Title: | Customizing Structural Equation Modelling Plots |
Version: | 0.3.2 |
Description: | Most function focus on specific ways to customize a graph. They use a 'qgraph' output as the first argument, and return a modified 'qgraph' object. This allows the functions to be chained by a pipe operator. |
URL: | https://sfcheung.github.io/semptools/ |
BugReports: | https://github.com/sfcheung/semptools/issues |
Depends: | R (≥ 4.1.0) |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
Imports: | lavaan, rlang, semPlot |
Suggests: | testthat (≥ 2.1.0), knitr, rmarkdown, magrittr |
RoxygenNote: | 7.3.2 |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2025-07-12 01:35:22 UTC; shufa |
Author: | Shu Fai Cheung |
Maintainer: | Shu Fai Cheung <shufai.cheung@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-07-12 08:20:02 UTC |
semptools: Customizing Structural Equation Modelling Plots
Description
Most function focus on specific ways to customize a graph. They use a 'qgraph' output as the first argument, and return a modified 'qgraph' object. This allows the functions to be chained by a pipe operator.
Author(s)
Maintainer: Shu Fai Cheung shufai.cheung@gmail.com (ORCID)
Authors:
Mark Hok Chio Lai marklhc@gmail.com (ORCID)
See Also
Useful links:
Add a Fit Object to a 'qgraph' Object
Description
Add a fit object (e.g., 'lavaan' output) to the a 'qgraph' object as an attribute.
Usage
add_object(semPaths_plot, object)
Arguments
semPaths_plot |
A
qgraph::qgraph object generated by
|
object |
Should be the object,
such as the output of |
Details
It adds an object to
a qgraph::qgraph object as the
attribute "semptools_fit_object"
,
to be retrieved by other functions
that need to access the original
output used in semPlot::semPaths()
to create a diagram.
Value
The original qgraph::qgraph object
set to semPaths_plot
, with the
attribute "semptools_fit_object"
set to object
.
See Also
Examples
library(lavaan)
library(semPlot)
mod <-
'f1 =~ x01 + x02 + x03 + x06
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10 + x03
f4 =~ x11 + x12 + x13 + x14
'
fit <- lavaan::cfa(mod, cfa_example)
p <- semPaths(fit,
whatLabels = "est",
sizeMan = 3.25,
node.width = 1,
edge.label.cex = .75,
mar = c(10, 5, 10, 5),
DoNotPlot = TRUE)
p <- add_object(p, fit)
attr(p, "semptools_fit_object")
Add R-Squares to Endogenous Variables
Description
Replace the residual variances of exogenous variables by their R-squares in a qgraph::qgraph object.
Usage
add_rsq(semPaths_plot, object, digits = 2L, rsq_string = "R2=", ests = NULL)
Arguments
semPaths_plot |
A qgraph object generated by
|
object |
The object used by semPaths to generate the plot. Use
the same argument name used in |
digits |
Integer indicating number of decimal places for the R-squares. Default is 2L. |
rsq_string |
The string before the
R-squares. Default is |
ests |
A data.frame from the
|
Details
Modify a qgraph::qgraph object generated by
semPaths
by setting the labels
of the residuals of endogenous variables to their
R-squares.
Require either the original object used in the semPaths call, or a data frame with the R-square for each endogenous variable.
Currently supports only plots based on lavaan
output.
Value
If the input is a qgraph::qgraph object, the function returns a qgraph based on the original one, with R-squares added. If the input is a list of qgraph objects, the function returns a list of the same length.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[ , c("lhs", "op", "rhs",
"est", "pvalue", "se")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
p_pa2 <- add_rsq(p_pa, fit_pa)
plot(p_pa2)
mod_cfa <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
'
fit_cfa <- lavaan::sem(mod_cfa, cfa_example)
lavaan::parameterEstimates(fit_cfa)[ , c("lhs", "op", "rhs",
"est", "pvalue", "se")]
p_cfa <- semPlot::semPaths(fit_cfa, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0)
# Place standard errors on a new line
p_cfa2 <- add_rsq(p_cfa, fit_cfa)
plot(p_cfa2)
mod_sem <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f1 + f3
'
# Can be used with mark_se() and mark_sig()
fit_sem <- lavaan::sem(mod_sem, sem_example)
lavaan::parameterEstimates(fit_sem)[ , c("lhs", "op", "rhs",
"est", "pvalue", "se")]
p_sem <- semPlot::semPaths(fit_sem, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0)
# Mark significance, and then add standard errors
p_sem2 <- mark_sig(p_sem, fit_sem)
p_sem3 <- mark_se(p_sem2, fit_sem, sep = "\n")
p_sem4 <- add_rsq(p_sem3, fit_sem)
plot(p_sem4)
Create a Matrix for 'factor_point_to'
Description
Use a named vector or named arguments to create a matrix of the directions of indicators of factors.
Usage
auto_factor_point_to(factor_layout, ...)
Arguments
factor_layout |
Argument description. |
... |
Additional arguments. If
the first argument is not named, then
it should be a named vector of
directions, names being the names of
the factors, and directions can be
one of these values: |
Details
A helper function to make
it easier to create the matrix
used by set_sem_layout()
to
indicate where the indicators of
each factor should be positioned.
It works in two modes. If the
first argument is a named vector,
such as c(f1 = "up", f2 = "down")
,
then this vector will be used to
create the direction matrix.
If the arguments are named, such as
auto_factor_point_to(factor_layout, f1 = "up", f2 = "down"
,
then the names are treated as the
factor names, and the values of
the arguments are treated as the
directions.
