35 to 500 bp. Note that they are not all used for calibration : fragments
at 250 and 340 bp may migrate anomalously (most likey because of secondary structure formation).

Usage

data(gs500liz)

Format

A list with 3 components.

liz a vector of 16 values for the fragment sizes in bp.

mask1 a vector of 16 logicals to remove fragments whose migration may be anomalous (250 and
340 bp).

mask2 a vector of 16 logicals to remove extreme fragments (35, 50, 490, 500 bp) so that the
resulting fragments are in the 75-450 bp range.

Examples

data(gs500liz)
op <- par(no.readonly = TRUE)
par(lend = "butt", mar = c(5,0,4,0)+0.1)
x <- gs500liz$liz
n <- length(x)
y <- rep(1, n)
plot(x, y, type = "h", yaxt = "n", xlab = "Fragment size [bp]",

main = "GS500LIZ size standard", lwd = 2)

identifiler 115

x1 <- x[!gs500liz$mask1]
segments(x1, 0, x1, 1, col = "red", lwd = 2)
x2 <- x[!gs500liz$mask2]
segments(x2, 0, x2, 1, col = "blue", lwd = 2)
col <- rep("black", n)
col[!gs500liz$mask1] <- "red"
col[!gs500liz$mask2] <- "blue"
text(x,1.05,paste(x, "bp"), srt = 90, col = col)
legend("top", inset = 0.1, legend = c("regular", "imprecise (mask1)", "extreme (mask2)"),

lwd = 2, col = c("black","red","blue"))
par(op)

identifiler Identifiler allele names

Description

Names of the alleles in the Applied Biosystem identifiler allelic ladder.

Usage

data(identifiler)

Format

A list with 4 components for the four fluorochromes.

FAM a list of 4 loci

VIC a list of 5 loci

NED a list of 4 loci

PET a list of 3 loci

Examples

data(identifiler)
op <- par(no.readonly = TRUE)
par(mar = c(3,8,4,2)+0.1)
allcount <- unlist(lapply(identifiler, function(x) lapply(x, length)))
barplot(allcount[order(allcount)], horiz = TRUE, las = 1,
main = "Allele count per locus", col = "lightblue")
par(op)

116 isenum

isenum Get the ACNUC number of a sequence from its name or accession
number

Description

Gives the ACNUC number of a sequence in the number element of the returned list. More informa-
tions are returned for subsequences corresponding to coding sequences.

Usage

isenum(what, idby = c("name", "access"), socket = autosocket())
isn(what, ...)
getNumber.socket(socket, name)
getAttributsocket(socket, name)

Arguments

what a sequence name or a sequence accession number

idby is the sequence identified by name or by accession number? Default to name

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

... arguments passed to isenum.

name a sequence name.

Value

A list whith the following 6 components:

number numeric. The ACNUC number of the sequence.

length numeric. The length of the sequence.

frame numeric. The reading frame (0, 1, or 2) of the sequence for CDS.

gencode numeric. ACNUC’s genetic code (0 means universal) of the sequence for CDS.

ncbigc numeric. NCBI’s genetic code (0 means universal) of the sequence for CDS.
otheraccessmatches

logical. If TRUE it means that several sequences are attached to the given acces-
sion nunmber, and that only the ACNUC number of the first attached sequence
is returned in the number component of the list.

isn(what, ...) is a shortcut for isenum(what, ...)$number.

As from seqinR 1.1-3 getNumber.socket and getAttributsocket are deprecated (a warning is
issued).

JLO 117

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query

Examples

Not run:
Need internet connection
choosebank("emblTP")
isenum("LMFLCHR36")
isn("LMFLCHR36")
stopifnot(isn("LMFLCHR36") == 13682678)
Example with CDS:
isenum("AB004237")

End(Not run)

JLO Forensic Genetic Profile Raw Data

Description

This is an example of raw data for a human STR genetic profile at 16 loci (viz. D8S1179, D21S11,
D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51,
Amelogenin, D5S818, FGA) which are commonly used in forensic sciences for individual identifi-
cations.

Usage

data(JLO)

Format

A list with 3 components.

Header a list corresponding to the header in the ABIF file

Directory a data.frame corresponding to the Directory in the ABIF file

Data a list with all raw data in the ABIF file.

https://doua.prabi.fr/databases/acnuc.html

118 kaks

Details

This dataset is the expected result when reading the file 2_FAC321_0000205983_B02_004.fsa with
the function read.abif. This dataset is used for the quality check of this function.

Author(s)

J.R. Lobry

Source

The DNA source is from the author so that there are no privacy concern. Data were kindly provided
by the INPS (Institut National de Police Scientifique) which is the national forensic sciences insti-
tute in France. Experiments were done at the LPS (Laboratoire de Police Scientifique de Lyon) in
2008.

References

citation("seqinr")

Anonymous (2006) Applied Biosystem Genetic Analysis Data File Format. Available at https://
www.thermofisher.com/de/de/home/brands/applied-biosystems.html. Last visited on 03-
NOV-2008.

See Also

function read.abif to import files in ABIF format, data gs500liz for internal size standards, data
ECH for the corresponding allelic ladder, data identifiler for allele names in the allelic ladder.

Examples

data(JLO)

kaks Ka and Ks, also known as dn and ds, computation

Description

Ks and Ka are, respectively, the number of substitutions per synonymous site and per non-synonymous
site between two protein-coding genes. They are also denoted as ds and dn in the literature. The
ratio of nonsynonymous (Ka) to synonymous (Ks) nucleotide substitution rates is an indicator of
selective pressures on genes. A ratio significantly greater than 1 indicates positive selective pres-
sure. A ratio around 1 indicates either neutral evolution at the protein level or an averaging of sites
under positive and negative selective pressures. A ratio less than 1 indicates pressures to conserve
protein sequence (i.e. purifying selection). This function estimates the Ka and Ks values for a set
of aligned sequences using the method published by Li (1993) and gives the associated variance
matrix.

https://www.thermofisher.com/de/de/home/brands/applied-biosystems.html
https://www.thermofisher.com/de/de/home/brands/applied-biosystems.html

kaks 119

Usage

kaks(x, verbose = FALSE, debug = FALSE, forceUpperCase = TRUE, rmgap = TRUE)

Arguments

x An object of class alignment, obtained for instance by importing into R the data
from an alignment file with the read.alignment function. This is typically a
set of coding sequences aligned at the protein level, see reverse.align.

verbose If TRUE add to the results the value of L0, L2, L4 (respectively the frequency
of non-synonymous sites, of 2-fold synonymous sites, of 4-fold synonymous
sites), A0, A2, A4 (respectively the number of transitional changes at non-
synonymous, 2-fold, and 4-fold synonymous sites) and B0, B2, B4 (respec-
tively the number of transversional changes at non-synonymous, 2-fold, and
4-fold synonymous sites).

debug If TRUE turns debug mode on.

forceUpperCase If TRUE, the default value, all character in sequences are forced to the upper
case if at least one ’a’, ’c’, ’g’, or ’t’ is found in the sequences. Turning it to
FALSE if the sequences are already in upper case will save time.

rmgap If TRUE all positions with at least one gap are removed. If FALSE only posi-
tions with nothing else than gaps are removed.

Value

ks matrix of Ks values

ka matrix of Ka values

vks variance matrix of Ks

vka variance matrix of Ka

Note

Computing Ka and Ks makes sense for coding sequences that have been aligned at the amino-acid
level before retro-translating the alignement at the nucleic acid level to ensure that sequences are
compared on a codon-by-codon basis. Function reverse.align may help for this.

As from seqinR 2.0-3, when there is at least one non ACGT base in a codon, this codon is considered
as a gap-codon (---). This makes the computation more robust with respect to alignments with out-
of-frame gaps, see example section.

Gap-codons (---) are not used for computations.

When the alignment does not contain enough information (i.e. close to saturation), the Ka and Ks
values are forced to 10 (more exactly to 9.999999).

Negative values indicate that Ka and Ks can not be computed.

According to Li (1993) and Pamilo and Bianchi (1993), the rate of synonymous substitutions Ks is
computed as: Ks = (L2.A2 + L4.A4) / (L2 + L4) + B4

and the rate of non-synonymous substitutions Ka is computed as: Ka = A0 + (L0.B0 + L2.B2) / (L0
+ L2)

120 kaks

Author(s)

D. Charif, J.R. Lobry

References

Li, W.-H., Wu, C.-I., Luo, C.-C. (1985) A new method for estimating synonymous and nonsynony-
mous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon
changes. Mol. Biol. Evol, 2:150-174

Li, W.-H. (1993) Unbiased estimation of the rates of synonymous and nonsynonymous substitution.
J. Mol. Evol., 36:96-99.

Pamilo, P., Bianchi, N.O. (1993) Evolution of the Zfx and Zfy genes: Rates and interdependence
between genes. Mol. Biol. Evol, 10:271-281

Hurst, L.D. (2002) The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet.,
18:486-486.

The C programm implementing this method was provided by Manolo Gouy. More info is needed
here to trace back the original C source so as to credit correct source. The original FORTRAN-77
code by Chung-I Wu modified by Ken Wolfe is available here: http://wolfe.ucd.ie/lab/pub/
li93/ (last visited 2023-12-08).

For a more recent discussion about the estimation of Ka and Ks see:

Tzeng, Y.H., Pan, R., Li, W.-H. (2004) Comparison of three methods for estimating rates of syn-
onymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol, 21:2290-2298.

The method implemented here is noted LWL85 in the above paper.

The cite this package in a publication, as any R package, try something as citation("seqinr") at
your R prompt.

See Also

read.alignment to import alignments from files, reverse.align to align CDS at the aa level,
kaksTorture for test on one-codon CDS.

Examples

#
Simple Toy example:
#
s <- read.alignment(file = system.file("sequences/test.phylip", package = "seqinr"),
format = "phylip")
kaks(s)
#

http://wolfe.ucd.ie/lab/pub/li93/
http://wolfe.ucd.ie/lab/pub/li93/

kaksTorture 121

Check numeric results on an simple test example:
#
data(AnoukResult)
Anouk <- read.alignment(file = system.file("sequences/Anouk.fasta", package = "seqinr"),
format = "fasta")
if(! all.equal(kaks(Anouk), AnoukResult)) {

warning("Poor numeric results with respect to AnoukResult standard")
} else {

print("Results are consistent with AnoukResult standard")
}

#
As from seqinR 2.0-3 the following alignment with out-of-frame gaps
should return a zero Ka value.
#
>Reference
ATGTGGTCGAGATATCGAAAGCTAGGGATATCGATTATATATAGCAAGATCGATAGAGGA
TCGATGATCGATCGGGATCGACAGCTG
>With out-of-frame gaps
AT-TGGTCCAGGTATCGTAAGCTAGGGATATCGATTATATATAGCAAGATCGATAGGGGA
TCGATGATCGATCGGGA--GACAGCTG
#
This test example provided by Darren Obbard is now used as a routine check:
#
Darren <- read.alignment(file = system.file("sequences/DarrenObbard.fasta", package = "seqinr"),
format = "fasta")
stopifnot(all.equal(kaks(Darren)$ka[1], 0))

#
As from seqinR 3.4-0, non-finite values should never be returned for
Ka and Ks even for small sequences. The following test checks that this
is true for an alignement of the 64 codons, so that we compute Ka and
Ks for all possible pairs of codons.
#
wrd <- as.alignment(nb = 64, nam = words(), seq = words())
res <- kaks(wrd)
if(any(!is.finite(res$ka))) stop("Non finite value returned for Ka")
if(any(!is.finite(res$ks))) stop("Non finite value returned for Ks")

kaksTorture Expected numeric results for Ka and Ks in extreme cases

Description

This data set is what should be obtained when runing kaks() on the test file kaks-torture.fasta in
the sequences directory of the seqinR package.

Usage

data(kaksTorture)

122 knowndbs

Format

A list with 4 components of class dist.

ka Ka

ks Ks

vka variance for Ka

vks variance for Ks

Source

See comments in kaks-torture.fasta for R code used to produce it.

References

citation("seqinr")

Examples

data(kaksTorture)
kaks.torture <- read.alignment(file = system.file("sequences/kaks-torture.fasta",

package = "seqinr"), format = "fasta")
#
Failed on windows :
#
stopifnot(identical(kaksTorture, kaks(kaks.torture)))
stopifnot(identical(kaksTorture, kaks(kaks.torture, rmgap = FALSE)))

knowndbs Description of databases known by an ACNUC server

Description

Returns, for each database known by the server, its name (a valid value for the bank argument of
choosebank), availability (off means temporarily unavailable), and description.

Usage

knowndbs(tag = c(NA, "TP", "TEST", "DEV"), socket = autosocket())
kdb(tag = c(NA, "TP", "TEST", "DEV"), socket = autosocket())

Arguments

tag default to NA, see details

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

knowndbs 123

Details

When the optional tag argument is used, only databases tagged with the given string are listed;
when this argument is NA (by default), only untagged databases are listed. The tag argument thus
allows to identify series of special purpose (tagged) databases, in addition to default (untagged)
ones.

Value

A dataframe with 3 columns:

bank string. Valid bank values known by the ACNUC server

status string. "on" means available, "off" means temporarily unavailable

info string. short description of the database

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

The full list of untagged and tagged databases is here : https://doua.prabi.fr/databases/
acnuc/banques_raa.php.

See Also

choosebank when called without arguments.

Examples

Not run:
Need internet connection
choosebank("emblTP")
kdb()
closebank()

End(Not run)

https://doua.prabi.fr/databases/acnuc.html
https://doua.prabi.fr/databases/acnuc/banques_raa.php
https://doua.prabi.fr/databases/acnuc/banques_raa.php

124 m16j

lseqinr To see what’s inside the package seqinr

Description

This is just a shortcut for ls("package:seqinr")

Usage

lseqinr()

Value

The list of objects in the package seqinr

Note

Use library(help=seqinr) to have a summary of the functionc available in the package.

Author(s)

J.R. Lobry

References

citation("seqinr")

Examples

lseqinr()

m16j Fragment of the E. coli chromosome

Description

A fragment of the E. coli chromosome that was used in Lobry (1996) to show the change in GC
skew at the origin of replication (i.e. the chirochore structure of bacterial chromosomes)

Usage

data(m16j)

Format

A string of 1,616,539 characters

m16j 125

Details

The sequence used in Lobry (1996) was a 1,616,174 bp fragment obtained from the concatenation
of nine overlapping sequences (U18997, U00039, L10328, M87049, L19201, U00006, U14003,
D10483, D26562. Ambiguities have been resolved since then and its was a chimeric sequence from
K-12 strains MG1655 and W3110, the sequence used here is from strain MG1655 only (Blattner et
al. 1997).

The chirochore structure of bacterial genomes is illustrated below by a screenshot of a part of figure
1 from Lobry (1996). See the example section to reproduce this figure.

Source

Escherichia coli K-12 strain MG1655. Fragment from U00096 from the EBI Genome Reviews.
Acnuc Release 7. Last Updated: Feb 26, 2007. XX DT 18-FEB-2004 (Rel. .1, Created) DT
09-JAN-2007 (Rel. 65, Last updated, Version 70) XX

References

Lobry, J.R. (1996) Asymmetric substitution patterns in the two DNA strands of bacteria. Molecular
Biology and Evolution, 13:660-665.

F.R. Blattner, G. Plunkett III, C.A. Bloch, N.T. Perna, V. Burland, M. Rilley, J. Collado-Vides, J.D.
Glasner, C.K. Rode, G.F. Mayhew, J. Gregor, N.W. Davis, H.A. Kirkpatrick, M.A. Goeden, D.J.
Rose, B. Mau, and Y. Shao. (1997) The complete genome sequence of Escherichia coli K-12. Sci-
ence, 277:1453-1462

citation("seqinr")

Examples

#
Load data:
#
data(m16j)
#
Define a function to compute the GC skew:
#
gcskew <- function(x) {

if (!is.character(x) || length(x) > 1)
stop("single string expected")

126 mase

tmp <- tolower(s2c(x))
nC <- sum(tmp == "c")
nG <- sum(tmp == "g")
if (nC + nG == 0)
return(NA)
return(100 * (nC - nG)/(nC + nG))

}
#
Moving window along the sequence:
#
step <- 10000
wsize <- 10000
starts <- seq(from = 1, to = nchar(m16j), by = step)
starts <- starts[-length(starts)]
n <- length(starts)
result <- numeric(n)
for (i in seq_len(n)) {

result[i] <- gcskew(substr(m16j, starts[i], starts[i] + wsize - 1))
}
#
Plot the result:
#
xx <- starts/1000
yy <- result
n <- length(result)
hline <- 0
plot(yy ~ xx, type = "n", axes = FALSE, ann = FALSE, ylim = c(-10, 10))
polygon(c(xx[1], xx, xx[n]), c(min(yy), yy, min(yy)), col = "black", border = NA)
usr <- par("usr")
rect(usr[1], usr[3], usr[2], hline, col = "white", border = NA)
lines(xx, yy)
abline(h = hline)
box()
axis(1, at = seq(0, 1600, by = 200))
axis(2, las = 1)
title(xlab = "position (Kbp)", ylab = "(C-G)/(C+G) [percent]",
main = expression(paste("GC skew in ", italic(Escherichia~coli))))

arrows(860, 5.5, 720, 0.5, length = 0.1, lwd = 2)
text(860, 5.5, "origin of replication", pos = 4)

mase Example of results obtained after a call to read.alignment

Description

This data set gives an example of a protein alignment obtained after a call to the function read.alignment
on an alignment file in "mase" format.

Usage

data(mase)

modifylist 127

Format

A List of class alignment

Source

http://www.clustal.org/

References

Faullcner.D.V. and Jurka,J. (1988) Multiple sequences alignment editor(MASE). Trends Biochem.
Sa., 13, 321-322.

modifylist Modification of an ACNUC list

Description

This function modifies a previously existing ACNUC list by selecting sequences either by length,
either by date, either for the presence of a given string in annotations.

Usage

modifylist(listname, modlistname = listname, operation,
type = c("length", "date", "scan"), socket = autosocket(),
virtual = FALSE, verbose = FALSE)

Arguments

listname the name of the ACNUC list to modify

modlistname the name of the modified ACNUC list. Default is to use the same list name so
that previous list is lost.

operation a string of character describing the operation to be done, see details.

type the type of operation, could be one of "length", "date", "scan". Default is
"length"

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

virtual if TRUE, no attempt is made to retrieve the information about all the elements
of the list. In this case, the req component of the list is set to NA.

verbose logical, if TRUE mode verbose is on

128 modifylist

Details

Example of possible values for the argument operation:

length as in "> 10000" or "< 500"

date as in "> 1/jul/2001" or "< 30/AUG/98"

scan specify the string to be searched for

Character < is to be understood as <= and > likewise.

Value

The result is directly assigned to the object modlistname in the user workspace. This is an objet of
class qaw, a list with the following 6 components:

call the original call

name the ACNUC list name

nelem the number of elements (for instance sequences) in the ACNUC list

typelist the type of the elements of the list. Could be SQ for a list of sequence names,
KW for a list of keywords, SP for a list of species names.

req a list of sequence names that fit the required criteria or NA when called with
parameter virtual is TRUE

socket the socket connection that was used

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query and prepgetannots to select the annotation lines for scan.

Examples

Not run: # Need internet connection
choosebank("emblTP")
mylist <- query("mylist", "sp=felis catus et t=cds", virtual=TRUE)
mylist$nelem # 603 sequences
stopifnot(mylist$nelem == 603)

select sequences with at least 1000 bp:
mylist <- modifylist("mylist", operation = ">1000", virtual = TRUE)
mylist$nelem # now, only 132 sequences
stopifnot(mylist$nelem == 132)

https://doua.prabi.fr/databases/acnuc.html

move 129

scan for "felis" in annotations:
mylist <- modifylist("mylist", op = "felis", type = "scan", virtual = TRUE)
mylist$nelem # now, only 33 sequences
stopifnot(mylist$nelem == 33)

modify by date:
mylist <- modifylist("mylist", op = "> 1/jul/2001", type = "date", virtual = TRUE)
mylist$nelem # now, only 15 sequences
stopifnot(mylist$nelem == 15)

Summary of current ACNUC lists, one list called MYLIST on sever:
sapply(alr()$rank, getliststate)
closebank()

End(Not run)

move Rename an R object

Description

Rename object from into to.