The matrix created can then be used
for the argument factor_point_to
in set_sem_layout()
.
Value
A character matrix of the same
dimension as factor_layout
. The
cells of factor names are replaced
by the directions to place their
indicators.
See Also
Examples
factor_layout <- matrix(c("f1", NA, NA,
NA, "f3", "f4",
"f2", NA, NA), byrow = TRUE, 3, 3)
factor_point_to <- auto_factor_point_to(factor_layout,
f1 = "left",
f2 = "left",
f3 = "down",
f4 = "down")
factor_point_to
Determine the Order of Indicators Automatically
Description
Determine the order of indicators and match indicators and factors based on a plot from a 'qgraph' object.
Usage
auto_indicator_order(semPaths_plot, add_isolated_manifest = FALSE)
Arguments
semPaths_plot |
A
qgraph::qgraph object generated by
|
add_isolated_manifest |
Logical. Whether observed variables that are not indicators will be included in the output as "factors", each with one indicator (the observed variable). |
Details
It inspects a qgraph::qgraph object and find variables that are the indicators of latent factors.
The output can be used in the
argument indicator_order
of
set_cfa_layout()
and
set_sem_layout()
. It can also be
modified, such as reordered, as
necessary.
If the generated order is used, there
is no need to call this function
manually because set_cfa_layout()
and set_sem_layout()
will
automatically call this function, if
indicator_order
is not set.
It assumes that observed variables
are represented by squares (shape
set to "square"
) and latent
variables represented by circles
or ovals (shape set to "circle"
).
An observed variable is considered as an indicator if there is an arrow pointing to it from a latent variable.
If an indicator loaded on more than one latent variable, it will only be matched to one of them, determined by the order of appearance in the internal storage.
It uses node names, not node labels, in generating the output.
Value
A named character vector. The values are the indicators identified. The names are the latent factors the indicators loaded on.
See Also
set_sem_layout()
and
set_cfa_layout()
.
Examples
library(lavaan)
library(semPlot)
mod <-
'f1 =~ x01 + x02 + x03 + x06
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10 + x03
f4 =~ x11 + x12 + x13 + x14
'
fit <- lavaan::cfa(mod, cfa_example)
p <- semPaths(fit,
whatLabels = "est",
sizeMan = 3.25,
node.width = 1,
edge.label.cex = .75,
mar = c(10, 5, 10, 5),
DoNotPlot = TRUE)
indicator_order <- auto_indicator_order(p)
indicator_order
p2 <- set_cfa_layout(p,
indicator_order = indicator_order)
plot(p2)
# set_cfa_layout() will call auto_indicator_order()
# automatically if indicator_order is not set.
p3 <- set_cfa_layout(p)
plot(p3)
Set the Layout of a Mediation Model Automatically
Description
Set the layout of variables in a mediation model in the typical left-to-right style automatically.
Usage
auto_layout_mediation(
object,
x = NULL,
y = NULL,
exclude = NULL,
v_pos = c("middle", "lower", "upper"),
v_preference = c("upper", "lower"),
output = c("matrix", "xy"),
update_plot = TRUE
)
Arguments
object |
It can be the output of
|
x |
The variables that will be
treated as (pure) |
y |
The variables that will be
treated as (pure) |
exclude |
The variables to be
omitted from the plot, typically the
covariates ("control variables") in a
model. If |
v_pos |
How the mediators are to
be positioned vertically in the
first pass. If
|
v_preference |
The preference in
shifting the mediators upward
( |
output |
The format of the
output, used if |
update_plot |
Logical. Used
if |
Details
Typically, a path model with some
x
variables, some y
variables,
and some mediators are drawn from
left to right. This function tries
to generate the layout matrix
automatically, meeting the following
requirements:
The predictor(s),
x
variables(x), is/are placed to the left.The outcome variable(s),
y
variable(s), is/are placed to the right.The mediator(s) are positioned between
x
variable(s) andy
variable(s) such that all paths point to the right. That is, no vertical path.The vertical position(s) of the mediator(s) will be adjusted such that no path passes through a mediator. That is, all paths are visible and not blocked by any mediator.
Value
If object
is a lavaan
-class
object, or if update_plot
is FALSE
,
it returns
a two-dimension layout matrix of the
position of the nodes, or a
two-column matrix of the x-y positions
of the nodes, depending on the
argument output
.
If object
is a qgraph
object
and update_plot
is TRUE
, it
returns a qgraph
object with the
the modified layout.
See Also
set_sem_layout()
. The
output of auto_layout_mediation()
can be used by set_sem_layout()
.