Usage

move(from, to)
mv(from, to)

Arguments

from an R object name

to the new R object name

Value

none.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

swap

130 msf

Examples

#
Example in a new empty environment:
#
local({

zefplock <- pi
print(ls())
print(zefplock)
mv(zefplock, toto)
print(ls())
print(toto)
stopifnot(identical(toto, pi)) # Sanity check

})
#
Check that self-affectation is possible:
#
mv(mv, mv) # force self-affectation for the function itself
mv(mv, mv) # OK, function mv() still exists

msf Example of results obtained after a call to read.alignment

Description

This data set gives an example of a protein alignment obtained after a call to the function read.alignment
on an alignment file in "msf" format.

Usage

data(msf)

Format

A List of class alignment

Source

http://www.ebi.ac.uk/2can/tutorials/formats.html#MSF/

n2s 131

n2s function to convert the numeric encoding of a DNA sequence into a
vector of characters

Description

By default, if no ‘levels’ arguments is provided, this function will just transform your vector of
integer into a DNA sequence according to the lexical order: 0 -> "a", 1 -> "c", 2 -> "g", 3 -> "t",
others -> NA.

Usage

n2s(nseq, levels = c("a", "c", "g", "t"), base4 = TRUE)

Arguments

nseq A vector of integers

levels the translation vector

base4 when this logical is true, the numerical encoding of levels starts at 0, when it
is false the numerical encoding of levels starts at 1.

Value

a vector of characters

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

s2n

Examples

##example of the default behaviour:
nseq <- sample(x = 0:3, size = 100, replace = TRUE)
n2s(nseq)
Show what happens with out-of-range and NA values:
nseq[1] <- NA
nseq[2] <- 777
n2s(nseq)[1:10]
How to get an RNA instead:
n2s(nseq, levels = c("a", "c", "g", "u"))

132 oriloc

oriloc Prediction of origin and terminus of replication in bacteria.

Description

This program finds the putative origin and terminus of replication in procaryotic genomes. The
program discriminates between codon positions.

Usage

oriloc(seq.fasta = system.file("sequences/ct.fasta.gz", package = "seqinr"),
g2.coord = system.file("sequences/ct.predict", package = "seqinr"),
glimmer.version = 3,

oldoriloc = FALSE, gbk = NULL, clean.tmp.files = TRUE, rot = 0)

Arguments

seq.fasta Character: the name of a file which contains the DNA sequence of a bacterial
chromosome in fasta format. The default value, system.file("sequences/ct.fasta.gz",
package ="seqinr") is the fasta file ct.fasta.gz. This is the file for the com-
plete genome sequence of Chlamydia trachomatis that was used in Frank and
Lobry (2000). You can replace this by something like seq.fasta = "myseq.fasta"
to work with your own data if the file myseq.fasta is present in the current
working directory (see getwd), or give a full path access to the sequence file
(see file.choose).

g2.coord Character: the name of file which contains the output of glimmer program
(*.predict in glimmer version 3)

glimmer.version

Numeric: glimmer version used, could be 2 or 3

oldoriloc Logical: to be set at TRUE to reproduce the (deprecated) outputs of previous
(publication date: 2000) version of the oriloc program.

gbk Character: the URL of a file in GenBank format. When provided oriloc use
as input a single GenBank file instead of the seq.fasta and the g2.coord. A
local temporary copy of the GenBank file is made with download.file if gbk
starts with http:// or ftp:// or file:// and whith file.copy otherwise. The
local copy is then used as input for gb2fasta and gbk2g2 to produce a fasta file
and a glimmer-like (version 2) file, respectively, to be used by oriloc instead of
seq.fasta and g2.coord .

clean.tmp.files

Logical: if TRUE temporary files generated when working with a GenBank file
are removed.

rot Integer, with zero default value, used to permute circurlarly the genome.

oriloc 133

Details

The method builds on the fact that there are compositional asymmetries between the leading and
the lagging strand for replication. The programs works only with third codon positions so as to
increase the signal/noise ratio. To discriminate between codon positions, the program use as input
either an annotated genbank file, either a fasta file and a glimmer2.0 (or glimmer3.0) output file.

Value

A data.frame with seven columns: g2num for the CDS number in the g2.coord file, start.kb for
the start position of CDS expressed in Kb (this is the position of the first occurence of a nucleotide
in a CDS regardless of its orientation), end.kb for the last position of a CDS, CDS.excess for the
DNA walk for gene orientation (+1 for a CDS in the direct strand, -1 for a CDS in the reverse
strand) cummulated over genes, skew for the cummulated composite skew in third codon positions,
x for the cummulated T - A skew in third codon position, y for the cummulated C - G skew in third
codon positions.

Note

The method works only for genomes having a single origin of replication from which the replication
is bidirectional. To detect the composition changes, a DNA-walk is performed. In a 2-dimensional
DNA walk, a C in the sequence corresponds to the movement in the positive y-direction and G
to a movement in the negative y-direction. T and A are mapped by analogous steps along the x-
axis. When there is a strand asymmetry, this will form a trajectory that turns at the origin and
terminus of replication. Each step is the sum of nucleotides in a gene in third codon positions. Then
orthogonal regression is used to find a line through this trajectory. Each point in the trajectory will
have a corresponding point on the line, and the coordinates of each are calculated. Thereafter, the
distances from each of these points to the origin (of the plane), are calculated. These distances
will represent a form of cumulative skew. This permets us to make a plot with the gene position
(gene number, start or end position) on the x-axis and the cumulative skew (distance) at the y-axis.
Depending on where the sequence starts, such a plot will display one or two peaks. Positive peak
means origin, and negative means terminus. In the case of only one peak, the sequence starts at the
origin or terminus site.

Author(s)

J.R. Lobry, A.C. Frank

References

More illustrated explanations to help understand oriloc outputs are available there: https://pbil.
univ-lyon1.fr/software/Oriloc/howto.html.

Examples of oriloc outputs on real sequence data are there: https://pbil.univ-lyon1.fr/
software/Oriloc/index.html.

The original paper for oriloc:
Frank, A.C., Lobry, J.R. (2000) Oriloc: prediction of replication boundaries in unannotated bacte-
rial chromosomes. Bioinformatics, 16:566-567.

https://pbil.univ-lyon1.fr/software/Oriloc/howto.html
https://pbil.univ-lyon1.fr/software/Oriloc/howto.html
https://pbil.univ-lyon1.fr/software/Oriloc/index.html
https://pbil.univ-lyon1.fr/software/Oriloc/index.html

134 oriloc

doi:10.1093/bioinformatics/16.6.560

A simple informal introduction to DNA-walks:
Lobry, J.R. (1999) Genomic landscapes. Microbiology Today, 26:164-165.
https://seqinr.r-forge.r-project.org/MicrTod_1999_26_164.pdf

An early and somewhat historical application of DNA-walks:
Lobry, J.R. (1996) A simple vectorial representation of DNA sequences for the detection of repli-
cation origins in bacteria. Biochimie, 78:323-326.

Glimmer, a very efficient open source software for the prediction of CDS from scratch in prokary-
otic genome, is decribed at http://ccb.jhu.edu/software/glimmer/index.shtml.
For a description of Glimmer 1.0 and 2.0 see:

Delcher, A.L., Harmon, D., Kasif, S., White, O., Salzberg, S.L. (1999) Improved microbial gene
identification with GLIMMER, Nucleic Acids Research, 27:4636-4641.

Salzberg, S., Delcher, A., Kasif, S., White, O. (1998) Microbial gene identification using interpo-
lated Markov models, Nucleic Acids Research, 26:544-548.

citation("seqinr")

See Also

draw.oriloc, rearranged.oriloc

Examples

Not run:
#
A little bit too long for routine checks because oriloc() is already
called in draw.oriloc.Rd documentation file. Try example(draw.oriloc)
instead, or copy/paste the following code:
#
out <- oriloc()
plot(outst, outsk, type = "l", xlab = "Map position in Kb",

ylab = "Cumulated composite skew",
main = expression(italic(Chlamydia~~trachomatis)~~complete~~genome))

#
Example with a single GenBank file:
#
out2 <- oriloc(gbk="https://pbil.univ-lyon1.fr/datasets/seqinr/data/ct.gbk")
draw.oriloc(out2)
#
(some warnings are generated because of join in features and a gene that
wrap around the genome)
#

https://doi.org/10.1093/bioinformatics/16.6.560
https://seqinr.r-forge.r-project.org/MicrTod_1999_26_164.pdf
http://ccb.jhu.edu/software/glimmer/index.shtml

parser.socket 135

End(Not run)

parser.socket Utility function to parse answers from an ACNUC server

Description

Answers from server looks like : "code=0&lrank=2&count=150513&type=SQ&locus=F".

Usage

parser.socket(onelinefromserver, verbose = FALSE)

Arguments

onelinefromserver

a string

verbose logical, if TRUE mode verbose is on

Value

A vector of mode character or NULL if onelinefromserver is NULL or if its length is 0.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

choosebank, query

Examples

stopifnot(all(parser.socket("code=0&lrank=2&count=150513&type=SQ&locus=F")
== c("0", "2", "150513", "SQ", "F")))

136 peakabif

peakabif Extraction of Peak locations, Heights and Surfaces from ABIF data

Description

Simple peak location for data imported with the read.abif function using cubic spline interpola-
tion.

Usage

peakabif(abifdata,
chanel,
npeak,
thres = 400/yscale,
fig = TRUE,
chanel.names = c(1:4,105),
DATA = paste("DATA", chanel.names[chanel], sep = "."),
tmin = 1/tscale,
tmax = abifdata$Data[["SCAN.1"]]/tscale,
tscale = 1000,
yscale = 1000,
irange = (tmin*tscale):(tmax*tscale),
y = abifdata$Data[[DATA]][irange]/yscale,
method = "monoH.FC",
maxrfu = 1000,
...)

Arguments

abifdata the result returned by read.abif

chanel the dye number
npeak the expected number of peaks
thres scaled threshold value
fig logical: should localized peaks be plotted
chanel.names numbers extensions used for the DATA
DATA names of the DATA components
tmin scaled starting time for the time axis
tmax scaled ending time for the time axis
tscale scale factor for the time axis
yscale scale factor for the y-axis (RFU)
irange indices of data to be plotted
y values used for the y-axis
method method to be used by splinefun

maxrfu argument passed to baselineabif

... arguments forwarded to plot

permutation 137

Value

Returns invisibly a list with the unscaled values for the locations of peaks, heights of peaks and
surfaces of peaks and baseline estimate. The peak location are in datapoint units, that is an integer
starting at 1 for the first experimental point, 2 for the second experimental point, etc. However, due
to interpolation between points the estimated peak location is usually not an integer.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

function read.abif to import files in ABIF format, plotabif to plot them, data gs500liz for
internal size standards, data identifiler for allele names in the allelic ladder, data JLO for an
example of an individual sample file, data ECH for an example of an allelic lader.

Examples

data(JLO)
JLO.maxis <- peakabif(JLO, 5, npeak = 14, tmin = 2.7, thres = 0.1)$maxis

permutation Sequence permutation according to several different models

Description

Generates a random permutation of a given sequence, according to a given model. Available models
are : base, position, codon, syncodon.

Usage

permutation(sequence,modele='base',frame=0,
replace=FALSE,prot=FALSE,numcode=1,ucoweight = NULL)

Arguments

sequence A nucleic acids sequence

modele A string of characters describing the model chosen for the random generation

frame Only active for the position, codon, syncodon models: starting position of
CDS as in splitseq

replace This option is not active for the syncodon model: if TRUE, sampling is done with
replacement

138 permutation

prot Only available for the codon model: if TRUE, the first and last codons are pre-
served, and only intern codons are shuffled

numcode Only available for the syncodon model: the genetic code number as in translate.

ucoweight A list of weights containing the desired codon usage bias as generated by ucoweight.
If none is specified, the codon usage of the given sequence is used.

Details

The base model allows for random sequence generation by shuffling (with/without replacement) of
all bases in the sequence.

The position model allows for random sequence generation by shuffling (with/without replace-
ment) of bases within their position in the codon (bases in position I, II or III stay in position I, II
or III in the new sequence.

The codon model allows for random sequence generation by shuffling (with/without replacement)
of codons.

The syncodon model allows for random sequence generation by shuffling (with/without replace-
ment) of synonymous codons.

Value

a sequence generated from the original one by a given model

Author(s)

L. Palmeira

References

citation("seqinr")

See Also

synsequence

Examples

data(ec999)
sequence=ec999[1][[1]]

new=permutation(sequence,modele='base')
identical(all.equal(count(new,1),count(sequence,1)),TRUE)

new=permutation(sequence,modele='position')
identical(all.equal(GC(new),GC(sequence)),TRUE)
identical(all.equal(GC2(new),GC2(sequence)),TRUE)
identical(all.equal(GC3(new),GC3(sequence)),TRUE)

new=permutation(sequence,modele='codon')
identical(all.equal(uco(new),uco(sequence)),TRUE)

phylip 139

new=permutation(sequence,modele='syncodon',numcode=1)
identical(all.equal(translate(new),translate(sequence)),TRUE)

phylip Example of results obtained after a call to read.alignment

Description

This data set gives an example of a amino acids alignment obtained after a call to the function
read.alignment on an alignment file in "phylip" format.

Usage

data(phylip)

Format

A List of class alignment

Source

http://evolution.genetics.washington.edu/phylip.html

References

http://evolution.genetics.washington.edu/phylip.html

pK pK values for the side chain of charged amino acids from various
sources

Description

This compilation of pK values is from Joanna Kiraga (2008).

Usage

data(pK)

Format

A data frame with the seven charged amino-acid in row and six sources in column. The rownames
are the one-letter code for amino-acids.

140 pK

Source

Table 2 in Kiraga (2008).

References

Kiraga, J. (2008) Analysis and computer simulations of variability of isoelectric point of proteins
in the proteomes. PhD thesis, University of Wroclaw, Poland.

Bjellqvist, B., Hughes, G.J., Pasquali, Ch., Paquet, N., Ravier, F., Sanchez, J.Ch., Frutige,r S.,
Hochstrasser D. (1993) The focusing positions of polypeptides in immobilized pH gradients can be
predicted from their amino acid sequences. Electrophoresis, 14:1023-1031.

EMBOSS data were from release 5.0 and were still the same in release 6.6 https://emboss.
sourceforge.net/apps/release/6.6/emboss/apps/iep.html last visited 2016-06-03.

Murray, R.K., Granner, D.K., Rodwell, V.W. (2006) Harper’s illustrated Biochemistry. 27th edition.
Published by The McGraw-Hill Companies.

Sillero, A., Maldonado, A. (2006) Isoelectric point determination of proteins and other macro-
molecules: oscillating method. Comput Biol Med., 36:157-166.

Solomon, T.W.G. (1998) Fundamentals of Organic Chemistry, 5th edition. Published by Wiley.

Stryer L. (1999) Biochemia. czwarta edycja. Wydawnictwo Naukowe PWN.

citation("seqinr")

Examples

data(pK)
data(SEQINR.UTIL) # for N and C terminal pK values
prot <- s2c("ACDEFGHIKLMNPQRSTVWY")
compoAA <- table(factor(prot, levels = LETTERS))
nTermR <- which(LETTERS == prot[1])
cTermR <- which(LETTERS == prot[length(seq)])

computeCharge <- function(pH, compoAA, pK, nTermResidue, cTermResidue){
cter <- 10^(-SEQINR.UTIL$pk[cTermResidue,1]) /

(10^(-SEQINR.UTIL$pk[cTermResidue,1]) + 10^(-pH))
nter <- 10^(-pH) / (10^(-SEQINR.UTIL$pk[nTermResidue,2]) + 10^(-pH))
carg <- as.vector(compoAA['R'] * 10^(-pH) / (10^(-pK['R']) + 10^(-pH)))
chis <- as.vector(compoAA['H'] * 10^(-pH) / (10^(-pK['H']) + 10^(-pH)))
clys <- as.vector(compoAA['K'] * 10^(-pH) / (10^(-pK['K']) + 10^(-pH)))
casp <- as.vector(compoAA['D'] * 10^(-pK['D']) /(10^(-pK['D']) + 10^(-pH)))
cglu <- as.vector(compoAA['E'] * 10^(-pK['E']) / (10^(-pK['E']) + 10^(-pH)))
ccys <- as.vector(compoAA['C'] * 10^(-pK['C']) / (10^(-pK['C']) + 10^(-pH)))
ctyr <- as.vector(compoAA['Y'] * 10^(-pK['Y']) / (10^(-pK['Y']) + 10^(-pH)))
charge <- carg + clys + chis + nter - (casp + cglu + ctyr + ccys + cter)
return(charge)

}

pHseq <- seq(from = 0, to = 14, by = 0.1)
Bje <- pK$Bjellqvist
names(Bje) <- rownames(pK)
res <- computeCharge(pHseq, compoAA, Bje, nTermR, cTermR)

https://emboss.sourceforge.net/apps/release/6.6/emboss/apps/iep.html
https://emboss.sourceforge.net/apps/release/6.6/emboss/apps/iep.html

plot.SeqAcnucWeb 141

plot(pHseq, res, type = "l", ylab = "Charge", las = 1,
main = paste("Charge of protein\n",c2s(prot)),
xlab = "pH")

for(j in 2:ncol(pK)){
src <- pK[,j]
names(src) <- rownames(pK)
res <- computeCharge(pHseq, compoAA, src, nTermR, cTermR)
lines(pHseq, res, lty = j, col = rainbow(5)[j])

}

abline(h=0)
abline(v=computePI(prot))
legend("bottomleft", inset = 0.01, colnames(pK), lty = 1:6, col = c("black", rainbow(5)))

plot.SeqAcnucWeb To Plot Subsequences on the Parent Sequence

Description

This function plots all the type of subsequences on a parent sequence. Subsequences are represented
by colored rectangle on the parent sequence. For example, types could be CDS, TRNA, RRNA
In order to get all the types that are available for the selected database, use getType.

Usage

S3 method for class 'SeqAcnucWeb'
plot(x, types = getType()$sname, socket = autosocket(), ...)

Arguments

x A sequence of class SeqAcnucWeb
types The type of subsequences to plot. Default value is to consider all possible sub-

sequence types.
socket an object of class sockconn connecting to a remote ACNUC database (default

is a socket to the last opened database).
... not currently used

Value

An invisible list giving, for each subsequence, its position on the parent sequence.

Author(s)

D. Charif, J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

https://doua.prabi.fr/databases/acnuc.html

142 plotabif

See Also

getType, query

Examples

Not run:
Need internet connection
choosebank("emblTP")
mylist <- query("mylist", "AC=AB078009")
plot(mylist$req[[1]])

End(Not run)

plotabif Electrophoregram plot for ABIF data

Description

Simple chromatogram plot for data imported with the read.abif function.