Examples
library(lavaan)
library(semPlot)
# Create a dummy dataset
mod_pa <-
"
m11 ~ c1 + x1
m21 ~ c2 + m11
m2 ~ m11 + c3
m22 ~ m11 + c3
y ~ m2 + m21 + m22 + x1
"
fit <- lavaan::sem(
mod_pa,
do.fit = FALSE
)
dat <- simulateData(
parameterTable(fit),
sample.nobs = 500,
seed = 1234
)
fit <- lavaan::sem(
mod_pa,
dat
)
# Set the layout
m <- auto_layout_mediation(
fit,
exclude = c("c1", "c2", "c3")
)
pm <- semPlotModel(fit) |> drop_nodes(c("c1", "c2", "c3"))
semPaths(
pm,
whatLabels = "est",
layout = m
)
# v_pos = "lower"
m <- auto_layout_mediation(
fit,
exclude = c("c1", "c2", "c3"),
v_pos = "lower"
)
pm <- semPlotModel(fit) |> drop_nodes(c("c1", "c2", "c3"))
p0 <- semPaths(
pm,
whatLabels = "est",
layout = m
)
# v_pos = "upper"
m <- auto_layout_mediation(
fit,
exclude = c("c1", "c2", "c3"),
v_pos = "upper"
)
pm <- semPlotModel(fit) |> drop_nodes(c("c1", "c2", "c3"))
p0 <- semPaths(
pm,
whatLabels = "est",
layout = m
)
# Can modify a qgraph
pm <- semPlotModel(fit) |> drop_nodes(c("c1", "c2", "c3"))
p <- semPaths(
pm,
whatLabels = "est"
)
p2 <- auto_layout_mediation(p)
plot(p2)
Sample dataset pa_example
Description
A sample dataset for fitting a confirmatory factor analysis model.
Usage
cfa_example
Format
An object of class data.frame
with 200 rows and 14 columns.
Details
Fourteen variables (x01 to x14), 200 cases.
Sample model to fit (in lavaan::model.syntax notation)
mod <- 'f1 =~ x01 + x02 + x03 f2 =~ x04 + x05 + x06 + x07 f3 =~ x08 + x09 + x10 f4 =~ x11 + x12 + x13 + x14 '
Change node labels
Description
Change the labels of selected nodes.
Usage
change_node_label(
semPaths_plot,
label_list = NULL,
label.cex,
label.scale,
label.prop,
label.norm
)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions. |
label_list |
A list of named lists. Each named list should
have two named values: |
label.cex |
Identical to the same argument in
|
label.scale |
Identical to the same argument in
semPlot::semPaths. A logical value that determine whether labels
wil be scaled (resized) to the nodes they attach to. It has no
default. If not set, then this option in the |
label.prop |
Identical to the same argument in
semPlot::semPaths. A numeric vector of length equal to the number
of nodes. If |
label.norm |
Identical to the same argument in
semPlot::semPaths. It must be a string. All labels as wide as or
narrower than this string will have the same font size, while all
labels wider than this string will be rescaled to have the same
width as this string. It has no default. If not set, then this
option in the |
Details
Modify a qgraph::qgraph object generated by semPlot::semPaths and change the labels of selected nodes.
Value
A qgraph::qgraph based on the original one, with node attributes of selected nodes modified.
Examples
library(semPlot)
library(lavaan)
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- sem(mod_pa, pa_example)
parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPaths(fit_pa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
my_label_list <- list(list(node = "x3", to = "mediator"),
list(node = "x4", to = expression(gamma)))
p_pa2 <- change_node_label(p_pa, my_label_list)
plot(p_pa2)
Identify dependent Variable residual variance
Description
Check which parameters in a lavaan output are the residual variance of a dependent variable.
Usage
is_dv_residvar(lavaan_out)
Arguments
lavaan_out |
A lavaan::lavaan object. |
Details
Check which parameters in a lavaan output are the variance of a dependent variable. Indicators of a latent variable will be excluded.
Value
A boolean vector with length equal to the number of rows in the lavaan output.
Examples
mod <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod, pa_example)
is_dv_residvar(fit_pa)
mod <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
'
fit_cfa <- lavaan::cfa(mod, cfa_example)
is_dv_residvar(fit_cfa)
mod <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f1 + f3
'
fit_sem <- lavaan::sem(mod, sem_example)
is_dv_residvar(fit_sem)
Keep or drop nodes
Description
Keep or drop nodes from an semPlotModel object.
Usage
drop_nodes(object, nodes)
keep_nodes(object, nodes)
Arguments
object |
An an |
nodes |
A character vector of the nodes to be kept or removed. |
Details
These functions can be used to edit the nodes in an
semPlot::semPlotModel
generated by semPlot::semPlotModel()
.
The edited object can then be passed to semPlot::semPaths()
to
generate a path diagram.
Use keep_nodes()
to specify the nodes to be kept. All other nodes
will be removed.
Use drop_nodes()
to specify the nodes to be dropped. All other
nodes will be kept.
Value
An object of the class semPlot::semPlotModel
.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
pm_pa <- semPlot::semPlotModel(fit_pa)
semPlot::semPaths(pm_pa, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
pm_pa2 <- drop_nodes(pm_pa, c("x3"))
semPlot::semPaths(pm_pa2, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
pm_pa3 <- keep_nodes(pm_pa, c("x1", "x3", "x4"))
semPlot::semPaths(pm_pa3, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
Determine the Order of Indicators Using a 'lavaan' Model Syntax
Description
Determine the order of indicators and match indicators and factors based on a 'lavaan' model syntax.
Usage
lavaan_indicator_order(model_syntax)
Arguments
model_syntax |
A string that
should be a model specified in
|
Details
It generates a named vector
for the argument indicator_order
of set_cfa_layout()
and
set_sem_layout()
using a lavaan
model syntax.
A variable is considered an indicator
if it is on the right-hand side
of the operator =~
.
If an indicator loaded on more than one latent variable, it will only be matched to one of them, determined by the order of appearance in the internal storage.
Value
A named character vector. The values are the indicators in the model syntax. The names are the latent factors the indicators loaded on.
See Also
set_sem_layout()
and
set_cfa_layout()
.
Examples
mod <-
'f1 =~ x01 + x02 + x03 + x06
f4 =~ x11 + x12 + x13 + x14
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10 + x03
'
lavaan_indicator_order(mod)
mod <-
'f1 =~ x01 + x02 + x03 + x06
f3 =~ x08 + x09 + x10 + x03
f2 =~ x04 + x05 + x06 + x07
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f3
'
lavaan_indicator_order(mod)
Create the layout matrix for semPaths
Description
Create the layout matrix from a list of coordinates for semPaths.
Usage
layout_matrix(...)
Arguments
... |
Each node in the matrix is specified by this form: |
Details
The layout argument in semPlot::semPaths()
accepts a
matrix with node labels as the elements, and NA
for empty cells.
This function allows user to create the matrix using a list of
coordinates for the node labels.
Value
A layout matrix for the layout argument of
semPlot::semPaths()
.
Examples
# Suppose this is the layout to be created:
m0 <- matrix(c("x1", NA, NA, NA,
"x2", "x3", NA, NA,
NA, "x4", NA, "x5"), byrow = TRUE, 3, 4)
# This call will create the same matrix.
m1 <- layout_matrix(x1 = c(1, 1),
x2 = c(2, 1),
x3 = c(2, 2),
x4 = c(3, 2),
x5 = c(3, 4))
#The two matrices should be identical.
m0 == m1
Add Standard Error Estimates to Parameter Estimates (Edge Labels)
Description
Add standard error estimates, in parentheses, to parameter estimates (edge labels) in a qgraph::qgraph object.
Usage
mark_se(
semPaths_plot,
object,
sep = " ",
digits = 2L,
ests = NULL,
std_type = FALSE
)
Arguments
semPaths_plot |
A qgraph object generated by
|
object |
The object used by semPaths to generate the plot. Use
the same argument name used in |
sep |
A character string to separate the coefficient and the
standard error (in parentheses). Default to " " (one space). Use
|
digits |
Integer indicating number of decimal places for the appended standard errors. Default is 2L. |
ests |
A data.frame from the
|
std_type |
If standardized solution is used in the plot,
set this either to the type of standardization (e.g., |
Details
Modify a qgraph::qgraph object generated by
semPaths
(currently in parentheses) to the
labels. Require either the original object used in the semPaths call,
or a data frame with the standard error for each parameter. The latter
option is for standard errors not computed by lavaan but by
other functions.
Currently supports only plots based on lavaan
output.
This function is a variant of, and can be combined with, the
mark_sig
function.
Value
If the input is a qgraph::qgraph object, the function returns a qgraph based on the original one, with standard error estimates appended. If the input is a list of qgraph objects, the function returns a list of the same length.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[ , c("lhs", "op", "rhs",
"est", "pvalue", "se")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
p_pa2 <- mark_se(p_pa, fit_pa)
plot(p_pa2)
mod_cfa <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
'
fit_cfa <- lavaan::sem(mod_cfa, cfa_example)
lavaan::parameterEstimates(fit_cfa)[ , c("lhs", "op", "rhs",
"est", "pvalue", "se")]
p_cfa <- semPlot::semPaths(fit_cfa, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0)
# Place standard errors on a new line
p_cfa2 <- mark_se(p_cfa, fit_cfa, sep = "\n")
plot(p_cfa2)
mod_sem <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f1 + f3
'
fit_sem <- lavaan::sem(mod_sem, sem_example)
lavaan::parameterEstimates(fit_sem)[ , c("lhs", "op", "rhs",
"est", "pvalue", "se")]
p_sem <- semPlot::semPaths(fit_sem, whatLabels = "est",
style = "ram",
nCharNodes = 0, nCharEdges = 0)
# Mark significance, and then add standard errors
p_sem2 <- mark_sig(p_sem, fit_sem)
p_sem3 <- mark_se(p_sem2, fit_sem, sep = "\n")
plot(p_sem3)
Mark Parameter Estimates (Edge Labels) Based on p-Value
Description
Mark parameter estimates (edge labels) based on p-value.
Usage
mark_sig(
semPaths_plot,
object,
alphas = c(`*` = 0.05, `**` = 0.01, `***` = 0.001),
ests = NULL,
std_type = FALSE,
ests_r2 = NULL,
r2_prefix = "R2="
)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPaths, or a similar qgraph object modified by other semptools functions. |
object |
The object used by semPaths to generate the plot. Use
the same argument name used in semPaths to make the meaning of this
argument obvious. Currently only object of class
|
alphas |
A named numeric vector. Each element is the cutoff (level of significance), and the name of it is the symbol to be used if p-value is less than this cutoff. The default is c("" = .05, "" = .01, "" = .001). |
ests |
A data.frame from the
|
std_type |
If standardized solution is used in the plot,
set this either to the type of standardization (e.g., |
ests_r2 |
A data.frame with
these columns: |
r2_prefix |
The prefix used to
identify R-squares in |
Details
Modify a qgraph::qgraph object generated by semPaths and add marks (currently asterisk, "*") to the labels based on their p-values. Require either the original object used in the semPaths call, or a data frame with the p-values for each parameter. The latter option is for p-values not computed by lavaan but by other functions.
Currently supports only plots based on lavaan output.
R-squares
Normally, lavaan
does not compute
p-values for R-squares. If
R-squares are detected in the plot
(based on r2_prefix
), they will not
be marked, except for the following
conditions:
Users set
ests
to a data frame with R-squares (op
= "r2") as well as their p-values (underpvalue
) computed by some methods.Users set
ests_r2
to a data frame storing only the p-values for R-squares computed by some methods (and let the function find the p-values for other parameters fromobject
).