Usage

plotabif(abifdata,
chanel = 1,
tmin = 1/tscale,
tmax = abifdata$Data[["SCAN.1"]]/tscale,
tscale = 1000,
yscale = 1000, type = "l", las = 1,
xlab = paste("Time", tscale, sep = "/"),
ylab = paste("RFU", yscale, sep = "/"),
irange = (tmin*tscale):(tmax*tscale),
x = irange/tscale,
xlim = c(tmin, tmax),
chanel.names = c(1:4,105),
DATA = paste("DATA", chanel.names[chanel], sep = "."),
y = abifdata$Data[[DATA]][irange]/yscale,
ylim = c(min(y), max(y)),
dyn = abifdata$Data[[paste("DyeN", chanel, sep = ".")]],
main = paste(deparse(substitute(abifdata)), chanel, dyn, sep = " ; "),
calibr = NULL,
ladder.bp = NULL,
allele.names = "identifiler",
ladder.lab = TRUE,
...)

plotabif 143

Arguments

abifdata the result returned by read.abif

chanel the dye number

tmin scaled starting time for the time axis

tmax scaled ending time for the time axis

tscale scale factor for the time axis

yscale scale factor for the y-axis (RFU)

type type of line drawing forwarded to plot

las orientation of axis labels forwarded to plot

xlab x-axis label forwarded to plot

ylab y-axis label forwarded to plot

irange indices of data to be plotted

x values used for the x-axis

xlim limits for the x-axis forwarded to plot

chanel.names numbers extensions used for the DATA

DATA names of the DATA components

y values used for the y-axis

ylim limits for the y-axis forwarded to plot

dyn dye name

main title for the plot forwarded to plot

calibr an optional calibration function to convert time into bp

ladder.bp an optional ladder scale in bp (calibr must be provided)

allele.names name of the dataset with allele names

ladder.lab logical: should allele names be added on plot

... arguments forwarded to plot

Value

Returns invisibly its local graphical parameter settings.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

function read.abif to import files in ABIF format, data gs500liz for internal size standards, data
identifiler for allele names in the allelic ladder, data JLO for an example of an individual sample
file, data ECH for an example of an allelic lader.

144 plotladder

Examples

data(ECH)
plotabif(ECH,chanel = 1, tmin = 3.2, tmax = 6.1)

plotladder Simple plot of an allelic ladder from ABIF data

Description

Simple representation of an observed allelic ladder.

Usage

plotladder(abifdata, chanel, calibr, allele.names = "identifiler", npeak = NULL, ...)

Arguments

abifdata the result returned by read.abif

chanel the dye number

calibr a mandatory calibration function to convert time into bp

allele.names name of the dataset which contains allele names as in link{identifiler}

npeak expected number of peaks, deduced from allele.names by default

... arguments forwarded to peakabif

Value

Returns invisibly the location of peaks in bp.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

function read.abif to import files in ABIF format, plotabif to plot them, data gs500liz for
internal size standards, data identifiler for allele names in the allelic ladder, data JLO for an
example of an individual sample file, data ECH for an example of an allelic lader.

plotPanels 145

Examples

#
load an example of allelic ladder results from an ABIF (*.fsa) file:
#

data(ECH)
#
Extract from internal size standard chanel number 5 the location
of 14 peaks:
#

ECH.maxis <- peakabif(ECH, 5, npeak = 14, tmin = 2.7, thres = 0.1, fig = FALSE)$maxis
#
Load data about the expected size of peaks in bp for calibration:
#

data(gs500liz)
lizbp <- gs500liz$liz # All peaks size in bp
lizbp[!gs500liz$mask1 | !gs500liz$mask2] <- NA # Mark useless peaks
lizbp <- lizbp[-c(1,2)] # The first two peaks are not extracted from ECH
ECH.calibr <- splinefun(ECH.maxis[!is.na(lizbp)], lizbp[!is.na(lizbp)])

#
Show the allelic ladder for the 4 dyes:
#

plotladder(ECH, 1, ECH.calibr, tmin = 3.1, thres = 0.3, fig = FALSE)
plotladder(ECH, 2, ECH.calibr, tmin = 3.1, thres = 0.35, fig = FALSE)
plotladder(ECH, 3, ECH.calibr, tmin = 3.1, thres = 0.2, fig = FALSE)
plotladder(ECH, 4, ECH.calibr, tmin = 3.1, thres = 0.2, fig = FALSE)

plotPanels Representation of Amplicon Size Ranges of a STR kit.

Description

Plot amplicon size ranges grouped by dye color.

Usage

plotPanels(kitname, data, xlim = NULL, cex = 0.75, alpha = 0.5)

Arguments

kitname string of characters for the kit name.

data an output from the readPanels function.

xlim x-axis range.

cex character expansion factor.

alpha alpha transparency chanel for colors.

Value

none

146 pmw

Author(s)

J.R. Lobry

See Also

readPanels.

Examples

path1 <- system.file("abif/AmpFLSTR_Panels_v1.txt", package = "seqinr")
res1 <- readPanels(path1)

par(mfrow = c(2,1))
plotPanels("Identifiler_v1", res1)
plotPanels("SEfiler_v1", res1)

pmw Protein Molecular Weight

Description

With default parameter values, returns the apparent molecular weight of one mole (6.0221415 e+23)
of the input protein expressed in gram at see level on Earth with terrestrial isotopic composition.

Usage

pmw(seqaa, Ar = c(C = 12.0107, H = 1.00794, O = 15.9994,
N = 14.0067, P = 30.973762, S = 32.065), gravity = 9.81,
unit = "gram", checkseqaa = TRUE)

Arguments

seqaa a protein sequence as a vector of single chars. Allowed values are "*ACDE-
FGHIKLMNPQRSTVWY", non allowed values are ignored.

Ar a named vector for the mean relative atomic masses of CHONPS atoms. De-
faults values are from to the natural terrestrial sources according to the 43rd
IUPAC General Assembly in Beijing, China in August 2005 (See https://
iupac.org/category/recent-releases/ for updates).

gravity gravitational field constant in standard units. Defaults to 9.81 m/s2, that is to the
average value at see level on Earth. Negative values are not allowed.

unit a string that could be "gram" to get the result in grams (1 g = 0.001 kg) or "N"
to get the result in Newton units (1 N = 1 kg.m/s2).

checkseqaa if TRUE pmw() warns if a non-allowed character in seqaa is found.

https://iupac.org/category/recent-releases/
https://iupac.org/category/recent-releases/

pmw 147

Details

Algorithm Computing the molecular mass of a protein is close to a linear form on amino-acid
frequencies, but not exactly since we have to remove n - 1 water molecules for peptidic bound
formation.

Cysteine All cysteines are supposed to be in reduced (-SH) form.

Methionine All methionines are supposed to be not oxidized.

Modifications No post-traductional modifications (such as phosphorylations) are taken into ac-
count.

Rare Rare amino-acids (pyrolysine and selenocysteine) are not handled.

Warning Do not use defaults values for Ar to compute the molecular mass of alien’s proteins: the
isotopic composition for CHONPS atoms could be different from terrestrial data in a xenobi-
otic context. Some aliens are easily offended, make sure not to initiate one more galactic war
by repporting wrong results.

Value

The protein molecular weight as a single numeric value.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

s2c, c2s, aaa, a

Examples

allowed <- s2c("*ACDEFGHIKLMNPQRSTVWY") # All allowed chars in a protein
pmw(allowed)
all.equal(pmw(allowed), 2395.71366) # Should be true on most platforms
#
Compute the apparent molecular weight on Moon surface:
#
pmw(allowed, g = 1.6)
#
Compute the apparent molecular weight in absence of gravity:
#
pmw(allowed, g = 0) # should be zero
#
Reports results in Newton units:
#
pmw(allowed, unit = "N")
#
Compute the mass in kg of one mol of this protein:

148 prepgetannots

#
pmw(allowed)/10^3
#
Compute the mass for all amino-acids:
#
sapply(allowed[-1], pmw) -> aamw
names(aamw) <- aaa(names(aamw))
aamw

prepgetannots Select annotation lines in an ACNUC database

Description

This function is called before using getAnnot or modifylist with a scan type operation to select
the annotation lines to be returned or scanned.

Usage

prepgetannots(what = "all", setfor = c("scan", "getannots"),
socket = autosocket(), verbose = FALSE)

pga(what = "all", setfor = c("scan", "getannots"),
socket = autosocket(), verbose = FALSE)

Arguments

what the default "all" means that all annotation lines are selected. This can be more
specific, see details.

setfor this is used when what has its default "all" value. The behaviour is different
for getAnnot and modifylist with a scan type operation: annotations but not
sequences are scanned, but sequences can be returned by getAnnot. The default
value is "scan".

socket an object of class sockconn connecting to an ACNUC server

verbose logical, if TRUE mode verbose is on

Details

The names of annotation lines in the opened ACNUC database is returned by countfreelists,
they are forced to upper case letters by prepgetannots when supplied with the what argument.

For the EMBL/SWISSPROT format, keys are: ALL, AC, DT, KW, OS, OC, OG, OH, RN, RC, RP,
RX, RA, RG, RT, RL, DR, AH, AS, CC, FH, FT, SQ, SEQ.

For GenBank: ALL, ACCESSION, VERSION, KEYWORDS, SOURCE, ORGANISM, REFER-
ENCE, AUTHORS, CONSRTM, TITLE, JOURNAL, PUBMED, REMARK, COMMENT, FEA-
TURES, ORIGIN, SEQUENCE.

For FT (embl, swissprot) and FEATURES (GenBank), one or more specific feature keys can be
specified using lines with only uppercase and such as

prettyseq 149

FEATURES|CDS FT|TRNA

Keys ALL and SEQ/SEQUENCE stand for all annotation and sequence lines, respectively. For the
scan operation, key ALL stand for the DE/DEFINITION lines, and SEQ/SEQUENCE cannot be
used (annotations but not sequence are scanned).

Value

The function returns invisibly the annotation lines names.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

getAnnot, modifylist, countfreelists

Examples

Not run: # Need internet connection
choosebank("genbank")
mylist <- query("mylist","n=AQF16SRRN")
pga() # We want to scan all annotations, including FEATURES
mylist <- modifylist("mylist", operation = "strain", type = "scan")
mylist$nelem # should be 1

End(Not run)

prettyseq Text representation of a sequence from an ACNUC server

Description

To get a text representation of sequence of rank num and of its subsequences, with bpl bases per
line (default = 60), and with optional translation of protein-coding subsequences

Usage

prettyseq(num, bpl = 60, translate = TRUE, socket = autosocket())

150 print.qaw

Arguments

num rank of the sequence in the ACNUC database

bpl number of base per line

translate should coding sequences be translated?

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

Value

An invisible vector of string. The output is redirected to the console.

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query

Examples

Not run:
Need internet connection
choosebank("emblTP")
prettyseq(111)

End(Not run)

print.qaw Print method for objects from class qaw

Description

Print the number of elements, their type and the corresponding query.

Usage

S3 method for class 'qaw'
print(x, ...)

https://doua.prabi.fr/databases/acnuc.html

print.SeqAcnucWeb 151

Arguments

x A objet of class qaw

... not used

Value

None.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

print

Examples

Not run:
Need internet connection
choosebank("emblTP")
list1 <- query("sp=felis catus")
list1
4732 SQ for sp=felis catus

End(Not run)

print.SeqAcnucWeb Print method for objects from class SeqAcnucWeb

Description

Print the name, length, frame and genetic code number.

Usage

S3 method for class 'SeqAcnucWeb'
print(x, ...)

Arguments

x A sequence of class SeqAcnucWeb

... Arguments passed to print

152 prochlo

Value

None.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

print

Examples

Not run:
Need internet connection
choosebank("emblTP")
mylist <- query("mylist", "sp=felis catus")
mylist$req[[1]]
name length frame ncbigc
"A06937" "34" "0" "1"

End(Not run)

prochlo Zscore on three strains of Prochlorococcus marinus

Description

This dataset contains the zscores computed with the codon model on all CDS from 3 strains of
Procholorococcus marinus (as retrieved from Genome Reviews database on June 16, 2005)

Usage

data(prochlo)

Format

List of three dataframes of the zscore of each of the 16 dinucleotides on each CDS retrieved from
the specific strain.

BX548174 strain adapted to living at a depth of 5 meters (high levels of UV exposure) base model
on each intergenic sequence

AE017126 strain adapted to living at a depth of 120 meters (low levels of UV exposure)

BX548175 strain adapted to living at a depth of 135 meters (low levels of UV exposure)

prochlo 153

References

Palmeira, L., Guéguen, L. and Lobry JR. (2006) UV-targeted dinucleotides are not depleted in light-
exposed Prokaryotic genomes. Molecular Biology and Evolution, 23:2214-2219.
https://academic.oup.com/mbe/article/23/11/2214/1335460

citation("seqinr")

See Also

zscore

Examples

#
Show the four YpY for the three ecotypes:
#
data(prochlo)
oneplot <- function(x){

plot(density(prochlo$BX548174[, x]),
ylim = c(0,0.4), xlim = c(-4,4), lty=3,
main = paste(substr(x,1,1), "p", substr(x,2,2), " bias", sep = ""),
xlab="",ylab="",las=1, type = "n")

rect(-10,-1,-1.96,10, col = "yellow", border = "yellow")
rect(1.96,-1,10,10, col = "yellow", border = "yellow")
lines(density(prochlo$BX548174[, x]),lty=3)
lines(density(prochlo$AE017126[, x]),lty=2)
lines(density(prochlo$BX548175[, x]),lty=1)
abline(v=c(-1.96,1.96),lty=5)
box()

}
par(mfrow=c(2,2),mar=c(2,3,2,0.5) + 0.1)
oneplot("CT")
oneplot("TC")
oneplot("CC")
oneplot("TT")
#
Show YpY biases with respect to light exposure
#
curdev <- getOption("device")
OK <- FALSE
devlist <- c("X11", "windows", "quartz") # interactive with width and height in inches
for(i in devlist){

if(exists(i) && identical(get(i), curdev)){
OK <- TRUE
break

}
}
if(OK){

curdev(width = 18, height = 11)
par(oma = c(0, 0, 3, 0), mfrow = c(1, 2), mar = c(5, 4, 0, 0), cex = 1.5)

https://academic.oup.com/mbe/article/23/11/2214/1335460

154 query

example(waterabs, ask = FALSE) #left figure

par(mar = c(5, 0, 0, 2))
plot(seq(-5, 3, by = 1), seq(0, 150, length = 9), col = "white",

ann = FALSE, axes = FALSE, xaxs = "i", yaxs = "i")
axis(1, at = c(-1.96, 0, 1.96), labels = c(-1.96, 0, 1.96))
lines(rep(-1.96, 2),c(0, 150),lty=2)
lines(rep(1.96, 2), c(0, 150),lty=2)
title(xlab = "zscore distribution", cex = 1.5, adj = 0.65)

selcol <- c(6, 8, 14, 16)
z5 <- prochlo$BX548174[, selcol]
z120 <- prochlo$AE017126[, selcol]
z135 <- prochlo$BX548175[, selcol]

todo <- function(who, xx, col = "black", bottom, loupe){
dst <- density(who[, xx])
sel <- which(dst$x >= -3)

lines(dst$x[sel], dst$y[sel]*loupe + (bottom), col = col)
}
todo2 <- function(who, bottom, loupe){
todo(who, "CC", "blue", bottom, loupe)
todo(who, "CT", "red", bottom, loupe)
todo(who, "TC", "green", bottom, loupe)
todo(who, "TT", "black", bottom, loupe)

}
todo3 <- function(bottom, who, leg, loupe = 90){

lines(c(-5,-3), c(150 - leg, bottom + 20))
rect(-3,bottom,3,bottom+40)
text(-2.6,bottom+38, paste(leg, "m"))
todo2(who, bottom, loupe)

}

todo3(bottom = 110, who = z5, leg = 5)
todo3(bottom = 50, who = z120, leg = 120)
todo3(bottom = 5, who = z135, leg = 135)

legend(-4.5,110,c('CpC','CpT','TpC','TpT'),lty=1,pt.cex=cex,
col=c('blue','red','green','black'))

mtext(expression(paste("Dinucleotide composition for three ",
italic("Prochlorococcus marinus")," ecotypes")), outer = TRUE, cex = 2, line = 1)

}

query To get a list of sequence names from an ACNUC data base located on
the web

Description

This is a major command of the package. It executes all sequence retrievals using any selection
criteria the data base allows. The sequences are coming from ACNUC data base located on the web

query 155

and they are transfered by socket. The command produces the list of all sequence names that fit the
required criteria. The sequence names belong to the class of sequence SeqAcnucWeb.

Usage

query(listname, query, socket = autosocket(),
invisible = TRUE, verbose = FALSE, virtual = FALSE)

Arguments

listname The name of the list as a quoted string of chars

query A quoted string of chars containing the request with the syntax given in the
details section

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

invisible if FALSE, the result is returned visibly.

verbose if TRUE, verbose mode is on

virtual if TRUE, no attempt is made to retrieve the information about all the elements of
the list. In this case, the req component of the list is set to NA.

Details

The query language defines several selection criteria and operations between lists of elements
matching criteria. It creates mainly lists of sequences, but also lists of species (or, more gen-
erally, taxa) and of keywords. See https://doua.prabi.fr/databases/acnuc/cfonctions.
html#QUERYLANGUAGE for the last update of the description of the query language.

Selection criteria (no space before the = sign) are:

SP=taxon seqs attached to taxon or any other below in tree; @ wildcard possible

TID=id seqs attached to given numerical NCBI’s taxon id

K=keyword seqs attached to keyword or any other below in tree; @ wildcard possible

T=type seqs of specified type

J=journalname seqs published in journal specified using defined journal code

R=refcode seqs from reference specified such as in jcode/volume/page (e.g., JMB/13/5432)

AU=name seqs from references having specified author (only last name, no initial)

AC=accessionno seqs attached to specified accession number

N=seqname seqs of given name (ID or LOCUS); @ wildcard possible

Y=year seqs published in specified year; > and < can be used instead of =

O=organelle seqs from specified organelle named following defined code (e.g., chloroplast)

M=molecule seqs from specified molecule as named in ID or LOCUS annotation records

ST=status seqs from specified data class (EMBL) or review level (UniProt)

F=filename seqs whose names are in given file, one name per line (unimplemented use clfcd
instead)

https://doua.prabi.fr/databases/acnuc/cfonctions.html#QUERYLANGUAGE
https://doua.prabi.fr/databases/acnuc/cfonctions.html#QUERYLANGUAGE

156 query

FA=filename seqs attached to accession numbers in given file, one number per line (unimple-
mented use clfcd instead)

FK=filename produces the list of keywords named in given file, one keyword per line (unimple-
mented use clfcd instead)

FS=filename produces the list of species named in given file, one species per line (unimplemented
use clfcd instead)

listname the named list that must have been previously constructed

Operators (always followed and preceded by blanks or parentheses) are:

AND intersection of the 2 list operands

OR union of the 2 list operands

NOT complementation of the single list operand

PAR compute the list of parent seqs of members of the single list operand

SUB add subsequences of members of the single list operand

PS project to species: list of species attached to member sequences of the operand list

PK project to keywords: list of keywords attached to member sequences of the operand list

UN unproject: list of seqs attached to members of the species or keywords list operand

SD compute the list of species placed in the tree below the members of the species list operand

KD compute the list of keywords placed in the tree below the members of the keywords list operand

The query language is case insensitive.Three operators (AND, OR, NOT) can be ambiguous because
they can also occur within valid criterion values. Such ambiguities can be solved by encapsulating
elementary selection criteria between escaped double quotes.