Value
A qgraph::qgraph based on the original one, with marks appended to edge labels based on their p-values.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
p_pa2 <- mark_sig(p_pa, fit_pa)
plot(p_pa2)
mod_cfa <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
'
fit_cfa <- lavaan::sem(mod_cfa, cfa_example)
lavaan::parameterEstimates(fit_cfa)[, c("lhs", "op", "rhs", "est", "pvalue")]
p_cfa <- semPlot::semPaths(fit_cfa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0)
p_cfa2 <- mark_sig(p_cfa, fit_cfa)
plot(p_cfa2)
mod_sem <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f1 + f3
'
fit_sem <- lavaan::sem(mod_sem, sem_example)
lavaan::parameterEstimates(fit_sem)[, c("lhs", "op", "rhs", "est", "pvalue")]
p_sem <- semPlot::semPaths(fit_sem, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0)
p_sem2 <- mark_sig(p_sem, fit_sem)
plot(p_sem2)
Move Nodes in a Plot
Description
Move the nodes in an
plot generated by semPlot::semPaths()
.
Usage
move_node(semPaths_plot, move_by = NULL)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions. |
move_by |
A named list. The
names are the names of nodes to be
moved. Each element of the list can
be either a named numeric vector or
an unnamed vector of two numbers. If
a named vector, |
Details
Modify a qgraph::qgraph object generated by semPlot::semPaths and move selected nodes.
The change assumes that the layout is defined with 0 as the center, -1 to 1 from left to right, and from bottom to top.
Value
A qgraph::qgraph based on the original one, with the selected nodes moved.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
p_changed <- move_node(p_pa,
list(x3 = c(x = -.25, y = -.25),
x4 = c(y = .5)))
plot(p_changed)
Sample dataset pa_example
Description
A sample dataset for fitting a path analysis model.
Usage
pa_example
Format
An object of class data.frame
with 100 rows and 4 columns.
Details
Four variables (x1 to x4), 100 cases.
Sample model to fit (in lavaan::model.syntax notation)
mod <- 'x1 ~~ x2 x3 ~ x1 + x2 x4 ~ x1 + x3 '
Sample dataset pa_example_3covs
Description
A sample dataset for fitting a path analysis model, with three control variables.
Usage
pa_example_3covs
Format
An object of class data.frame
with 100 rows and 7 columns.
Details
Four variables (x1
to x4
), and three control variables
(cov1
, cov2
, cov3
), 100 cases.
Sample model to fit (in lavaan::model.syntax notation)
mod <- ' x3 ~ x1 + x2 + cov1 +cov2 + cov3 x4 ~ x1 + x3 + cov1 +cov2 + cov3 '
Quick Plots of Common Models
Description
Simple-to-use functions for generating plots of common models.
Usage
quick_parallel_mediation(
object,
x,
m,
y,
mediators_position = c("center", "top", "bottom"),
what = "path",
whatLabels = "est",
style = c("lisrel", "ram"),
nCharNodes = 0,
nCharEdges = 0,
sizeMan = NULL,
sizeLat = NULL,
edge.label.cex = NULL,
intercepts = FALSE,
...,
plot_now = TRUE,
do_mark_se = TRUE,
do_mark_sig = TRUE,
do_rotate_resid = TRUE,
do_add_rsq = TRUE,
add_notes = FALSE,
notes = NULL
)
q_parallel(
object,
x,
m,
y,
mediators_position = c("center", "top", "bottom"),
what = "path",
whatLabels = "est",
style = c("lisrel", "ram"),
nCharNodes = 0,
nCharEdges = 0,
sizeMan = NULL,
sizeLat = NULL,
edge.label.cex = NULL,
intercepts = FALSE,
...,
plot_now = TRUE,
do_mark_se = TRUE,
do_mark_sig = TRUE,
do_rotate_resid = TRUE,
do_add_rsq = TRUE,
add_notes = FALSE,
notes = NULL
)
quick_serial_mediation(
object,
x,
m,
y,
mediators_position = c("top", "bottom"),
what = "path",
whatLabels = "est",
style = c("lisrel", "ram"),
nCharNodes = 0,
nCharEdges = 0,
sizeMan = NULL,
sizeLat = NULL,
edge.label.cex = NULL,
intercepts = FALSE,
...,
plot_now = TRUE,
do_mark_se = TRUE,
do_mark_sig = TRUE,
do_rotate_resid = TRUE,
do_add_rsq = TRUE,
add_notes = FALSE,
notes = NULL
)
q_serial(
object,
x,
m,
y,
mediators_position = c("top", "bottom"),
what = "path",
whatLabels = "est",
style = c("lisrel", "ram"),
nCharNodes = 0,
nCharEdges = 0,
sizeMan = NULL,
sizeLat = NULL,
edge.label.cex = NULL,
intercepts = FALSE,
...,
plot_now = TRUE,
do_mark_se = TRUE,
do_mark_sig = TRUE,
do_rotate_resid = TRUE,
do_add_rsq = TRUE,
add_notes = FALSE,
notes = NULL
)
quick_simple_mediation(
object,
x,
m,
y,
mediators_position = c("top", "bottom"),
what = "path",
whatLabels = "est",
style = c("lisrel", "ram"),
nCharNodes = 0,
nCharEdges = 0,
sizeMan = NULL,
sizeLat = NULL,
edge.label.cex = NULL,
intercepts = FALSE,
...,
plot_now = TRUE,
do_mark_se = TRUE,
do_mark_sig = TRUE,
do_rotate_resid = TRUE,
do_add_rsq = TRUE,
add_notes = FALSE,
notes = NULL
)
q_simple(
object,
x,
m,
y,
mediators_position = c("top", "bottom"),
what = "path",
whatLabels = "est",
style = c("lisrel", "ram"),
nCharNodes = 0,
nCharEdges = 0,
sizeMan = NULL,
sizeLat = NULL,
edge.label.cex = NULL,
intercepts = FALSE,
...,
plot_now = TRUE,
do_mark_se = TRUE,
do_mark_sig = TRUE,
do_rotate_resid = TRUE,
do_add_rsq = TRUE,
add_notes = FALSE,
notes = NULL
)
Arguments
object |
A |
x |
The name of the |
m |
The name(s) of the |
y |
The name of the |
mediators_position |
For a
simple mediation model, it can be
either |
what |
The same argument of
|
whatLabels |
The same argument
of |
style |
The same argument of
|
nCharNodes |
The same argument of
|
nCharEdges |
The same argument of
|
sizeMan |
The same argument of
|
sizeLat |
The same argument of
|
edge.label.cex |
The same
argument of |
intercepts |
The same
argument of |
... |
Other arguments to be
passed to to |
plot_now |
Logical. If |
do_mark_se |
Logical. If |
do_mark_sig |
Logical. If
|
do_rotate_resid |
Logical. If
|
do_add_rsq |
Logical. If
|
add_notes |
Logical. If
|
notes |
A string, the notes to
be printed if |
Details
A collection of functions for generating the plots of common models. They are designed to need as few arguments as possible to have a plot that should need minimal postprocessing.
Currently, functions are available for these plots:
Simple mediation models (a model with only one mediator):
q_simple()
orquick_simple_mediation()
.Parallel mediation models (a model with one or more paths between two variables, each path with only one mediator):
q_parallel()
orquick_parallel_mediation()
.Serial mediation models (a model with one main path between two variables, withe one or more mediators along the path):
q_serial()
orquick_serial_mediation()
.
For these three functions, if the
default settings are desired, users
only need to supply the lavaan
output, and specify:
The
x
variable (predictor) to be included.The
m
variable(s) to be included, which is a character vector if the model has more than one mediator.The
y
variable to be included.
These variables can be observed
variables or latent factors. Indicators
of latent variables will not be drawn
(unless they are listed in x
,
m
, or y
).
The layout is determined by the
argument mediators_position
, with
two or more preset layouts for each
model.
By default, the following will be added to the plot:
Asterisks included to denote the significance test results (implemented by
mark_sig()
).Standard errors included for free parameters (implemented by
mark_se()
).R-squares are drawn in place of error variances for the
m
variable(s) andy
variable (implemented byadd_rsq()
).
These options can be turned off if so desired.
Unlike other function in semptools
,
these functions are usually used to
plot a model immediately. Therefore,
the resulting plot will be plotted by
default. Turned this off by setting
plot_now
to FALSE
(analogous to
setting DoNotPlot
to FALSE
when
calling semPlot::semPaths()
).
Although the plot is designed to be
ready-to-plot, it can be further
processed by other semptools
functions if necessary, just like the
plot of semPlot::semPaths()
.
Variables to be drawn
For readability, it is common for researchers to omit some variables when drawing a model.
For example:
m ~ x + c1 + c2
y ~ m + x + c1 + c2
If c1
and c2
are control variables,
researchers want to draw only these\
paths
m ~ x
y ~ m + x
The quick plot functions can be used for this purpose. Only selected variables will be included in the plots.
Researchers may also want to draw
several plots, one for each pair of
the predictor (the x
-variable) and
the outcome variable (the
y
-variable).
For example,
m ~ x + c1 + c2
y1 ~ m + x + c1 + c2
y2 ~ m + x + c1 + c2
For this model, in addition to
excluding the control variables,
researchers may want to generate two
diagrams, one for y1
:
m ~ x
y1 ~ m + x
and the other for y2
:
m ~ x
y2 ~ m + x
Note that all the functions will not
check the models. The specification
of x
, m
, and y
are assumed to
be valid for the fitted models.
Value
A qgraph::qgraph generated
by semPlot::semPaths()
and
customized by other semptools
functions is returned invisibly.
Called for its side effect.