Value

The result is directly assigned to the object listname in the user workspace. This is an objet of
class qaw, a list with the following 6 components:

call the original call

name the ACNUC list name

nelem the number of elements (for instance sequences) in the ACNUC list

typelist the type of the elements of the list. Could be SQ for a list of sequence names,
KW for a list of keywords, SP for a list of species names.

req a list of sequence names that fit the required criteria or NA when called with
parameter virtual is TRUE

socket the socket connection that was used

Note

Most of the documentation was imported from ACNUC help files written by Manolo Gouy

Author(s)

J.R. Lobry, D. Charif

read.abif 157

References

Gouy, M., Milleret, F., Mugnier, C., Jacobzone, M., Gautier,C. (1984) ACNUC: a nucleic acid se-
quence data base and analysis system. Nucl. Acids Res., 12:121-127.
Gouy, M., Gautier, C., Attimonelli, M., Lanave, C., Di Paola, G. (1985) ACNUC - a portable re-
trieval system for nucleic acid sequence databases: logical and physical designs and usage. Comput.
Appl. Biosci., 3:167-172.
Gouy, M., Gautier, C., Milleret, F. (1985) System analysis and nucleic acid sequence banks. Biochimie,
67:433-436.

citation("seqinr")

See Also

choosebank, getSequence, getName, crelistfromclientdata

Examples

Not run:
Need internet connection
choosebank("genbank")
bb <- query("bb", "sp=Borrelia burgdorferi")
To get the names of the 4 first sequences:
sapply(bb$req[1:4], getName)
To get the 4 first sequences:
sapply(bb$req[1:4], getSequence, as.string = TRUE)

End(Not run)

read.abif Read ABIF formatted files

Description

ABIF stands for Applied Biosystem Inc. Format, a binary fromat modeled after TIFF format.
Corresponding files usually have an *.ab1 or *.fsa extension.

Usage

read.abif(filename, max.bytes.in.file = file.info(filename)$size,
pied.de.pilote = 1.2, verbose = FALSE)

Arguments

filename The name of the file.
max.bytes.in.file

The size in bytes of the file, defaulting to what is returned by file.info

pied.de.pilote Safety factor: the argument n to readBin is set as pied.de.pilote*max.bytes.in.file.

verbose logical [FALSE]. If TRUE verbose mode is on.

158 read.abif

Details

All data are imported into memory, there is no attempt to read items on the fly.

Value

A list with three components: Header which is a list that contains various low-level information,
among which numelements is the number of elements in the directory and dataoffset the offset
to find the location of the directory. Directory is a data.frame for the directory of the file with the
number of row being the number of elements in the directory and the 7 columns describing various
low-level information about the elements. Data is a list with the number of components equal to
the number of elements in the directory.

Author(s)

J.R. Lobry

References

citation("seqinR")

Anonymous (2006) Applied Biosystem Genetic Analysis Data File Format. Available at https://
www.thermofisher.com/de/de/home/brands/applied-biosystems.html. Last visited on 03-
NOV-2008.

The figure in the example section is an attempt to reproduce figure 1A from:

Krawczyk, J., Goesmann, A., Nolte, R., Werber, M., Weisshaar, B. (2009) Trace2PS and FSA2PS:
two software toolkits for converting trace and fsa files to PostScript format. Source Code for Biology
and Medicine, 4:4.

See Also

readBin which is used here to import the binary file and file.info to get the size of the file. See
JLO for the files used in quality check.

Examples

#
Quality check:
#

data(JLO)
JLO.check <- read.abif(system.file("abif/2_FAC321_0000205983_B02_004.fsa",

package = "seqinr"))
stopifnot(identical(JLO, JLO.check))

#
Try to reproduce figure 1A from Krawczyk et al. 2009:
#

Krawczyk <- read.abif(system.file("abif/samplefsa2ps.fsa",
package = "seqinr"))$Data

https://www.thermofisher.com/de/de/home/brands/applied-biosystems.html
https://www.thermofisher.com/de/de/home/brands/applied-biosystems.html

read.alignment 159

x <- 1:length(Krawczyk[["DATA.1"]])
par(mar = c(2,4,2,0)+0.1, cex = 0.5)
plot(x, Krawczyk[["DATA.1"]], type = "l", col = "blue",

ylab = "", xlab = "",
ylim = c(-2000, 10000), cex = 0.5,
main = "Figure 1A from Krawczyk et al. 2009",
xaxs = "i", yaxs = "i",
xaxt = "n", yaxt = "n")

axis(1, at = seq(2000, 24000, by = 2000))
axis(2, at = seq(-1000, 10000, by = 1000), las = 1)
lines(x, Krawczyk[["DATA.2"]], col = "green")
lines(x, Krawczyk[["DATA.3"]], col = "black")
lines(x, Krawczyk[["DATA.4"]], col = "red")

read.alignment Read aligned sequence files in mase, clustal, phylip, fasta or msf for-
mat

Description

Read a file in mase, clustal, phylip, fasta or msf format. These formats are used to store
nucleotide or protein multiple alignments.

Usage

read.alignment(file, format, forceToLower = TRUE, oldclustal = FALSE, ...)

Arguments

file the name of the file which the aligned sequences are to be read from. If it does
not contain an absolute or relative path, the file name is relative to the current
working directory, getwd.

format a character string specifying the format of the file : mase, clustal, phylip,
fasta or msf

forceToLower a logical defaulting to TRUE stating whether the returned characters in the se-
quence should be in lower case (introduced in seqinR release 1.1-3).

oldclustal a logical defaulting to FALSE wether to use the old C function to read a clustal
file (which is faster but stricter concerning sequence line length.)

... For the fasta format, extra arguments are passed to the read.fasta function.

Details

"mase" The mase format is used to store nucleotide or protein multiple alignments. The beginning
of the file must contain a header containing at least one line (but the content of this header may
be empty). The header lines must begin by ;;. The body of the file has the following structure:
First, each entry must begin by one (or more) commentary line. Commentary lines begin by

160 read.alignment

the character ;. Again, this commentary line may be empty. After the commentaries, the
name of the sequence is written on a separate line. At last, the sequence itself is written on the
following lines.

"clustal" The CLUSTAL format (*.aln) is the format of the ClustalW multialignment tool output.
It can be described as follows. The word CLUSTAL is on the first line of the file. The
alignment is displayed in blocks of a fixed length, each line in the block corresponding to one
sequence. Each line of each block starts with the sequence name (maximum of 10 characters),
followed by at least one space character. The sequence is then displayed in upper or lower
cases, ’-’ denotes gaps. The residue number may be displayed at the end of the first line of
each block.

"msf" MSF is the multiple sequence alignment format of the GCG sequence analysis package.
It begins with the line (all uppercase) !!NA_MULTIPLE_ALIGNMENT 1.0 for nucleic acid
sequences or !!AA_MULTIPLE_ALIGNMENT 1.0 for amino acid sequences. Do not edit or
delete the file type if its present.(optional). A description line which contains informative text
describing what is in the file. You can add this information to the top of the MSF file using
a text editor.(optional) A dividing line which contains the number of bases or residues in the
sequence, when the file was created, and importantly, two dots (..) which act as a divider
between the descriptive information and the following sequence information.(required) msf
files contain some other information: the Name/Weight, a Separating Line which must include
two slashes (//) to divide the name/weight information from the sequence alignment.(required)
and the multiple sequence alignment.

"phylip" PHYLIP is a tree construction program. The format is as follows: the number of se-
quences and their length (in characters) is on the first line of the file. The alignment is dis-
played in an interleaved or sequential format. The sequence names are limited to 10 characters
and may contain blanks.

"fasta" Sequence in fasta format begins with a single-line description (distinguished by a greater-
than (>) symbol), followed by sequence data on the next line.

Value

An object of class alignment which is a list with the following components:

nb the number of aligned sequences

nam a vector of strings containing the names of the aligned sequences

seq a vector of strings containing the aligned sequences

com a vector of strings containing the commentaries for each sequence or NA if there
are no comments

Author(s)

D. Charif, J.R. Lobry

References

citation("seqinr")

read.fasta 161

See Also

To read aligned sequences in NEXUS format, see the function read.nexus that was available in
the CompPairWise package (not sure it is still maintained as of 09/09/09). The NEXUS format was
mainly used by the non-GPL commercial PAUP software.

Related functions: as.matrix.alignment, read.fasta, write.fasta, reverse.align, dist.alignment.

Examples

mase.res <- read.alignment(file = system.file("sequences/test.mase", package = "seqinr"),
format = "mase")

clustal.res <- read.alignment(file = system.file("sequences/test.aln", package = "seqinr"),
format="clustal")

phylip.res <- read.alignment(file = system.file("sequences/test.phylip", package = "seqinr"),
format = "phylip")

msf.res <- read.alignment(file = system.file("sequences/test.msf", package = "seqinr"),
format = "msf")

fasta.res <- read.alignment(file = system.file("sequences/Anouk.fasta", package = "seqinr"),
format = "fasta")

#
Quality control routine sanity checks:
#

data(mase); stopifnot(identical(mase, mase.res))
data(clustal); stopifnot(identical(clustal, clustal.res))
data(phylip); stopifnot(identical(phylip, phylip.res))
data(msf); stopifnot(identical(msf, msf.res))
data(fasta); stopifnot(identical(fasta, fasta.res))

#
Example of using extra arguments from the read.fasta function, here to keep
whole headers for sequences names.
#

whole.header.test <-
read.alignment(file = system.file("sequences/LTPs128_SSU_aligned_First_Two.fasta",
package = "seqinr"), format = "fasta", whole.header = TRUE)

whole.header.test$nam

Sould be:
#
[1] "D50541\t1\t1411\t1411bp\trna\tAbiotrophia defectiva\tAerococcaceae"
[2] "KP233895\t1\t1520\t1520bp\trna\tAbyssivirga alkaniphila\tLachnospiraceae"
#

read.fasta read FASTA formatted files

162 read.fasta

Description

Read nucleic or amino-acid sequences from a file in FASTA format.

Usage

read.fasta(file = system.file("sequences/ct.fasta.gz", package = "seqinr"),
seqtype = c("DNA", "AA"), as.string = FALSE, forceDNAtolower = TRUE,
set.attributes = TRUE, legacy.mode = TRUE, seqonly = FALSE, strip.desc = FALSE,
whole.header = FALSE,
bfa = FALSE, sizeof.longlong = .Machine$sizeof.longlong,
endian = .Platform$endian, apply.mask = TRUE)

Arguments

file The name of the file which the sequences in fasta format are to be read from. If
it does not contain an absolute or relative path, the file name is relative to the
current working directory, getwd. The default here is to read the ct.fasta.gz
file which is present in the sequences folder of the seqinR package.

seqtype the nature of the sequence: DNA or AA, defaulting to DNA

as.string if TRUE sequences are returned as a string instead of a vector of single charac-
ters

forceDNAtolower

whether sequences with seqtype == "DNA" should be returned as lower case
letters

set.attributes whether sequence attributes should be set

legacy.mode if TRUE lines starting with a semicolon ’;’ are ignored

seqonly if TRUE, only sequences as returned without attempt to modify them or to get
their names and annotations (execution time is divided approximately by a factor
3)

strip.desc if TRUE the ’>’ at the beginning of the description lines is removed in the an-
notations of the sequences

whole.header if TRUE the whole header line, except the first ’>’ character, is kept for se-
quence name. If FALSE, the default, the name is truncated at the first space ("
") character.

bfa logical. If TRUE the fasta file is in MAQ binary format (see details). Only for
DNA sequences.

sizeof.longlong

the number of bytes in a C long long type. Only relevant for bfa = TRUE. See
.Machine

endian character string, "big" or "little", giving the endianness of the processor in
use. Only relevant for bfa = TRUE. See .Platform

apply.mask logical defaulting to TRUE. Only relevant for bfa = TRUE. When this flag is TRUE
the mask in the MAQ binary format is used to replace non acgt characters in the
sequence by the n character. For pure acgt sequences (without gaps or ambigu-
ous bases) turning this to FALSE will save time.

read.fasta 163

Details

FASTA is a widely used format in biology, some FASTA files are distributed with the seqinr pack-
age, see the examples section below. Sequence in FASTA format begins with a single-line de-
scription (distinguished by a greater-than ’>’ symbol), followed by sequence data on the next lines.
Lines starting by a semicolon ’;’ are ignored, as in the original FASTA program (Pearson and Lip-
man 1988). The sequence name is just after the ’>’ up to the next space ’ ’ character, trailling infos
are ignored for the name but saved in the annotations.

There is no standard file extension name for a FASTA file. Commonly found values are .fasta, .fas,
.fa and .seq for generic FASTA files. More specific file extension names are also used for fasta
sequence alignement (.fsa), fasta nucleic acid (.fna), fasta functional nucleotide (.ffn), fasta amino
acid (.faa), multiple protein fasta (.mpfa), fasta RNA non-coding (.frn).

The MAQ fasta binary format was introduced in seqinR 1.1-7 and has not been extensively tested.
This format is used in the MAQ (Mapping and Assembly with Qualities) software (https://maq.
sourceforge.net/). In this format the four nucleotides are coded with two bits and the sequence
is stored as a vector of C unsigned long long. There is in addition a mask to locate non-acgt
characters.

Value

By default read.fasta return a list of vector of chars. Each element is a sequence object of the
class SeqFastadna or SeqFastaAA.

Note

The old argument File that was deprecated since seqinR >= 1.1-3 is no more valid since seqinR >=
2.0-6. Just use file instead.

Author(s)

D. Charif, J.R. Lobry

References

Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence comparison. Pro-
ceedings of the National Academy of Sciences of the United States of America, 85:2444-2448

According to MAQ’s FAQ page https://maq.sourceforge.net/faq.shtml last consulted 2016-
06-07 the MAQ manuscript has not been published.

citation("seqinr")

See Also

write.fasta to write sequences in a FASTA file, gb2fasta to convert a GenBank file into a FASTA
file, read.alignment to read aligned sequences, reverse.align to get an alignment at the nucleic
level from the one at the amino-acid level

https://maq.sourceforge.net/
https://maq.sourceforge.net/
https://maq.sourceforge.net/faq.shtml

164 read.fasta

Examples

#
Simple sanity check with a small FASTA file:
#

smallFastaFile <- system.file("sequences/smallAA.fasta", package = "seqinr")
mySmallProtein <- read.fasta(file = smallFastaFile, as.string = TRUE, seqtype = "AA")[[1]]
stopifnot(mySmallProtein == "SEQINRSEQINRSEQINRSEQINR*")

#
Simple sanity check with the gzipped version of the same small FASTA file:
#

smallFastaFile <- system.file("sequences/smallAA.fasta.gz", package = "seqinr")
mySmallProtein <- read.fasta(file = smallFastaFile, as.string = TRUE, seqtype = "AA")[[1]]
stopifnot(mySmallProtein == "SEQINRSEQINRSEQINRSEQINR*")

#
Example of a DNA file in FASTA format:
#

dnafile <- system.file("sequences/malM.fasta", package = "seqinr")
#
Read with defaults arguments, looks like:
#
$XYLEECOM.MALM
[1] "a" "t" "g" "a" "a" "a" "a" "t" "g" "a" "a" "t" "a" "a" "a" "a" "g" "t"
...

read.fasta(file = dnafile)
#
The same but do not turn the sequence into a vector of single characters, looks like:
#
$XYLEECOM.MALM
[1] "atgaaaatgaataaaagtctcatcgtcctctgtttatcagcagggttactggcaagcgc
...

read.fasta(file = dnafile, as.string = TRUE)
#
The same but do not force lower case letters, looks like:
#
$XYLEECOM.MALM
[1] "ATGAAAATGAATAAAAGTCTCATCGTCCTCTGTTTATCAGCAGGGTTACTGGCAAGC
...

read.fasta(file = dnafile, as.string = TRUE, forceDNAtolower = FALSE)
#
Example of a protein file in FASTA format:
#

aafile <- system.file("sequences/seqAA.fasta", package = "seqinr")
#
Read the protein sequence file, looks like:
#
$A06852
[1] "M" "P" "R" "L" "F" "S" "Y" "L" "L" "G" "V" "W" "L" "L" "L" "S" "Q" "L"
...

read.fasta(aafile, seqtype = "AA")
#
The same, but as string and without attributes, looks like:
#

readBins 165

$A06852
[1] "MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEEP
QLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSNLNFEEFK
KIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIARLC*"
#

read.fasta(aafile, seqtype = "AA", as.string = TRUE, set.attributes = FALSE)
#
Example with a FASTA file that contains comment lines starting with
a semicolon character ';'
#

legacyfile <- system.file("sequences/legacy.fasta", package = "seqinr")
legacyseq <- read.fasta(file = legacyfile, as.string = TRUE)
stopifnot(nchar(legacyseq) == 921)

#
Example of a MAQ binary fasta file produced with maq fasta2bfa ct.fasta ct.bfa
on a platform where .Platform$endian == "little" and .Machine$sizeof.longlong == 8
#

fastafile <- system.file("sequences/ct.fasta.gz", package = "seqinr")
bfafile <- system.file("sequences/ct.bfa", package = "seqinr")

original <- read.fasta(fastafile, as.string = TRUE, set.att = FALSE)
bfavers <- read.fasta(bfafile, as.string = TRUE, set.att = FALSE, bfa = TRUE,
endian = "little", sizeof.longlong = 8)

if(!identical(original, bfavers)){
warning(paste("trouble reading bfa file on a platform with endian =",
.Platform$endian, "and sizeof.longlong =", .Machine$sizeof.longlong))

}

readBins Import GenMapper Bins configuration file

Description

In a Bins configuration file there is a description for a given identification kit of the expected allele
sizes for all the markers available in the kit.

Usage

readBins(file,
colnames = c("allele.name", "size.bp", "minus.bp", "plus.bp"))

Arguments

file The name of the Bins configuration file.

colnames The names to be used for the columns of the data.frames.

Details

The expected allele sizes are typically plus or minus 0.5 bp.

166 readBins

Value

A list whose first element is the file header info and following elements are lists, one for each kit
encountered in the file. For each kit we have a list of data.frames, one per marker.

Author(s)

J.R. Lobry

References

citation("seqinR")

See Also

readPanels.

Examples

#
Check that we can read the 2 exemple files in the seqinR package:
#
path1 <- system.file("abif/AmpFLSTR_Bins_v1.txt", package = "seqinr")
resbin1 <- readBins(path1)
path2 <- system.file("abif/Promega_Bins_v1.txt", package = "seqinr")
resbin2 <- readBins(path2)
#
Show the kits described in resbin1:
#
names(resbin1)
#
Show the markers in a given kit:
#
names(resbin1[["Identifiler_v1"]])
#
Show alleles expected sizes for a given marker:
#
resbin1[["Identifiler_v1"]][["D8S1179"]]
#
Simple quality check since seqinr 2.0-4 with a configuration file
containing trailling tabulations:
#
path3 <- system.file("abif/Prototype_PowerPlex_EP01_Bins.txt", package = "seqinr")
resbin3 <- readBins(path3)
ncols <- sapply(resbin3[[2]], ncol)
stopifnot(all(ncols == 4))

readfirstrec 167

readfirstrec Low level function to get the record count of the specified ACNUC
index file

Description

Called without arguments, the list of available values for argument type is returned.

Usage

readfirstrec(socket = autosocket(), type)

Arguments

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

type the ACNUC index file

Details

Available index files are:

AUT AUTHOR one record for each author name (last name only, no initials)

BIB BIBLIO one record for each reference

ACC ACCESS one record for each accession number

SMJ SMJYT one record for each status, molecule, journal, year, type, organelle, division, and db
structure information

SUB SUBSEQ one record for each parent or sub-sequence

LOC LOCUS one record for each parent sequence

KEY KEYWORDS one record for each keyword

SPEC SPECIES one record for each taxon

SHRT SHORTL mostly, one record for each element of a short list

LNG LONGL one record for each group of SUBINLNG elements of a long list

EXT EXTRACT (for nucleotide databases only) one record for each exon of each subsequence

TXT TEXT one lrtxt-character record for each label of a species, keyword, or SMJYT

Value

The record count of ACNUC index file, or NA if missing (typically when asking for type = EXT on
a protein database).

Author(s)

J.R. Lobry

168 readPanels

References

See ACNUC physical structure at https://doua.prabi.fr/databases/acnuc/structure.html.

citation("seqinr")

See Also

choosebank

Examples

Not run:
Need internet connection

choosebank("genbank")
allowedtype <- readfirstrec()
sapply(allowedtype, function(x) readfirstrec(type = x))

End(Not run)

readPanels Import GenMapper Panels configuration file

Description

In a Panel configuration file there is a description for a given identification kit of the marker names,
their dye label color, expected size range, expected positive control genotypes, number of bases in
core repeat, stutter percentages, and allele names.

Usage

readPanels(file,
colnames = c("marker", "dye.col", "min.bp", "max.bp", "exp.pcg", "repeat.bp",
"stutter.pc", "uknw", "allele names"))

Arguments

file The name of the Panel configuration file.

colnames The names to be used for the columns of the data.frames.

Details

Number of bases in core repeat is set to 9 for Amelogenin locus.

Value

A list whose first element is the file header info and following elements data.frames, one for each
kit encountered in the file.

https://doua.prabi.fr/databases/acnuc/structure.html

readsmj 169

Author(s)

J.R. Lobry

References

citation("seqinR")

See Also

readBins, plotPanels.

Examples

#
Check that we can read the 2 exemple files in the seqinR package:
#
path1 <- system.file("abif/AmpFLSTR_Panels_v1.txt", package = "seqinr")
res1 <- readPanels(path1)
path2 <- system.file("abif/Promega_Panels_v1.txt", package = "seqinr")
res2 <- readPanels(path2)
#
Show the kits described in res1:
#
names(res1)
#
Show some data for a given kit:
#
res1[["Identifiler_v1"]][, 1:7]
#
Plot a simple summary of two kits:
#
par(mfrow = c(2,1))
plotPanels("Identifiler_v1", res1)
plotPanels("PowerPlex_16_v1", res2)

#
Simple quality check since seqinR 2.0-4 with a file which containing
a non constant number of tabulations as separator:
#
path3 <- system.file("abif/Prototype_PowerPlex_EP01_Pa.txt", package = "seqinr")
res3 <- readPanels(path3)

readsmj Low level function to read ACNUC SMJYT index files

Description

Extract informations from the SMJYT index file for status, molecule, journal, year, type, organelle,
division, and db structure information.

170 readsmj

Usage

readsmj(socket = autosocket(), num = 2, nl = 10, recnum.add = FALSE, nature.add = TRUE,
plong.add = FALSE, libel.add = FALSE, sname.add = FALSE, all.add = FALSE)

Arguments

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

num rank number of first record.

nl number of records to read.

recnum.add to extract record numbers.

nature.add to extract as a factor with human understandable levels the nature of the name.
Unordered levels are: status, molecule, journal, year, type, organelle, division
and dbstrucinfo.

plong.add to extract the plong.

libel.add to extract the label of the name.

sname.add to extract the short version of the name, that is without the first two characters.

all.add to extract all (all flags set to TRUE).

Value

A data.frame with requested columns.

Author(s)

J.R. Lobry

References

See ACNUC physical structure at: https://doua.prabi.fr/databases/acnuc/structure.html.

citation("seqinr")

See Also

choosebank to start a session and readfirstrec to get the total number of records.

https://doua.prabi.fr/databases/acnuc/structure.html

rearranged.oriloc 171

rearranged.oriloc Detection of replication-associated effects on base composition asym-
metry in prokaryotic chromosomes.

Description

Detection of replication-associated effects on base composition asymmetry in prokaryotic chromo-
somes.

Usage

rearranged.oriloc(seq.fasta = system.file("sequences/ct.fasta.gz", package = "seqinr"),
g2.coord = system.file("sequences/ct.predict", package = "seqinr"))

Arguments

seq.fasta The path of the file containing a FASTA-format sequence. Default value: the
FASTA sequence of the Chlamydia trachomatis chromosome.

g2.coord The path of the file containing the coordinates of the protein coding genes found
on this chromosome. This file can be obtained using the function gbk2g2. The
format of the file is similar to the output of the Glimmer2 program. The first
column contains the index or the name of the gene, the second one contains
the start position and the third column contains the end position. For reverse
transcribed genes, the start position is greater than the end position.

Details

The purpose of this method is to decouple replication-related and coding sequence-related effects
on base composition asymmetry. In order to do so, the analyzed chromosome is artificially rear-
ranged to obtain a perfect gene orientation bias - all forward transcribed genes on the first half of the
chromosome, and all reverse transcribed genes on the other half. This rearrangement conserves the
relative order of genes within each of the two groups - both forward-encoded and reverse-encoded
genes are placed on the rearranged chromosome in increasing order of their coordinates on the real
chromosome. If the replication mechanism has a significant effect on base composition asymme-
try, this should be seen as a change of slope in the nucleotide skews computed on the rearranged
chromosome; the change of slope should take place at the origin or the terminus of replication. Use
extract.breakpoints to detect the position of the changes in slope on the rearranged nucleotide
skews.

Value

A data.frame with six columns: meancoord.rearr contains the gene index on the rearranged chro-
mosome; gcskew.rearr contains the normalized GC-skew ((G-C)/(G+C)) computed on the third
codon positions of protein coding genes, still on the rearranged chromosome; atskew.rearr con-
tains the normalized AT-skew ((A-T)/(A+T)) computed on the third codon positions of protein cod-
ing genes; strand.rearr contains the transcription strand of the gene (either "forward" or "re-
verse"); order contains the permutation that was used to obtain a perfect gene orientation bias;

172 rearranged.oriloc

meancoord.real contains the mid-coordinate of the genes on the real chromosome (before the
rearrangement).

Author(s)

A. Necşulea

References

Necşulea, A. and Lobry, J.R. (2007) A New Method for Assessing the Effect of Replication on
DNA Base Composition Asymmetry. Molecular Biology and Evolution, 24:2169-2179.

See Also

oriloc, draw.rearranged.oriloc, extract.breakpoints

Examples

Example for Chlamydia trachomatis

Rearrange the chromosome and compute the nucleotide skews

Not run: r.ori <- rearranged.oriloc(seq.fasta =
system.file("sequences/ct.fasta.gz", package = "seqinr"),
g2.coord = system.file("sequences/ct.predict", package = "seqinr"))

End(Not run)

Extract the breakpoints for the rearranged nucleotide skews

Not run: breaks <- extract.breakpoints(r.ori, type = c("gcfw", "gcrev"),
nbreaks =c(2, 2), gridsize = 50, it.max = 100)

End(Not run)

Draw the rearranged nucleotide skews and place the position of the breakpoints
on the graphics

Not run: draw.rearranged.oriloc(r.ori, breaks.gcfw = breaks$gcfw$breaks,
breaks.gcrev = breaks$gcrev$breaks)

End(Not run)

recstat 173

recstat Prediction of Coding DNA Sequences.

Description

This function aims at predicting the position of Coding DNA Sequences (CDS) through the use of a
Correspondence Analysis (CA) computed on codon composition, this for the three reading frames
of a DNA strand.

Usage

recstat(seq, sizewin = 90, shift = 30, seqname = "no name")

Arguments

seq a nucleic acid sequence as a vector of characters

sizewin an integer, multiple of 3, giving the length of the sliding window

shift an integer, multiple of 3, giving the length of the steps between two windows

seqname the name of the sequence

Details

The method is built on the hypothesis that the codon composition of a CDS is biased while it is not
the case outside these regions. In order to detect such bias, a CA on codon frequencies is computed
on the six possible reading frames of a DNA sequence (three from the direct strand and three from
the reverse strand). When there is a CDS in one of the reading frame, it is expected that the CA
factor scores observed in this frame (fot both rows and columns) will be significantly different from
those in the two others.

Value

This function returns a list containing the following components:

seq a single DNA sequence as a vector of characters

sizewin length of the sliding window

shift length of the steps between windows

seqsize length of the sequence

seqname name of the sequence

vdep a vector containing the positions of windows starts

vind a vector containing the reading frame of each window

vstopd a vector of stop codons positions in direct strand

vstopr a vector of stop codons positions in reverse strand

vinitd a vector of start codons positions in direct strand

174 recstat

vinitr a vector of start codons positions in reverse strand

resd a matrix containing codons frequencies for all the windows in the three frames
of the direct strand

resr a matrix containing codons frequencies for all the windows in the three frames
of the reverse strand

resd.coa list of class coa and dudi containing the result of the CA computed on the
codons frequencies in the direct strand

resr.coa list of class coa and dudi containing the result of the CA computed on the
codons frequencies in the reverse strand

Note

This method works only with DNA sequences long enough to obtain a sufficient number of win-
dows. As the optimal windows length has been estimated to be 90 bp by Fichant and Gautier (1987),
the minimal sequence length is around 500 bp. The method can be used on prokaryotic and eukary-
otic sequences. Also, only the four first factors of the CA are kept. Indeed, most of the time, only
the first factor is relevant in order to detect CDS.

Author(s)

O. Clerc, G. Perrière

References

The original paper describing recstat is:

Fichant, G., Gautier, C. (1987) Statistical method for predicting protein coding regions in nucleic
acid sequences. Comput. Appl. Biosci., 3, 287–295.
https://academic.oup.com/bioinformatics/article-abstract/3/4/287/218186

See Also

draw.recstat, test.li.recstat, test.co.recstat

Examples

ff <- system.file("sequences/ECOUNC.fsa", package = "seqinr")
seq <- read.fasta(ff)
rec <- recstat(seq[[1]], seqname = getName(seq))

https://academic.oup.com/bioinformatics/article-abstract/3/4/287/218186

residuecount 175

residuecount Total number of residues in an ACNUC list

Description

Computes the total number of residues (nucleotides or aminoacids) in all sequences of the list of
specified rank.

Usage

residuecount(lrank, socket = autosocket())

Arguments

lrank the list rank on the ACNUC server

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

Value

A single numeric value corresponding to the total number of residues or NA in case of problem.

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query, glr

Examples

Not run:
Need internet connection
choosebank("emblTP")
mylist <- query("mylist", "t=CDS", virtual = TRUE)
stopifnot(residuecount(glr("mylist")) == 1611439240)
stopifnot(is.na(residuecount(glr("unknowlist")))) # A warning is issued

End(Not run)

https://doua.prabi.fr/databases/acnuc.html

176 reverse.align

revaligntest Three aligned nucleic acid sequences

Description

This dataset is used as a sanity check in reverse.align.

Usage

data(revaligntest)

Format

An object of class alignment with 3 sequences.

References

citation("seqinr")

See Also

reverse.align

Examples

data(revaligntest)

reverse.align Reverse alignment - from protein sequence alignment to nucleic se-
quence alignment

Description

This function produces an alignment of nucleic protein-coding sequences, using as a guide the
alignment of the corresponding protein sequences.

Usage

reverse.align(nucl.file, protaln.file, input.format = 'fasta', out.file,
output.format = 'fasta', align.prot = FALSE, numcode = 1,
clustal.path = NULL, forceDNAtolower = TRUE, forceAAtolower = FALSE)

reverse.align 177

Arguments

nucl.file A character string specifying the name of the FASTA format file containing the
nucleotide sequences.

protaln.file A character string specifying the name of the file containing the aligned protein
sequences. This argument must be provided if align.prot is set to FALSE.

input.format A character string specifying the format of the protein alignment file : ’mase’,
’clustal’, ’phylip’, ’fasta’ or ’msf’.

out.file A character string specifying the name of the output file.

output.format A character string specifying the format of the output file. Currently the only
implemented format is ’fasta’.

align.prot Boolean. If TRUE, the nucleic sequences are translated and then the protein
sequences are aligned with the ClustalW program. The path of the ClustalW
binary must also be given (clustal.path)

numcode The NCBI genetic code number for the translation of the nucleic sequences. By
default the standard genetic code is used.

clustal.path The path of the ClustalW binary. This argument only needs to be setif align.prot
is TRUE.

forceDNAtolower

logical passed to read.fasta for reading the nucleic acid file.

forceAAtolower logical passed to read.alignment for reading the aligned protein sequence file.

Details

This function an alignment of nucleic protein-coding sequences using as a guide the alignment
of the corresponding protein sequences. The file containing the nucleic sequences is given in the
compulsory argument ’nucl.file’; this file must be written in the FASTA format.

The alignment of the protein sequences can either be provided directly, trough the ’protaln.file’
parameter, or reconstructed with ClustalW, if the parameter ’align.prot’ is set to TRUE. In the latter
case, the pathway of the ClustalW binary must be given in the ’clustal.path’ argument.

The protein and nucleic sequences must have the same name in the files nucl.file and protaln.file.

The reverse-aligned nucleotide sequences are written to the file specified in the compulsory ’out.file’
argument. For now, the only output format implemented is FASTA.

Warning: the ’align.prot=TRUE’ option has only been tested on LINUX operating systems. ClustalW
must be installed on your system in order for this to work.

Value

NULL

Author(s)

A. Necşulea

References

citation('seqinr')

178 reverse.align

See Also

read.alignment, read.fasta, write.fasta

Examples

#
Read example 'bordetella.fasta': a triplet of orthologous genes from
three bacterial species (Bordetella pertussis, B. parapertussis and
B. bronchiseptica):
#

nucl.file <- system.file('sequences/bordetella.fasta', package = 'seqinr')
triplet <- read.fasta(nucl.file)

#
For this example, 'bordetella.pep.aln' contains the aligned protein
sequences, in the Clustal format:
#

protaln.file <- system.file('sequences/bordetella.pep.aln', package = 'seqinr')
triplet.pep<- read.alignment(protaln.file, format = 'clustal')

#
Call reverse.align for this example:
#
myOutFileName <-tempfile(pattern = "test", tmpdir = tempdir(), fileext = "revalign")
tempdir(check = FALSE)

#reverse.align(nucl.file = nucl.file, protaln.file = protaln.file,
input.format = 'clustal', out.file = 'test.revalign')

reverse.align(nucl.file = nucl.file, protaln.file = protaln.file,
input.format = 'clustal', out.file = myOutFileName)

#
Simple sanity check against expected result:
#

#res.new <- read.alignment("test.revalign", format = "fasta")

res.new <- read.alignment(myOutFileName, format = "fasta")
data(revaligntest)
stopifnot(identical(res.new, revaligntest))

#
Alternatively, we can use ClustalW to align the translated nucleic
sequences. Here the ClustalW program is accessible simply by the
'clustalw' name.
#

Not run:
reverse.align(nucl.file = nucl.file, out.file = 'test.revalign.clustal',

rot13 179

align.prot = TRUE, clustal.path = 'clustalw')
End(Not run)

rot13 Ergheaf gur EBG-13 pvcurevat bs n fgevat

Description

rot13 applied to the above title returns the string "Returns the ROT-13 ciphering of a string".

Usage

rot13(string)

Arguments

string a string of characters.

Value

a string of characters.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

chartr

Examples

##
Simple ciphering of a string:
##

message <- "Hello, world!"
rot13(message) # "Uryyb, jbeyq!"

##
Routine sanity check:
##

stopifnot(identical(rot13(rot13(message)), message))

180 s2c

s2c conversion of a string into a vector of chars

Description

This is a simple utility function to convert a single string such as "BigBang" into a vector of chars
such as c("B", "i", "g", "B", "a", "n", "g").

Usage

s2c(string)

Arguments

string a string of chars

Value

a vector of chars. If supplied argument is not a single string, a warning is issued and NA returned.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

c2s

Examples

stopifnot(all(s2c("BigBang") == c("B", "i", "g", "B", "a", "n", "g")))

s2n 181

s2n simple numerical encoding of a DNA sequence.

Description

By default, if no levels arguments is provided, this function will just code your DNA sequence in
integer values following the lexical order (a > c > g > t), that is 0 for "a", 1 for "c", 2 for "g", 3 for
"t" and NA for ambiguous bases.

Usage

s2n(seq, levels = s2c("acgt"), base4 = TRUE, forceToLower = TRUE)

Arguments

seq the sequence as a vector of single chars

levels allowed char values, by default a, c, g and t

base4 if TRUE the numerical encoding will start at O, if FALSE at 1

forceToLower if TRUE the sequence is forced to lower case caracters

Value

a vector of integers

Note

The idea of starting numbering at 0 by default is that it enforces a kind of isomorphism between the
paste operator on DNA chars and the + operator on integer coding for DNA chars. By this way, you
can work either in the char set, either in the integer set, depending on what is more convenient for
your purpose, and then switch from one set to the other one as you like.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

n2s, factor, unclass

182 savelist

Examples

##
Example of default behaviour:
##
urndna <- s2c("acgt")
seq <- sample(urndna, 100, replace = TRUE) ; seq
s2n(seq)
##
How to deal with RNA:
##
urnrna <- s2c("acgt")
seq <- sample(urnrna, 100, replace = TRUE) ; seq
s2n(seq)
##
what happens with unknown characters:
##
urnmess <- c(urndna,"n")
seq <- sample(urnmess, 100, replace = TRUE) ; seq
s2n(seq)
##
How to change the encoding for unknown characters:
##
tmp <- s2n(seq) ; tmp[is.na(tmp)] <- -1; tmp
##
Simple sanity check:
##
stopifnot(all(s2n(s2c("acgt")) == 0:3))

savelist Save sequence names or accession numbers into a file

Description

This function retrieves all sequence names or all accession number from an ACNUC list and saves
them into a file.

Usage

savelist(lrank, type = c("N", "A"),
filename = paste(gln(lrank), ifelse(type == "N", "mne", "acc"),

sep = "."),socket = autosocket(), warnme = TRUE)

Arguments

lrank the rank of the ACNUC list to consider.

type use "N" for sequence names (mnemonics) and "A" for accession numbers. De-
fault is "N".

filename a string of character giving the name of the file to save results.

SeqAcnucWeb 183

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

warnme if TRUE a message is issued on the console when complete.

Value

none.

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query, glr to get a list rank from its name, clfcd for the inverse operation of
savelist

Examples

Not run:
Need internet connection
choosebank("emblTP")
mylist <- query("mylist", "sp=felis catus et t=cds", virtual=TRUE)
savelist(glr("mylist"))
603 sequence mnemonics written into file: MYLIST.mne
savelist(glr("mylist"), type = "A")
603 sequence accession numbers written into file: MYLIST.acc

End(Not run)

SeqAcnucWeb Sequence coming from a remote ACNUC data base

Description

as.SeqAcnucWeb is called by many functions, for instance by query, and should not be directly
called by the user. It creates an object of class SeqAcnucWeb. is.SeqAcnucWeb returns TRUE if the
object is of class SeqAcnucWeb.

Usage

as.SeqAcnucWeb(object, length, frame, ncbigc)
is.SeqAcnucWeb(object)

https://doua.prabi.fr/databases/acnuc.html

184 SeqFastaAA

Arguments

object a string giving the name of a sequence present in the data base

length a string giving the length of the sequence present in the data base

frame a string giving the frame of the sequence present in the data base

ncbigc a string giving the ncbi genetic code of the sequence present in the data base

Value

as.SeqAcnucWeb returns an object sequence of class SeqAcnucWeb. Note that as from seqinR 1.1-3
the slot socket has been deleted to save space for long lists.

Author(s)

D. Charif, J.R. Lobry

References

citation("seqinr")

Examples

Not run: # Need internet connection
choosebank("emblTP")
mylist <- query("mylist", "sp=felis catus et t=cds et o=mitochondrion")
stopifnot(is.SeqAcnucWeb(mylist$req[[1]]))
closebank()

End(Not run)

SeqFastaAA AA sequence in Fasta Format

Description

as.SeqFastaAA is called by the function as read.fasta. It creates an object of class SeqFastaAA.
is.SeqFastaAA returns TRUE if the object is of class SeqFastaAA. summary.SeqFastaAA gives
the AA composition of an object of class SeqFastaAA.

Usage

as.SeqFastaAA(object, name = NULL, Annot = NULL)
is.SeqFastaAA(object)
S3 method for class 'SeqFastaAA'
summary(object,...)