Examples
library(lavaan)
library(semPlot)
# ---- Parallel Mediation Model
mod_parallel <-
'x04 ~ x01
x05 ~ x01
x06 ~ x01
x07 ~ x01
x10 ~ x04 + x05 + x06 + x07 + x01'
fit_parallel <- lavaan::sem(mod_parallel,
sem_example)
q_parallel(fit_parallel,
x = "x01",
m = c("x04", "x05", "x06", "x07"),
y = "x10")
q_parallel(fit_parallel,
x = "x01",
m = c("x04", "x05", "x06", "x07"),
y = "x10",
mediators_position = "top")
q_parallel(fit_parallel,
x = "x01",
m = c("x04", "x05", "x06", "x07"),
y = "x10",
mediators_position = "bottom")
# Suppress some elements for readability
q_parallel(fit_parallel,
x = "x01",
m = c("x04", "x05", "x06", "x07"),
y = "x10",
mediators_position = "bottom",
do_mark_se = FALSE)
# ---- Serial Mediation Model
mod_serial <-
'x04 ~ x01
x05 ~ x04 + x01
x06 ~ x04 + x05 + x01
x07 ~ x04 + x05 + x06 + x01
x08 ~ x04 + x05 + x06 + x07 + x01'
fit_serial <- lavaan::sem(mod_serial,
sem_example)
q_serial(fit_serial,
x = "x01",
m = c("x04", "x05", "x06", "x07"),
y = "x08")
q_serial(fit_serial,
x = "x01",
m = c("x04", "x05", "x06", "x07"),
y = "x08",
mediators_position = "bottom")
# Suppress some elements for readability
q_serial(fit_serial,
x = "x01",
m = c("x04", "x05", "x06", "x07"),
y = "x08",
mediators_position = "bottom",
do_mark_se = FALSE)
# ---- Simple Mediation Model: With Control Variables
mod_pa <-
'x3 ~ x1 + x2
x4 ~ x3 + x1 + x2'
fit_pa <- lavaan::sem(mod_pa,
pa_example)
mod_sem <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f1 + f3'
fit_sem <- lavaan::sem(mod_sem,
sem_example)
q_simple(fit_pa,
x = "x1",
m = "x3",
y = "x4")
# Drawing latent factors only
q_simple(fit_sem,
x = "f1",
m = "f3",
y = "f4",
whatLabels = "std",
mediators_position = "bottom")
Rescale the Layout
Description
Rescale the layout of a
qgraph
object, such as the output
of semptools
functions that modify
the output of semPlot::semPaths()
.
Usage
rescale_layout(semPaths_plot, x_min = -1, x_max = 1, y_min = -1, y_max = 1)
Arguments
semPaths_plot |
A
qgraph::qgraph object generated by
|
x_min , x_max , y_min , y_max |
The
ranges of x-coordinates and
y-coordinates after rescaling.
Default is -1 for |
Details
The plot generated by some
functions, such as
set_sem_layout()
, may have the area
underused for some model. This
function rescale the layout matrix,
just like what the rescale
argument
of semPlot::semPaths()
does.
Value
A qgraph::qgraph based on the original one, with the layout matrix rescaled.
Examples
library(lavaan)
library(semPlot)
mod <-
'f1 =~ x01 + x02 + x03
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + x04
f4 ~ f3 + x05'
fit_sem <- sem(mod, sem_example)
p <- semPaths(fit_sem, whatLabels="est",
sizeMan = 5,
nCharNodes = 0,
nCharEdges = 0,
edge.width = 0.8,
node.width = 0.7,
edge.label.cex = 0.6,
mar = c(10, 10, 10, 10),
DoNotPlot = TRUE)
plot(p)
indicator_order <- c("x04", "x05", "x01", "x02", "x03",
"x11", "x12", "x13", "x14", "x08", "x09", "x10")
indicator_factor <- c("x04", "x05", "f1", "f1", "f1",
"f4", "f4", "f4", "f4", "f3", "f3", "f3")
factor_layout <- matrix(c( "f1", "f3", "f4",
"x04", "x05", NA), byrow = TRUE, 2, 3)
factor_point_to <- matrix(c("left", "up", "right",
NA, NA, NA), byrow = TRUE, 2, 3)
p2 <- set_sem_layout(p,
indicator_order = indicator_order,
indicator_factor = indicator_factor,
factor_layout = factor_layout,
factor_point_to = factor_point_to)
# The original plot with too much unused area
plot(p2)
rect(-1, -1, 1, 1)
rect(-1.5, -1.5, 1.5, 1.5)
# Expand the plot
p3 <- p2
p3 <- rescale_layout(p3)
plot(p3)
rect(-1, -1, 1, 1)
rect(-1.5, -1.5, 1.5, 1.5)
Rotate the residuals of selected nodes
Description
Rotate the residuals of selected nodes.
Usage
rotate_resid(semPaths_plot, rotate_resid_list = NULL)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions. |
rotate_resid_list |
A named vector or a list of named list. For
a named vector, the name of an element is the node for which its
residual is to be rotated, and the value is the degree to rotate.
The 12 o'clock position is zero degree. Positive degree denotes
clockwise rotation, and negative degree denotes anticlockwise
rotation. For example, |
Details
Modify a qgraph::qgraph object generated by semPlot::semPaths and rotate the residuals of selected nodes. Currently only supports "ram" and similar styles of semPlot::semPaths.
Value
A qgraph::qgraph object based on the original one, with
loopRotation
attributes of selected nodes modified.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
my_rotate_resid_vector <- c(x3 = 45, x4 = -45)
p_pa2v <- rotate_resid(p_pa, my_rotate_resid_vector)
plot(p_pa2v)
my_rotate_resid_list <- list(list(node = "x3", rotate = 45),
list(node = "x4", rotate = -45))
p_pa2l <- rotate_resid(p_pa, my_rotate_resid_list)
plot(p_pa2l)
Adjust Edge Label Positions to Avoid Overlapping Labels
Description
Move the edge labels away from path intersections.
Usage
safe_edge_label_position(
object,
layout = NULL,
default_pos = 0.5,
tolerance = 0.05,
update_plot = TRUE
)
Arguments
object |
It can be the output of
|
layout |
A layout matrix.
Required if |
default_pos |
Used if |
tolerance |
If the distance between a position and an intersection is greater than this distance, then a position is considered safe and will not be adjusted. |
update_plot |
Logical. Used on
if |
Details
This function identify all intersection points between two paths in a model, and set the position of an edge label to the mid-point of a line segment between an intersection point and the another intersection point or the origin/destination of a path.
This function is intended for having
a "likely" readable graph with as
little user-intervention as possible.