SeqFastadna 185

Arguments

object a vector of chars representing a biological sequence

name NULL a character string specifying a name for the sequence

Annot NULL a character string specifying some annotations for the sequence

... additional arguments affecting the summary produced

Value

as.SeqFastaAA returns an object sequence of class SeqFastaAA. summary.SeqFastaAA returns a
list which the following components:

composition the AA counting of the sequence

AA.Property the percentage of each group of amino acid in the sequence. By example, the
groups are small, tiny, aliphatic, aromatic ...

Author(s)

D. Charif

References

citation("seqinr")

Examples

s <- read.fasta(file = system.file("sequences/seqAA.fasta", package = "seqinr"), seqtype="AA")
is.SeqFastaAA(s[[1]])
summary(s[[1]])
myseq <- s2c("MSPTAYRRGSPAFLV*")
as.SeqFastaAA(myseq, name = "myseq", Annot = "blablabla")
myseq

SeqFastadna Class for DNA sequence in Fasta Format

Description

as.SeqFastadna is called by many functions as read.fasta. It creates an object of class SeqFastadna.
is.SeqFastadna returns TRUE if the object is of class SeqFastadna. summary.SeqFastadna
gives the base composition of an object of class SeqFastadna.

Usage

as.SeqFastadna(object, name = NULL, Annot = NULL)
is.SeqFastadna(object)
S3 method for class 'SeqFastadna'
summary(object, alphabet = s2c("acgt"), ...)

186 SeqFrag

Arguments

object a vector of chars representing a biological sequence

name NULL a character string specifying a name for the sequence

Annot NULL a character string specifying some annotations for the sequence

... additional arguments affecting the summary produced

alphabet a vector of single characters

Value

as.SeqFastadna returns an object sequence of class SeqFastadna. summary.SeqFastadna returns
a list which the following components:

length the legth of the sequence

compo the base counting of the sequence

GC the percentage of G+C in the sequence

Author(s)

D. Charif

References

citation("seqinr")

Examples

s <- read.fasta(system.file("sequences/malM.fasta",package="seqinr"))
is.SeqFastadna(s[[1]])
summary(s[[1]])
myseq <- s2c("acgttgatgctagctagcatcgat")
as.SeqFastadna(myseq, name = "myseq", Annot = "blablabla")
myseq

SeqFrag Class for sub-sequences

Description

as.SeqFrag is called by all methods of getFrag, but not directly by the users. It creates an object
sequence of class SeqFrag.

Usage

as.SeqFrag(object, begin, end, name)
is.SeqFrag(object)

SEQINR.UTIL 187

Arguments

object an object sequence of class seqFastadna, seqFastaAA, seqAcnucWeb or seqFrag

begin the first base of the fragment to get

end the last base of the fragment to get

name the name of the sequence

Value

as.SeqFrag returns a biological sequence with the following attributes:

seqMother the name of the sequence from which the sequence comes

begin the position of the first base of the fragment on the mother sequence

end the position of the last base of the fragment on the mother sequence

class SeqFrag which is the classfor sub-sequence

is.SeqFrag returns TRUE if the object is of class Seqfrag.

Author(s)

D. Charif, J.R. Lobry

References

citation("seqinr")

See Also

getFrag, getLength, getName, getSequence, getTrans

Examples

s <- read.fasta(file = system.file("sequences/malM.fasta", package = "seqinr"))
getFrag(s[[1]], 1, 10)

SEQINR.UTIL utility data for seqinr

Description

This data set gives the genetics code, the name of each codon, the IUPAC one-letter code for amino
acids and the physico-chemical class of amino acid and the pK values of amino acids described in
Bjellqvist et al. (1993).

188 setlistname

Format

SEQINR.UTIL is a list containing the 4 following objects:

CODES.NCBI is a data frame containing the genetics code : The standard (’Universal’) genetic
code with a selection of non-standard codes.

CODON.AA is a three columns data frame. The first column is a factor containing the codon. The
second column is a factor giving the aminoacids names for each codon. The last column is a
factor giving the IUPAC one-letter code for aminoacids

AA.PROPERTY is a list giving the physico-chemical class of amino acid. The differents classes
are the following one : Tiny, Small, Aliphatic, Aromatic, Non.polar, Polar, Charged, Basic,
Acidic

pK is a data frame. It gives the pK values of amino acids described in Bjellqvist et al. (1993) ,
which were defined by examining polypeptide migration between pH 4.5 to 7.3 in an immo-
bilised pH gradient gel environment with 9.2M and 9.8M urea at 15 degree or 25 degree

Source

Data prepared by D. Charif.
The genetic codes have been taken from the ncbi database: https://www.ncbi.nlm.nih.gov/
Taxonomy/Utils/wprintgc.cgi. Last visited on 2016-10-05 corresponding to last update of the
Genetic Codes: April 30, 2013.
The IUPAC one-letter code for aminoacids is descibed at: https://www.bioinformatics.org/
sms/iupac.html. pK values of amino acids were taken from Bjellqvist et al.
Bjellqvist, B.,Hughes, G.J., Pasquali, Ch., Paquet, N., Ravier, F., Sanchez, J.-Ch., Frutiger, S. &
Hochstrasser, D.F.(1993) The focusing positions of polypeptides in immobilized pH gradients can
be predicted from their amino acid sequences. Electrophoresis, 14, 1023-1031.

References

citation("seqinr")

Examples

data(SEQINR.UTIL)

setlistname Sets the name of an ACNUC list identified by its rank

Description

This is a low level function to set the name of a list from an ACNUC server. It should not be used
directly by end users.

Usage

setlistname(lrank, name = "list1", socket = autosocket())

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
https://www.bioinformatics.org/sms/iupac.html
https://www.bioinformatics.org/sms/iupac.html

setlistname 189

Arguments

lrank the list rank on the ACNUC server

name the name to use for this list

socket an object of class sockconn connecting to a remote ACNUC database (default
is a socket to the last opened database).

Value

A single numeric value corresponding to:

NA Empty answer from server.

0 OK.

3 if another list with that name already existed and was deleted.

4 no list of rank lrank exists.

Author(s)

J.R. Lobry

References

https://doua.prabi.fr/databases/acnuc.html

citation("seqinr")

See Also

choosebank, query, glr

Examples

Not run:
Need internet connection
choosebank("emblTP")
mylist <- query("mylist", "sp=felis catus et t=CDS", virtual = TRUE)
Change list name on server:
setlistname(lrank = glr("mylist"), name = "feliscatus") # 0, OK.
glr("mylist") # 0, list doesn't exist no more.
glr("feliscatus") # 2, this list exists.
Note the danger here: the object mylist is still present in the user workspace
while the corresponding list was deleted from server.

End(Not run)

https://doua.prabi.fr/databases/acnuc.html

190 splitseq

splitseq split a sequence into sub-sequences

Description

Split a sequence into sub-sequences of 3 (the default size) with no overlap between the sub-sequences.

Usage

splitseq(seq, frame = 0, word = 3)

Arguments

seq a vector of chars

frame an integer (0, 1, 2) giving the starting position to split the sequence

word an integer giving the size of the sub-sequences

Value

This function returns a vector which contains the sub-sequences.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

split

Examples

cds <- s2c("aacgttgcaggtcgctcgctacgtagctactgttt")
#
To obtain the codon sequence in frame 0:
#
stopifnot(identical(splitseq(cds),

c("aac", "gtt", "gca", "ggt", "cgc", "tcg", "cta", "cgt", "agc", "tac", "tgt")))
#
Show the effect of frame and word with a ten char sequence:
#
(tenchar <- s2c("1234567890"))
splitseq(tenchar, frame = 0)
splitseq(tenchar, frame = 1)

stresc 191

splitseq(tenchar, frame = 2)
splitseq(tenchar, frame = 0, word = 2)
splitseq(tenchar, frame = 0, word = 1)

stresc Utility function to escape LaTeX special characters present in a string

Description

This function returns a vector of strings in which LaTeX special characters are escaped, this was
useful in conjunction with xtable.

Usage

stresc(strings)

Arguments

strings A vector of strings to deal with.

Value

Returns a vector of strings with escaped characters within each string.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

s2c

Examples

stresc("MISC_RNA")
stresc(c("BB_0001","BB_0002"))

192 stutterabif

stutterabif Stutter ratio estimation

Description

This function tries to estimate the stutter ratio, either in terms of peak heigth ratios or peak surface
ratio.

Usage

stutterabif(abifdata, chanel, poswild, datapointbefore = 70,
datapointafter = 20, datapointsigma = 3.5,
chanel.names = c(1:4, 105), DATA = paste("DATA", chanel.names[chanel], sep = "."),
maxrfu = 1000, method = "monoH.FC", pms = 6, fig = FALSE)

Arguments

abifdata the result returned by read.abif

chanel the dye number

poswild the position in datapoint units of the allele at the origin of the stutter product,
typically obtained after a call to peakabif

datapointbefore

how many datapoints before poswild to be include in analysis

datapointafter how many datapoints after poswild to be include in analysis

datapointsigma initial guess for the standard deviation of a peak

chanel.names numbers extensions used for the DATA

DATA names of the DATA components

maxrfu argument passed to baselineabif

method method to be used by splinefun

pms how many standard deviations (after gaussian fit) before and after the mean peak
values should be considered for spline function interpolation

fig should a summary plot be produced?

Details

FIXME, See R code for now

Value

A list with the following components:

rh Stutter ratio computed as the height of the stutter divided by the height of its
corresponding allele

rs Stutter ratio computed as the surface of the stutter divided by the surface of its
corresponding allele

stutterabif 193

h1 The height of the stutter with baseline at 0

h2 The height of the allele with baseline at 0

s1 The surface of the stutter

s2 The surface of the allele

p A list of additional parameter that could be usesfull, see example

Author(s)

J.R. Lobry

See Also

JLO for a dataset example, peakabif to get an estimate of peak location.

Examples

#
Load pre-defined dataset, same as what would be obtained with read.abif:
#

data(JLO)

#
Get peak locations in the blue channel:
#

maxis <- peakabif(JLO, 1, npeak = 6, tmin = 3, fig = FALSE)$maxis

#
Compute stutter ratio for first peak and ask for a figure:
#

tmp <- stutterabif(JLO, 1, maxis[1], fig = TRUE)

#
Show in addition the normal approximation used at the stutter peak:
#

xx <- seq(tmppmu1 - 6*tmppsd1, tmppmu1 + 6*tmppsd1, le = 100)
lines(xx, tmppp1*dnorm(xx, tmppmu1, tmppsd1), col = "darkgreen")

#
Show in addition the normal approximation used at allele peak:
#

xx <- seq(tmppmu2 - 6*tmppsd2, tmppmu2 + 6*tmppsd2, le = 100)
lines(xx, tmppp2*dnorm(xx, tmppmu2, tmppsd2), col = "darkgreen")

194 swap

swap Exchange two R objects

Description

Exchange object x with object y.

Usage

swap(x, y)

Arguments

x an R object

y an R object

Value

none.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

move

Examples

#
Example in a new empty environment:
#
local({

x <- 0:9
y <- 10:19
print(x)
print(y)
swap(x[1], y[2])
print(x)
print(y)

})
#
Sanity check with a bubble sort:
#

syncodons 195

bubble.sort <- function(tab, n = length(tab)){
i <- 1
while(i < n){
if(tab[i + 1] < tab[i]){

swap(tab[i], tab[i+1])
i <- 1

} else {
i <- i+1

}
}
return(tab)

}
set.seed(1)
x <- rnorm(10)
stopifnot(identical(sort(x), bubble.sort(x)))

syncodons Synonymous codons

Description

Returns all synonymous codons for each codon given

Usage

syncodons(codons, numcode = 1)

Arguments

codons A sequence of codons as generated by splitseq

numcode The genetic code number as in translate

Value

a list containing, for each codon given (list tags), all synonymous codons (including the original
one)

Author(s)

L. Palmeira, J.R. Lobry

References

citation("seqinr")

See Also

synsequence

196 syncodons

Examples

#
The four synonymous codons for Alanine in the standard genetic code:
#
syncodons("ggg")
#
With a sequence:
#
toycds <- s2c("tctgagcaaataaatcgg")
syncodons(splitseq(toycds))
#
Sanity check with the standard genetic code:
#
stdgencode <- structure(list(

ttt = c("ttc", "ttt"),
ttc = c("ttc", "ttt"),
tta = c("cta", "ctc", "ctg", "ctt", "tta", "ttg"),
ttg = c("cta", "ctc", "ctg", "ctt", "tta", "ttg"),
tct = c("agc", "agt", "tca", "tcc", "tcg", "tct"),
tcc = c("agc", "agt", "tca", "tcc", "tcg", "tct"),
tca = c("agc", "agt", "tca", "tcc", "tcg", "tct"),
tcg = c("agc", "agt", "tca", "tcc", "tcg", "tct"),
tat = c("tac", "tat"),
tac = c("tac", "tat"),
taa = c("taa", "tag", "tga"),
tag = c("taa", "tag", "tga"),
tgt = c("tgc", "tgt"),
tgc = c("tgc", "tgt"),
tga = c("taa", "tag", "tga"),
tgg = "tgg",
ctt = c("cta", "ctc", "ctg", "ctt", "tta", "ttg"),
ctc = c("cta", "ctc", "ctg", "ctt", "tta", "ttg"),
cta = c("cta", "ctc", "ctg", "ctt", "tta", "ttg"),
ctg = c("cta", "ctc", "ctg", "ctt", "tta", "ttg"),
cct = c("cca", "ccc", "ccg", "cct"),
ccc = c("cca", "ccc", "ccg", "cct"),
cca = c("cca", "ccc", "ccg", "cct"),
ccg = c("cca", "ccc", "ccg", "cct"),
cat = c("cac", "cat"),
cac = c("cac", "cat"),
caa = c("caa", "cag"),
cag = c("caa", "cag"),
cgt = c("aga", "agg", "cga", "cgc", "cgg", "cgt"),
cgc = c("aga", "agg", "cga", "cgc", "cgg", "cgt"),
cga = c("aga", "agg", "cga", "cgc", "cgg", "cgt"),
cgg = c("aga", "agg", "cga", "cgc", "cgg", "cgt"),
att = c("ata", "atc", "att"),
atc = c("ata", "atc", "att"),
ata = c("ata", "atc", "att"),
atg = "atg",
act = c("aca", "acc", "acg", "act"),
acc = c("aca", "acc", "acg", "act"),

synsequence 197

aca = c("aca", "acc", "acg", "act"),
acg = c("aca", "acc", "acg", "act"),
aat = c("aac", "aat"),
aac = c("aac", "aat"),
aaa = c("aaa", "aag"),
aag = c("aaa", "aag"),
agt = c("agc", "agt", "tca", "tcc", "tcg", "tct"),
agc = c("agc", "agt", "tca", "tcc", "tcg", "tct"),
aga = c("aga", "agg", "cga", "cgc", "cgg", "cgt"),
agg = c("aga", "agg", "cga", "cgc", "cgg", "cgt"),
gtt = c("gta", "gtc", "gtg", "gtt"),
gtc = c("gta", "gtc", "gtg", "gtt"),
gta = c("gta", "gtc", "gtg", "gtt"),
gtg = c("gta", "gtc", "gtg", "gtt"),
gct = c("gca", "gcc", "gcg", "gct"),
gcc = c("gca", "gcc", "gcg", "gct"),
gca = c("gca", "gcc", "gcg", "gct"),
gcg = c("gca", "gcc", "gcg", "gct"),
gat = c("gac", "gat"),
gac = c("gac", "gat"),
gaa = c("gaa", "gag"),
gag = c("gaa", "gag"),
ggt = c("gga", "ggc", "ggg", "ggt"),
ggc = c("gga", "ggc", "ggg", "ggt"),
gga = c("gga", "ggc", "ggg", "ggt"),
ggg = c("gga", "ggc", "ggg", "ggt")),

.Names = c("ttt", "ttc", "tta", "ttg", "tct", "tcc", "tca", "tcg", "tat", "tac",
"taa", "tag", "tgt", "tgc", "tga", "tgg", "ctt", "ctc", "cta",
"ctg", "cct", "ccc", "cca", "ccg", "cat", "cac", "caa", "cag",
"cgt", "cgc", "cga", "cgg", "att", "atc", "ata", "atg", "act",
"acc", "aca", "acg", "aat", "aac", "aaa", "aag", "agt", "agc",
"aga", "agg", "gtt", "gtc", "gta", "gtg", "gct", "gcc", "gca",
"gcg", "gat", "gac", "gaa", "gag", "ggt", "ggc", "gga", "ggg"))
#
Now the check:
#
currentresult <- syncodons(words(alphabet = s2c("tcag")))
stopifnot(identical(stdgencode, currentresult))

synsequence Random synonymous coding sequence generation

Description

Generates a random synonymous coding sequence, according to a certain codon usage bias

Usage

synsequence(sequence, numcode = 1, ucoweight = NULL)

198 tablecode

Arguments

sequence A nucleic acids sequence

numcode The genetic code number as in translate

ucoweight A list of weights containing the desired codon usage bias as generated by ucoweight

Value

a sequence translating to the same protein sequence as the original one (cf. translate), but con-
taining synonymous codons

Author(s)

L. Palmeira

References

citation("seqinr")

See Also

ucoweight

Examples

data(ec999)
sequence=ec999[1][[1]]
synsequence(sequence,1,ucoweight(sequence))

tablecode to plot genetic code as in textbooks

Description

This function plots a genetic code table as in textbooks, that is following the order T > C > A > G so
that synonymous codons are almost always in the same boxes.

Usage

tablecode(numcode = 1, urn.rna = s2c("TCAG"), dia = FALSE, latexfile = NULL,
label = latexfile, size = "normalsize", caption = NULL,
preaa = rep("", 64), postaa = rep("", 64),
precodon = preaa, postcodon = postaa)

tablecode 199

Arguments

numcode The genetic code number as in translate

urn.rna The letters to display codons, use s2c("UCAG") if you want the code in terms
of RNA sequence

latexfile The name of a LaTex file if you want to redirect the output

label The label for the LaTeX table

size The LaTex size of characters for the LaTeX table

preaa A string to insert before the amino-acid in the LaTeX table

postaa A string to insert after the amino-acid in the LaTeX table

precodon A string to insert before the codon in the LaTeX table

postcodon A string to insert after the codon in the LaTeX table

caption The caption of the LaTeX table

dia to produce a yellow/blue plot for slides

Details

The codon order for preaa, postaa, precodon, and postcodon should be the same as in paste(paste(rep(s2c("tcag"),
each =16), s2c("tcag"), sep = ""), rep(s2c("tcag"), each = 4), sep = "")

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

translate, syncodons

Examples

#
Show me the standard genetic code:
#

tablecode()

200 test.co.recstat

test.co.recstat Tests if regions located between Stop codons contain putative CDSs.

Description

This test uses columns (codons) factor scores computed by recstat in order to determine if the
regions located between two Stop codons correspond to putative CDSs.

Usage

test.co.recstat(rec, fac = 1, length.min = 150, stop.max = 0.2, win.lim = 0.8,
direct = TRUE, level = 0.01)

Arguments

rec list of elements returned by recstat function.

fac axis of the CA to use for test (4 ≥ fac ≥ 1).

length.min minimal length between two Stop codons.

stop.max threshold for Stop codons relative position in a window to determine if this win-
dow can be used for test computation.

win.lim minimum proportion of windows inside a region showing a p-value below the
threshold for Kruskal-Wallis test.

direct a logical for the choice of direct or reverse strand.

level p-value threshold for Kruskal-Wallis test.

Details

The test is computed for all windows located between two Stop codons separated by at least
length.min nucleotides. For each window inside a region considered, a Kruskal-Wallis test is
computed on the factor scores of the codons found in this window, this for the three possible read-
ing frames. If a proportion of at least win.lim windows in the region reject the null hypothesis of
means equality between the reading frames, then, there is a good probability that a CDS is located
in the region.

Inside the first and the last windows of a region submitted to the test, the relative position of the two
Stop codons is used to determine if those windows can be used in the analysis. If the first Stop is
located within the stop.max fraction of the 5’ end of the window, then this window is kept in the
analysis. In the same way, if the second Stop is located within the stop.max fraction of the 3’ end
of the window, this window is also kept in the analysis.

Value

The result is returned as a list containing three matrices (one for each reading frame). All matrices
have the same structure, with rows corresponding to the regions between two Stop codons. Columns
Start and End give the location of starting and ending positions of the region; and CDS is a binary
indicator equal to 1 if a putative CDS is predicted, and to 0 if not.

test.li.recstat 201

Author(s)

O. Clerc, G. Perrière

See Also

test.li.recstat

Examples

Not run: # CPU time is too long with windows
ff <- system.file("sequences/ECOUNC.fsa", package = "seqinr")
seq <- read.fasta(ff)
rec <- recstat(seq[[1]], seqname = getName(seq))
test.co.recstat(rec)

End(Not run)

test.li.recstat Tests if regions located between Stop codons contain putative CDSs.

Description

This test uses rows (windows) factor scores computed by recstat in order to determine if the
regions located between two Stop codons correspond to putative CDSs.

Usage

test.li.recstat(rec, fac = 1, length.min = 150, stop.max = 0.2,
direct = TRUE, level = 0.05)

Arguments

rec list of elements returned by recstat function.

fac axis of the CA to use for test (4 ≥ fac ≥ 1).

length.min minimal length between two Stop codons.

stop.max threshold for Stop codons relative position in a window to determine if this win-
dow can be used for test computation.

direct a logical for the choice of direct or reverse strand.

level p-value threshold for t-test.

202 toyaa

Details

The test is computed for all regions between two Stop codons separated by at least length.min
nucleotides, this for the three possible reading frames of a DNA strand. For each region considered,
two t-tests are computed for comparing the mean of the factor scores of the windows from the read-
ing frame in which the region is located with the means of the factor scores from the corresponding
windows in the two other reading frames. If both t-tests reject the null hypothesis of means equality,
then there is a good probability that a CDS is located in the region.

Inside the first and the last windows of a region submitted to the test, the relative position of the two
Stop codons is used to determine if those windows can be used in the analysis. If the first Stop is
located within the stop.max fraction of the 5’ end of the window, then this window is kept in the
analysis. In the same way, if the second Stop is located within the stop.max fraction of the 3’ end
of the window, this window is also kept in the analysis.

Value

The result is returned as a list containing three matrices (one for each reading frame). All matrices
have the same structure, with rows corresponding to the regions between two Stop codons. Columns
Start and End give the location of starting and ending positions of the region; Mean i gives the
mean of the factor scores for the windows located in the region, this for reading frame i; t(i,j)
gives the p-value of the t-test computed between the means from reading frames i and j; and CDS
is a binary indicator equal to 1 if a putative CDS is predicted, and to 0 if not.

Author(s)

O. Clerc, G. Perrière

See Also

test.co.recstat

Examples

ff <- system.file("sequences/ECOUNC.fsa", package = "seqinr")
seq <- read.fasta(ff)
rec <- recstat(seq[[1]], seqname = getName(seq))
test.li.recstat(rec)

toyaa A toy example of amino-acid counts in three proteins

Description

This is a toy data set to illustrate the importance of metric choice.

Usage

data(toyaa)

toycodon 203

Format

A data frame with 3 observations on the following 3 variables:

Ala Alanine counts

Val Valine counts

Cys Cysteine counts

Source

This toy example was inspired by Gautier, C: Analyses statistiques et évolution des séquences
d’acides nucléiques. PhD thesis (1987), Université Claude Bernard - Lyon I.

References

citation("seqinr")

Examples

data(toyaa)

toycodon A toy example of codon counts in three coding sequences

Description

This is a toy data set to illustrate synonymous and non-synonymous codon usage analyses.

Usage

data(toyaa)

Format

A data frame with 3 observations (coding sequences) for 10 codons.

Source

Created for release 1.0-4 of seqinr’s vignette.

References

citation("seqinr")

Examples

data(toycodon)

204 translate

translate Translate nucleic acid sequences into proteins

Description

This function translates nucleic acid sequences into the corresponding peptide sequence. It can
translate in any of the 3 forward or three reverse sense frames. In the case of reverse sense, the
reverse-complement of the sequence is taken. It can translate using the standard (universal) genetic
code and also with non-standard codes. Ambiguous bases can also be handled.

Usage

translate(seq, frame = 0, sens = "F", numcode = 1, NAstring = "X", ambiguous = FALSE)

Arguments

seq the sequence to translate as a vector of single characters in lower case letters.

frame Frame(s) (0,1,2) to translate. By default the frame 0 is used.

sens Sense to translate: F for forward sense and R for reverse sense.

numcode The ncbi genetic code number for translation. By default the standard genetic
code is used.

NAstring How to translate amino-acids when there are ambiguous bases in codons.

ambiguous If TRUE, ambiguous bases are taken into account so that for instance GGN is
translated to Gly in the standard genetic code.

Details

The following genetic codes are described here. The number preceding each code corresponds to
numcode.

1 standard

2 vertebrate.mitochondrial

3 yeast.mitochondrial

4 protozoan.mitochondrial+mycoplasma

5 invertebrate.mitochondrial

6 ciliate+dasycladaceal

9 echinoderm+flatworm.mitochondrial

10 euplotid

11 bacterial+plantplastid

12 alternativeyeast

13 ascidian.mitochondrial

14 alternativeflatworm.mitochondrial

translate 205

15 blepharism

16 chlorophycean.mitochondrial

21 trematode.mitochondrial

22 scenedesmus.mitochondrial

23 thraustochytrium.mitochondria

24 Pterobranchia.mitochondrial

25 CandidateDivision.SR1+Gracilibacteria

26 Pachysolen.tannophilus

Value

translate returns a vector of single characters containing the peptide sequence in the standard
one-letter IUPAC code. Termination (STOP) codons are translated by the character ’*’.

Author(s)

D. Charif, J.R. Lobry

References

The genetic codes have been taken from the ncbi taxonomy database: https://www.ncbi.nlm.
nih.gov/Taxonomy/Utils/wprintgc.cgi. Last update October 05, 2000.
The IUPAC one-letter code for aminoacids is described at: https://www.bioinformatics.org/
sms/iupac.html

citation("seqinr")

See Also

Use tolower to change upper case letters into lower case letters. For coding sequences obtained
from an ACNUC server with query it’s better to use the function getTrans so that the relevant
genetic code and the relevant frame are automatically used. The genetic codes are given in the
object SEQINR.UTIL, a more human readable form is given by the function tablecode. Use aaa to
get the three-letter code for amino-acids.

Examples

##
Toy CDS example invented by Leonor Palmeira:
##
toycds <- s2c("tctgagcaaataaatcgg")
translate(seq = toycds) # should be c("S", "E", "Q", "I", "N", "R")
##
Toy CDS example with ambiguous bases:
##
toycds2 <- s2c("tcngarcarathaaycgn")
translate(toycds2) # should be c("X", "X", "X", "X", "X", "X")
translate(toycds2, ambiguous = TRUE) # should be c("S", "E", "Q", "I", "N", "R")
translate(toycds2, ambiguous = TRUE, numcode = 2) # should be c("S", "E", "Q", "X", "N", "R")

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
https://www.bioinformatics.org/sms/iupac.html
https://www.bioinformatics.org/sms/iupac.html

206 translate

##
Real CDS example:
##
realcds <- read.fasta(file = system.file("sequences/malM.fasta", package ="seqinr"))[[1]]
translate(seq = realcds)
Biologically correct, only one stop codon at the end
translate(seq = realcds, frame = 3, sens = "R", numcode = 6)
Biologically meaningless, note the in-frame stop codons

Read from an alignment as suggested by Dr. H. Suzuki
fasta.res <- read.alignment(file = system.file("sequences/Anouk.fasta", package = "seqinr"),
format = "fasta")

AA1 <- seqinr::getTrans(s2c(fasta.res$seq[[1]]))
AA2 <- seqinr::translate(s2c(fasta.res$seq[[1]]))
identical(AA1, AA2)

AA1 <- lapply(fasta.res$seq, function(x) seqinr::getTrans(s2c(x)))
AA2 <- lapply(fasta.res$seq, function(x) seqinr::translate(s2c(x)))
identical(AA1, AA2)

Not run:
Need internet connection.
Translation of the following EMBL entry:
##
FT CDS join(complement(153944..154157),complement(153727..153866),
FT complement(152185..153037),138523..138735,138795..138955)
FT /codon_start=1
FT /db_xref="FLYBASE:FBgn0002781"
FT /db_xref="GOA:Q86B86"
FT /db_xref="TrEMBL:Q86B86"
FT /note="mod(mdg4) gene product from transcript CG32491-RZ;
FT trans splicing"
FT /gene="mod(mdg4)"
FT /product="CG32491-PZ"
FT /locus_tag="CG32491"
FT /protein_id="AAO41581.1"
FT /translation="MADDEQFSLCWNNFNTNLSAGFHESLCRGDLVDVSLAAEGQIVKA
FT HRLVLSVCSPFFRKMFTQMPSNTHAIVFLNNVSHSALKDLIQFMYCGEVNVKQDALPAF
FT ISTAESLQIKGLTDNDPAPQPPQESSPPPAAPHVQQQQIPAQRVQRQQPRASARYKIET
FT VDDGLGDEKQSTTQIVIQTTAAPQATIVQQQQPQQAAQQIQSQQLQTGTTTTATLVSTN
FT KRSAQRSSLTPASSSAGVKRSKTSTSANVMDPLDSTTETGATTTAQLVPQQITVQTSVV
FT SAAEAKLHQQSPQQVRQEEAEYIDLPMELPTKSEPDYSEDHGDAAGDAEGTYVEDDTYG
FT DMRYDDSYFTENEDAGNQTAANTSGGGVTATTSKAVVKQQSQNYSESSFVDTSGDQGNT
FT EAQVTQHVRNCGPQMFLISRKGGTLLTINNFVYRSNLKFFGKSNNILYWECVQNRSVKC
FT RSRLKTIGDDLYVTNDVHNHMGDNKRIEAAKAAGMLIHKKLSSLTAADKIQGSWKMDTE
FT GNPDHLPKM"
choosebank("emblTP")
trans <- query("trans", "N=AE003734.PE35")
trans1 <- getTrans(trans$req[[1]])
Complex transsplicing operations, the correct frame and the correct
genetic code are automatically used for translation into protein.
seq <- getSequence(trans$req[[1]])

trimSpace 207

identical(translate(seq),trans1)
#default frame and genetic code are correct
trans <- query("trans", "N=AB004237")
trans1 <- getTrans(trans$req[[1]])
Complex transsplicing operations, the correct frame and the correct
genetic code are automatically used for translation into protein.
seq <- getSequence(trans$req[[1]])
identical(translate(seq),trans1)
#default genetic code is not correct
identical(translate(seq,numcode=2),trans1)
#genetic code is 2

End(Not run)

trimSpace Trim leading and/or trailing spaces in strings

Description

This function removes from a character vector the longest successive run of space characters starting
at the begining of the strings (leading space), or the longest successive run of space characters at
the end of the strings (trailing space), or both (and this is the default behaviour).

Usage

trimSpace(x, leading = TRUE, trailing = TRUE, space = "[:space:]")

Arguments

x a character vector

leading logical defaulting to TRUE: should leading spaces be trimed off?

trailing logical defaulting to TRUE: should trailing spaces be trimed off?

space an extended regular expression defining space characters

Details

The default value for the space character definition is large: in addition to the usual space, other
character such as the tabulation and newline character are considered as space characters. See
extended regular expression for a complete list.

Value

a character vector with the same length as x.

Author(s)

J.R. Lobry

208 trimSpace

References

citation("seqinr").

See Also

Extended regular expressionsare described in regular expression (aka regexp).

Examples

#
Simple use:
#

stopifnot(trimSpace(" seqinR ") == "seqinR")

#
Basic use, remove space at both ends:
#

testspace <- c(" with leading space", "with trailing space ", " with both ")
stopifnot(all(trimSpace(testspace) == c("with leading space",

"with trailing space",
"with both")))

#
Remove only leading space:
#

stopifnot(all(trimSpace(testspace, trailing = FALSE) == c("with leading space",
"with trailing space ",

"with both ")))

#
Remove only trailing space:
#

stopifnot(all(trimSpace(testspace, leading = FALSE) == c(" with leading space",
"with trailing space",

" with both")))

#
This should do nothing:
#

stopifnot(all(trimSpace(testspace, leading = FALSE, trailing = FALSE) == testspace))

#
How to use alternative space characters:
#

allspaces <- "\t\n\f\r seqinR \t\n\f\r"
stopifnot(trimSpace(allspaces) == "seqinR")
stopifnot(trimSpace(allspaces, space = "\t\n") == "\f\r seqinR \t\n\f\r")

uco 209

uco Codon usage indices

Description

uco calculates some codon usage indices: the codon counts eff, the relative frequencies freq or
the Relative Synonymous Codon Usage rscu.

Usage

uco(seq, frame = 0, index = c("eff", "freq", "rscu"), as.data.frame = FALSE,
NA.rscu = NA)

Arguments

seq a coding sequence as a vector of chars

frame an integer (0, 1, 2) giving the frame of the coding sequence

index codon usage index choice, partial matching is allowed. eff for codon counts,
freq for codon relative frequencies, and rscu the RSCU index.

"eff", "freq", and "rscu" correspond to "R0", "R1", and "R3", respectively, in
Suzuki et al. (2005) "2.2 Normalization of codon usage data".

"eff" and "rscu" correspond to "AF" and "RSCU", respectively, in Suzuki et al.
(2008) "2.2. Definitions of codon usage data".

as.data.frame logical. If TRUE: all indices are returned into a data frame.

NA.rscu when an amino-acid is missing, RSCU are no more defined and repported as
missing values (NA). You can force them to another value (typically 0 or 1) with
this argument.

Details

Codons with ambiguous bases are ignored.

RSCU is a simple measure of non-uniform usage of synonymous codons in a coding sequence
(Sharp et al. 1986). RSCU values are the number of times a particular codon is observed, relative to
the number of times that the codon would be observed for a uniform synonymous codon usage (i.e.
all the codons for a given amino-acid have the same probability). In the absence of any codon usage
bias, the RSCU values would be 1.00 (this is the case for sequence cds in the exemple thereafter).
A codon that is used less frequently than expected will have an RSCU value of less than 1.00 and
vice versa for a codon that is used more frequently than expected.

Do not use correspondence analysis on RSCU tables as this is a source of artifacts (Perrière and
Thioulouse 2002, Suzuki et al. 2008). Within-aminoacid correspondence analysis is a simple way

210 uco

to study synonymous codon usage (Charif et al. 2005). For an introduction to correspondence anal-
ysis and within-aminoacid correspondence analysis see the chapter titled Multivariate analyses in
the seqinR manual that ships with the seqinR package in the doc folder. You can also use internal
correspondence analysis if you want to analyze simultaneously a row-block structure such as the
within and between species variability (Lobry and Chessel 2003).

If as.data.frame is FALSE, uco returns one of these:

eff a table of codon counts

freq a table of codon relative frequencies

rscu a numeric vector of relative synonymous codon usage values

If as.data.frame is TRUE, uco returns a data frame with five columns:

aa a vector containing the name of amino-acid

codon a vector containing the corresponding codon

eff a numeric vector of codon counts

freq a numeric vector of codon relative frequencies

rscu a numeric vector of RSCU index

Value

If as.data.frame is FALSE, the default, a table for eff and freq and a numeric vector for rscu.
If as.data.frame is TRUE, a data frame with all indices is returned.

Author(s)

D. Charif, J.R. Lobry, G. Perrière

References

citation("seqinr")

Sharp, P.M., Tuohy, T.M.F., Mosurski, K.R. (1986) Codon usage in yeast: cluster analysis clearly
differentiates highly and lowly expressed genes. Nucl. Acids. Res., 14:5125-5143.

Perrière, G., Thioulouse, J. (2002) Use and misuse of correspondence analysis in codon usage stud-
ies. Nucl. Acids. Res., 30:4548-4555.

Lobry, J.R., Chessel, D. (2003) Internal correspondence analysis of codon and amino-acid usage
in thermophilic bacteria. Journal of Applied Genetics, 44:235-261. http://jag.igr.poznan.pl/
2003-Volume-44/2/pdf/2003_Volume_44_2-235-261.pdf.

Charif, D., Thioulouse, J., Lobry, J.R., Perrière, G. (2005) Online Synonymous Codon Usage Anal-
yses with the ade4 and seqinR packages. Bioinformatics, 21:545-547. https://pbil.univ-lyon1.
fr/members/lobry/repro/bioinfo04/.

http://jag.igr.poznan.pl/2003-Volume-44/2/pdf/2003_Volume_44_2-235-261.pdf
http://jag.igr.poznan.pl/2003-Volume-44/2/pdf/2003_Volume_44_2-235-261.pdf
https://pbil.univ-lyon1.fr/members/lobry/repro/bioinfo04/
https://pbil.univ-lyon1.fr/members/lobry/repro/bioinfo04/

ucoweight 211

Suzuki, H., Saito, R. Tomita, R. (2005) A problem in multivariate analysis of codon usage data and
a possible solution. FEBS Lett., 579:6499-504. https://www.thermofisher.com/de/de/home/
brands/applied-biosystems.html.

Suzuki, H., Brown, C.J., Forney, L.J., Top, E. (2008) Comparison of Correspondence Analy-
sis Methods for Synonymous Codon Usage in Bacteria. DNA Research, 15:357-365. https:
//academic.oup.com/dnaresearch/article/15/6/357/513030.

Examples

Show all possible codons:
words()

Make a coding sequence from this:
(cds <- s2c(paste(words(), collapse = "")))

Get codon counts:
uco(cds, index = "eff")

Get codon relative frequencies:
uco(cds, index = "freq")

Get RSCU values:
uco(cds, index = "rscu")

Show what happens with ambiguous bases:
uco(s2c("aaannnttt"))

Use a real coding sequence:
rcds <- read.fasta(file = system.file("sequences/malM.fasta", package = "seqinr"))[[1]]
uco(rcds, index = "freq")
uco(rcds, index = "eff")
uco(rcds, index = "rscu")
uco(rcds, as.data.frame = TRUE)

Show what happens with RSCU when an amino-acid is missing:
ecolicgpe5 <- read.fasta(file = system.file("sequences/ecolicgpe5.fasta",package="seqinr"))[[1]]
uco(ecolicgpe5, index = "rscu")

Force NA to zero:
uco(ecolicgpe5, index = "rscu", NA.rscu = 0)

ucoweight Weight of each synonymous codon

Description

Returns a list containing, for each of the 20 amino acids + STOP codon, the codon usage bias of
each of the synonymous codon according to a given codon sequence.

https://www.thermofisher.com/de/de/home/brands/applied-biosystems.html
https://www.thermofisher.com/de/de/home/brands/applied-biosystems.html
https://academic.oup.com/dnaresearch/article/15/6/357/513030
https://academic.oup.com/dnaresearch/article/15/6/357/513030

212 waterabs

Usage

ucoweight(sequence, numcode = 1)

Arguments

sequence A nucleic acids sequence

numcode The genetic code number as in translate

Value

a list containing, for each of the 20 amino acids and STOP codon (list tags), the weight of each
synonymous codon (including the original one).

Author(s)

L. Palmeira

References

citation("seqinr")

See Also

synsequence

Examples

data(ec999)
ucoweight(ec999[1][[1]])

waterabs Light absorption by the water column

Description

The absorption of light by water is highly dependent on the wavelength, this dataset gives the
absorption coefficients from 200 to 700 nm.

Usage

data(waterabs)

Format

A data.frame with 2 columns:

lambda wavelength in nm

abs absorption coefficient in 1/cm

waterabs 213

Source

Data were compiled by Palmeira (2007) from the cited references.

The example section allows to reproduce the left part of figure 2.7 from Palmeira (2007):

References

Palmeira, L. (2007) Analyse et modélisation des dépendances entre sites voisins dans l’évolution
des séquences d’ADN, PhD thesis, Université Claude Bernard - Lyon I.

Litjens R. A., Quickenden T. I. and Freeman C. G. (1999). Visible and near-ultraviolet absorption
spectrum of liquid water. Applied Optics, 38:1216-1223.

Quickenden T. I. & Irvin J. A. (1980). The ultraviolet absorption spectrum of liquid water. The
Journal of Chemical Physics, 72:4416-4428.

citation("seqinr")

Examples

data(waterabs)

d <- 100*seq(from = 0, to = 150, by = 1) # depth in cm
lambda <- waterabs$lambda # wavelength in nm
abs <- waterabs$absorption # absorption coefficient cm-1
#
Smooth signal with cubic splines
#

tmp <- spline(lambda, abs, n = 255)
lambda <- tmp$x

214 where.is.this.acc

abs <- tmp$y

zun <- sapply(abs,function(x) 10^(-x*d))
z <- sapply(nrow(zun):1, function(x) zun[x,])

#
Set up world coordinates:
#

plot.new()
plot.window(xlim = range(lambda), ylim = range(d), xaxs = "i", yaxs = "i")

#
Annotate:
#

title(ylab = 'Depth under water surface (m)', xlab = "Wavelength (nm)",
main = "Light absorption by the water column")
axis(2 , at = seq(0, 15000, l = 7),

labels = rev(c("0","25","50","75","100","125","150")), las = 1)
axis(1,at=(3:6)*100,labels= TRUE)

#
Show me rainbow colors:
#

alpha <- 1
coul=c(rep(rgb(1,1,1, alpha = alpha), 181),

rev(hsv(h=seq(0,5/6,l=320),alpha = alpha)))
rect(seq(200,699), 0, seq(201,700), 15000 , col = coul, border = coul)

#
Grey scale:
#

ngris <- 5
image(x = lambda, y = d, z = z, col = rgb(1:ngris, 1:ngris, 1:ngris, alpha = 0.7*(ngris:1),
max = ngris),
axes = F, add = TRUE,
breaks = seq(from = min(z), to = max(z), length = ngris + 1))

#
Contour lines:
#

contour(x = lambda, y = d, z = z, add = TRUE, drawlabels = TRUE,labcex= 0.75,
col='black',
levels = seq(from = min(z), to = max(z), length = ngris + 1))
box()

where.is.this.acc Scans databases for a given sequence accession number

Description

This function loops over all availabale ACNUC databases to look for a given sequence accession
number. This is useful when you have a sequence accession number and you don’t know in which
database it is present.

words 215

Usage

where.is.this.acc(acc, stopAtFirst = TRUE, ...)

Arguments

acc An accession number as a string of characters such as "NC_001416".

stopAtFirst Logical. If TRUE, the default, the function stops at the first database where the
accession number is found.

... Arguments passed to the function choosebank.

Value

The function resturns invisibly a vector of strings of characters for the names of the ACNUC
databases in which the accession number was found.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

choosebank to open a given ACNUC database.

Examples

Not run: # Need internet connection
where.is.this.acc("NC_001416") # first found in phever2dna bank (2016-06-01)

End(Not run)

words To get all words from an alphabet.

Description

Generates a vectors of all the words from a given alphabet, with right positions varying faster, for
instance if the alphabet is (c("0","1") and the length is 2 you will obtain c("00", "01", "10",
"11")

Usage

words(length = 3, alphabet = s2c("acgt"))

216 words

Arguments

length the number of characters in the words

alphabet a vector of characters

Value

A vector of string whith length characters.

Author(s)

J.R. Lobry

References

citation("seqinr")

See Also

kronecker, outer

Examples

#
Get all 64 codons:
#
stopifnot(all(words() ==
c("aaa", "aac", "aag", "aat", "aca", "acc", "acg", "act", "aga", "agc", "agg",

"agt", "ata", "atc", "atg", "att","caa", "cac", "cag", "cat", "cca", "ccc",
"ccg", "cct", "cga", "cgc", "cgg", "cgt", "cta", "ctc", "ctg", "ctt", "gaa",
"gac", "gag", "gat", "gca", "gcc", "gcg", "gct", "gga", "ggc", "ggg", "ggt",
"gta", "gtc", "gtg", "gtt", "taa", "tac", "tag", "tat", "tca", "tcc", "tcg",
"tct", "tga", "tgc", "tgg", "tgt", "tta", "ttc", "ttg", "ttt")))

#
Get all codons with u c a g for bases:
#
words(alphabet = s2c("ucag"))
#
Get all tetranucleotides:
#
words(length = 4)
#
Get all dipeptides:
#
words(length = 2, alphabet = a()[-1])

words.pos 217

words.pos Positions of possibly degenerated motifs within sequences

Description

word.pos searches all the occurences of the motif pattern within the sequence text and returns
their positions. This function is based on regexp allowing thus for complex motif searches. The
main difference with gregexpr is that non disjoint matches are reported here.

Usage

words.pos(pattern, text, ignore.case = FALSE,
perl = TRUE, fixed = FALSE, useBytes = TRUE, ...)

Arguments

pattern character string containing a regular expression (or character string for fixed =
TRUE) to be matched in the given character vector.

text a character vector where matches are sought.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

perl logical. Should perl-compatible regexps be used if available? Has priority over
extended.

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting
arguments.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character.

... arguments passed to regexpr.

Details

Default parameter values have been tuned for speed when working biological sequences.

Value

a vector of positions for which the motif pattern was found in the sequence text.

Author(s)

J.R. Lobry

References

citation("seqinr")

218 write.fasta

See Also

regexpr

Examples

myseq <- "tatagaga"
words.pos("t", myseq) # Should be 1 3
words.pos("tag", myseq) # Should be 3
words.pos("ga", myseq) # Should be 5 7
How to specify ambiguous base ? Look for YpR motifs by
words.pos("[ct][ag]", myseq) # Should be 1 3
#
Show the difference with gregexpr:
#
words.pos("toto", "totototo") # 1 3 5 (three overlapping matches)
unlist(gregexpr("toto", "totototo")) # 1 5 (two disjoint matches)

write.fasta Write sequence(s) into a file in fasta format

Description

Writes one or more sequences into a file in FASTA format.

Usage

write.fasta(sequences, names, file.out, open = "w", nbchar = 60, as.string = FALSE)

Arguments

sequences A DNA or protein sequence (in the form of a vector of single characters by
default) or a list of such sequences.

as.string FALSE. When set to TRUE sequences are in the form of strings instead of vec-
tors of single characters.

names The name(s) of the sequences.

nbchar The number of characters per line (default: 60)

file.out The name of the output file.

open Mode to open the output file, use "w" to write into a new file, use "a" to append
at the end of an already existing file.

Value

none.

Author(s)

A. Necşulea

write.fasta 219

References

citation("seqinr")

See Also

read.fasta

Examples

Read 3 sequences from a FASTA file:
ortho <- read.fasta(file = system.file("sequences/ortho.fasta", package =
"seqinr"))

Select only third codon positions:
ortho3 <- lapply(ortho, function(x) x[seq(from = 3, to = length(x), by = 3)])

Write the 3 modified sequences to a file:
fname <- tempfile(pattern = "ortho3", tmpdir = tempdir(), fileext = "fasta")
#write.fasta(sequences = ortho3, names = names(ortho3), nbchar = 80, file.out = "ortho3.fasta")
write.fasta(sequences = ortho3, names = names(ortho3), nbchar = 80, file.out = fname)

Read them again from the same file and check that sequences are preserved:
ortho3bis <- read.fasta(fname, set.attributes = FALSE)
stopifnot(identical(ortho3bis, ortho3))

Index

∗ correspondence analysis
draw.recstat, 71
recstat, 173
test.co.recstat, 200
test.li.recstat, 201

∗ datasets
aacost, 8
aaindex, 10
AnoukResult, 30
caitab, 38
chargaff, 39
clustal, 46
dinucl, 60
ec999, 72
EXP, 74
fasta, 80
kaksTorture, 121
m16j, 124
mase, 126
msf, 130
phylip, 139
pK, 139
revaligntest, 176
toyaa, 202
toycodon, 203
waterabs, 212

∗ hplot
dotchart.uco, 65
draw.oriloc, 68
plot.SeqAcnucWeb, 141

∗ manip
choosebank, 42
closebank, 45
computePI, 49
count, 52
dist.alignment, 64
G+C Content, 85
print.SeqAcnucWeb, 151
reverse.align, 176

rot13, 179
splitseq, 190
translate, 204
trimSpace, 207
uco, 209

∗ package
seqinr-package, 5

∗ sequence
draw.recstat, 71
recstat, 173
test.co.recstat, 200
test.li.recstat, 201

∗ utilities
a, 5
aaa, 6
AAstat, 23
acnucopen, 24
alllistranks, 27
amb, 28
autosocket, 32
c2s, 35
countfreelists, 54
countsubseqs, 56
crelistfromclientdata, 57
dia.bactgensize, 59
dotPlot, 66
extract.breakpoints, 77
extractseqs, 78
gb2fasta, 89
gbk2g2, 90
gbk2g2.euk, 91
get.db.growth, 94
getAnnot, 96
getFrag, 97
getKeyword, 99
getLength, 100
getlistrank, 101
getliststate, 102
getLocation, 104

220

INDEX 221

getName, 105
getSequence, 106
getTrans, 108
getType, 111
ghelp, 113
isenum, 116
knowndbs, 122
lseqinr, 124
modifylist, 127
n2s, 131
parser.socket, 135
permutation, 137
pmw, 146
prepgetannots, 148
prettyseq, 149
query, 154
readfirstrec, 167
readsmj, 169
rearranged.oriloc, 171
residuecount, 175
s2c, 180
s2n, 181
savelist, 182
SeqAcnucWeb, 183
SeqFastaAA, 184
SeqFastadna, 185
SeqFrag, 186
setlistname, 188
syncodons, 195
synsequence, 197
tablecode, 198
ucoweight, 211
words, 215
write.fasta, 218

.Machine, 162

.Platform, 162

.seqinrEnv (choosebank), 42

a, 5, 7, 147
aaa, 6, 6, 66, 109, 147, 205
aacost, 8
aaindex, 10
AAstat, 23
acnucclose (acnucopen), 24
acnucopen, 24
al2bp, 26
alllistranks, 27
alr, 103
alr (alllistranks), 27

amb, 28, 35
AnoukResult, 30
as.alignment, 30
as.matrix.alignment, 31, 31, 161
as.SeqAcnucWeb (SeqAcnucWeb), 183
as.SeqFastaAA (SeqFastaAA), 184
as.SeqFastadna (SeqFastadna), 185
as.SeqFrag (SeqFrag), 186
autosocket, 32

baselineabif, 33, 136, 192
bma, 29, 34, 51

c2s, 35, 96, 147, 180
cai, 36, 38, 39
caitab, 37, 38
cfl (countfreelists), 54
chargaff, 39
chartr, 179
choosebank, 24, 25, 28, 33, 42, 46, 55, 56, 58,

80, 98, 99, 102–104, 111, 112, 114,
117, 122, 123, 128, 135, 150, 157,
168, 170, 175, 183, 189, 215

circle, 44
clfcd, 155, 156, 183
clfcd (crelistfromclientdata), 57
clientid (acnucopen), 24
closebank, 24, 25, 45
clustal, 46
col2alpha, 47
col2rgb, 47
colors, 47
comp, 48
computePI, 24, 49
con (consensus), 50
connection, 44
connections, 33
consensus, 50
count, 52
countfreelists, 54, 148, 149
countsubseqs, 56
crelistfromclientdata, 57, 157
css (countsubseqs), 56

density, 60
dia.bactgensize, 59
dia.db.growth (get.db.growth), 94
dimnames, 53
dinucl, 60

222 INDEX

dinucleotides, 62
dist.alignment, 31, 64, 161
dotchart, 65, 66
dotchart.uco, 65
dotPlot, 66
download.file, 132
draw.oriloc, 68, 134
draw.rearranged.oriloc, 70, 78, 172
draw.recstat, 71, 174

ec999, 72
ECH, 73, 118, 137, 143, 144
EXP, 74
exseq (extractseqs), 78
extract.breakpoints, 69, 71, 77, 172
extractseqs, 78

factor, 181
FASTA (read.fasta), 161
fasta, 80
fastacc, 81
file.choose, 132
file.copy, 132
file.info, 157, 158

G+C Content, 85
gb2fasta, 89, 132, 163
gbk2g2, 90, 92, 132
gbk2g2.euk, 91, 91
GC (G+C Content), 85
gc, 86
GC1 (G+C Content), 85
GC2 (G+C Content), 85
GC3 (G+C Content), 85
gcO2, 92
GCpos (G+C Content), 85
gcT, 93
get.db.growth, 94
getAnnot, 96, 148, 149
getAttributsocket (isenum), 116
getFrag, 97, 186, 187
getKeyword, 99
getLength, 100, 187
getlistrank, 80, 101
getliststate, 102
getLocation, 104
getName, 105, 157, 187
getNumber.socket (isenum), 116
getSequence, 106, 157, 187

getTrans, 108, 187, 205
getType, 111, 142
getwd, 132, 159, 162
gfrag, 112
ghelp, 113
gln (getliststate), 102
glr, 56, 103, 175, 183, 189
glr (getlistrank), 101
gls (getliststate), 102
gregexpr, 217
gs500liz, 74, 114, 118, 137, 143, 144

identifiler, 27, 74, 115, 118, 137, 143, 144
image, 67
integer, 81
is.SeqAcnucWeb (SeqAcnucWeb), 183
is.SeqFastaAA (SeqFastaAA), 184
is.SeqFastadna (SeqFastadna), 185
is.SeqFrag (SeqFrag), 186
isenum, 116
isn (isenum), 116

JLO, 33, 74, 117, 137, 143, 144, 158, 193

kaks, 30, 118
kaksTorture, 120, 121
kdb (knowndbs), 122
knowndbs, 122
kronecker, 216

lseqinr, 124

m16j, 124
mase, 126
modifylist, 127, 148, 149
move, 129, 194
msf, 130
mv (move), 129

n2s, 131, 181
NA, 26

oriloc, 69, 78, 89, 91, 92, 132, 172
outer, 216

parser.socket, 135
peakabif, 33, 136, 144, 192, 193
permutation, 62, 63, 137
pga (prepgetannots), 148
phylip, 139

INDEX 223

pK, 139
plot, 136, 143
plot.SeqAcnucWeb, 141
plotabif, 33, 137, 142, 144
plotladder, 144
plotPanels, 145, 169
pmw, 146
polygon, 44, 45
prepgetannots, 96, 128, 148
prettyseq, 149
print, 151, 152
print.qaw, 150
print.SeqAcnucWeb, 151
prochlo, 152

query, 28, 42, 44, 55, 56, 58, 80, 96, 99,
102–104, 106, 108, 111, 112, 114,
117, 128, 135, 142, 150, 154, 175,
183, 189, 205

quitacnuc (acnucopen), 24

raw, 81
read.abif, 74, 118, 136, 137, 142–144, 157,

192
read.alignment, 31, 32, 51, 64, 119, 120,

159, 163, 177, 178
read.fasta, 31, 159, 161, 161, 177, 178, 219
readAnnots.socket (getAnnot), 96
readBin, 157, 158
readBins, 165, 169
readfasta (read.fasta), 161
readfirstrec, 167, 170
readPanels, 145, 146, 166, 168
readsmj, 169
rearranged.oriloc, 69, 71, 78, 134, 171
recstat, 173
regexp, 208
regexpr, 217, 218
regular expression, 208, 217
residuecount, 175
rev, 48
revaligntest, 176
reverse.align, 31, 119, 120, 161, 163, 176,

176
rgb, 47
rho, 53
rho (dinucleotides), 62
rot13, 179
rscu (uco), 209

s2c, 35, 86, 147, 180, 191
s2n, 131, 181
savelist, 58, 182
SeqAcnucWeb, 96, 98–101, 104–109, 183
SeqFastaAA, 24, 98, 100, 101, 105–107, 184
SeqFastadna, 98, 100, 101, 105–109, 185
SeqFrag, 98, 100, 101, 105–109, 186
seqinr (seqinr-package), 5
seqinr-package, 5
SEQINR.UTIL, 24, 50, 109, 187, 205
setlistname, 188
socketConnection, 42, 44
splinefun, 136, 192
split, 190
splitseq, 190
stresc, 191
strsplit, 26
stutterabif, 192
summary.SeqFastaAA (SeqFastaAA), 184
summary.SeqFastadna (SeqFastadna), 185
swap, 129, 194
syncodons, 195, 199
synsequence, 138, 195, 197, 212

table, 53
tablecode, 109, 198, 205
test.co.recstat, 72, 174, 200, 202
test.li.recstat, 72, 174, 201, 201
tolower, 29, 86, 205
toupper, 35
toyaa, 202
toycodon, 203
translate, 6, 7, 36, 66, 96, 199, 204
trimSpace, 207

uco, 37, 66, 209
ucoweight, 198, 211
unclass, 181

waterabs, 212
where.is.this.acc, 44, 214
words, 215
words.pos, 217
write.fasta, 31, 161, 163, 178, 218

zscore, 53, 61, 153
zscore (dinucleotides), 62

	seqinr-package
	a
	aaa
	aacost
	aaindex
	AAstat
	acnucopen
	al2bp
	alllistranks
	amb
	AnoukResult
	as.alignment
	as.matrix.alignment
	autosocket
	baselineabif
	bma
	c2s
	cai
	caitab
	chargaff
	choosebank
	circle
	closebank
	clustal
	col2alpha
	comp
	computePI
	consensus
	count
	countfreelists
	countsubseqs
	crelistfromclientdata
	dia.bactgensize
	dinucl
	dinucleotides
	dist.alignment
	dotchart.uco
	dotPlot
	draw.oriloc
	draw.rearranged.oriloc
	draw.recstat
	ec999
	ECH
	EXP
	extract.breakpoints
	extractseqs
	fasta
	fastacc
	G+C Content
	gb2fasta
	gbk2g2
	gbk2g2.euk
	gcO2
	gcT
	get.db.growth
	getAnnot
	getFrag
	getKeyword
	getLength
	getlistrank
	getliststate
	getLocation
	getName
	getSequence
	getTrans
	getType
	gfrag
	ghelp
	gs500liz
	identifiler
	isenum
	JLO
	kaks
	kaksTorture
	knowndbs
	lseqinr
	m16j
	mase
	modifylist
	move
	msf
	n2s
	oriloc
	parser.socket
	peakabif
	permutation
	phylip
	pK
	plot.SeqAcnucWeb
	plotabif
	plotladder
	plotPanels
	pmw
	prepgetannots
	prettyseq
	print.qaw
	print.SeqAcnucWeb
	prochlo
	query
	read.abif
	read.alignment
	read.fasta
	readBins
	readfirstrec
	readPanels
	readsmj
	rearranged.oriloc
	recstat
	residuecount
	revaligntest
	reverse.align
	rot13
	s2c
	s2n
	savelist
	SeqAcnucWeb
	SeqFastaAA
	SeqFastadna
	SeqFrag
	SEQINR.UTIL
	setlistname
	splitseq
	stresc
	stutterabif
	swap
	syncodons
	synsequence
	tablecode
	test.co.recstat
	test.li.recstat
	toyaa
	toycodon
	translate
	trimSpace
	uco
	ucoweight
	waterabs
	where.is.this.acc
	words
	words.pos
	write.fasta
	Index