If precise control of the edge label
positions is desired, use
set_edge_label_position()
.
Value
If object
is a lavaan
-class
object, it returns
a named numeric vector of edge
positions to be used by
set_edge_label_position()
.
If object
is a qgraph
object
and update_plot
is TRUE
, it
returns a qgraph
object with the
adjusted edge label positions.
Otherwise, it returns a named vector
of the position to be adjusted, as
for a lavaan
-class object.
See Also
set_edge_label_position()
on setting the positions of edge
labels.
Examples
library(lavaan)
library(semPlot)
# Create a dummy dataset
mod_pa <-
"
m11 ~ c1 + x1
m12 ~ c2 + m11 + m21
m21 ~ c1 + x1
m22 ~ c1 + m21 + m11
y ~ m12 + m22 + x1
"
fit <- lavaan::sem(
mod_pa,
do.fit = FALSE
)
dat <- simulateData(
parameterTable(fit),
sample.nobs = 500,
seed = 1234
)
fit <- lavaan::sem(
mod_pa,
dat
)
# Set the layout
m <- auto_layout_mediation(
fit,
exclude = c("c1", "c2", "c3")
)
pos_new <- safe_edge_label_position(
fit,
layout = m
)
pos_new
pm <- semPlotModel(fit) |> drop_nodes(c("c1", "c2"))
p <- semPaths(
pm,
whatLabels = "est",
layout = m,
DoNotPlot = TRUE
)
# Three labels overlap with each other
plot(p)
# Update the plot
p_safe <- p |> safe_edge_label_position()
# Three labels do not overlap in this plot
plot(p_safe)
# Set the position manually
p_safe2 <- p |>
set_edge_label_position(pos_new)
plot(p_safe2)
Adjust Residual Positions
Description
Rotate the residuals (or R-squares) to avoid overlapping with paths.
Usage
safe_resid_position(
object,
layout,
default_angle = 0,
style = c("1200", "geometry"),
update_plot = TRUE
)
Arguments
object |
It can be the output of
|
layout |
A layout matrix.
Required if |
default_angle |
Used if |
style |
The convention for
the angles. If |
update_plot |
Logical. Used on
if |
Details
This function identify all directed paths connected to a node, and find the largest arc with no directed paths. The residual (or R-square) is then set to the mid-point of this arc.
This function is intended for having
a "likely" readable graph with as
little user-intervention as possible.
If precise control of the positions
is desired, use rotate_resid()
.
Only directed paths (single-headed arrows) will be considered. Bidirectional paths such as covariances are not taken into account.
Value
If object
is a lavaan
-class
object, it returns
a named numeric vector of residual
angles to be used by
rotate_resid()
.
If object
is a qgraph
object
and update_plot
is TRUE
, it
returns a qgraph
object with the
residuals's angles adjusted.
Otherwise, it returns a named vector
of the angles, as
for a lavaan
-class object.
See Also
rotate_resid()
on rotating a residual.
Examples
library(lavaan)
library(semPlot)
# Create a dummy dataset
mod_pa <-
"
m11 ~ x1
m21 ~ m11
m2 ~ m11
m22 ~ m11
y ~ m2 + m21 + m22 + x1
"
fit <- lavaan::sem(
mod_pa,
do.fit = FALSE
)
dat <- simulateData(
parameterTable(fit),
sample.nobs = 500,
seed = 1234
)
fit <- lavaan::sem(
mod_pa,
dat
)
# Set the layout
m <- auto_layout_mediation(
fit
)
p <- semPaths(
fit,
whatLabels = "est",
layout = m,
DoNotPlot = TRUE
) |>
safe_edge_label_position()
plot(p)
# Update the plot
p_safe <- p |> safe_resid_position()
plot(p_safe)
# Set the positon manually
pos_new <- safe_resid_position(p,
update_plot = FALSE)
pos_new
p_safe2 <- p |>
rotate_resid(pos_new)
plot(p_safe2)
Sample dataset sem_2nd_order_example
Description
A sample dataset for fitting a latent variable model with two 2nd-order factors.
Usage
sem_2nd_order_example
Format
An object of class data.frame
with 500 rows and 21 columns.
Details
Twenty one variables (x01 to x21), 500 cases.
Sample model to fit (in lavaan::model.syntax notation)
mod <- 'f1 =~ x01 + x02 + x03 f2 =~ x04 + x05 + x06 + x07 f3 =~ x08 + x09 + x10 f4 =~ x11 + x12 + x13 + x14 f5 =~ x15 + x16 + x17 + x18 f6 =~ x19 + x20 + x21 f21 =~ 1*f1 + f3 + f4 f22 =~ 1*f2 + f5 + f6 f22 ~ f21 '
Sample dataset sem_example
Description
A sample dataset for fitting a latent variable model.
Usage
sem_example
Format
An object of class data.frame
with 200 rows and 14 columns.
Details
Fourteen variables (x01 to x14), 100 cases.
Sample model to fit (in lavaan::model.syntax notation)
mod <- 'f1 =~ x01 + x02 + x03 f2 =~ x04 + x05 + x06 + x07 f3 =~ x08 + x09 + x10 f4 =~ x11 + x12 + x13 + x14 f3 ~ f1 + f2 f4 ~ f1 + f3 '
Configure the layout of factors of a CFA graph by semPaths
Description
Configure the layout of factors and adjust other aspects of a CFA graph by semPaths.
Usage
set_cfa_layout(
semPaths_plot,
indicator_order = NULL,
indicator_factor = NULL,
fcov_curve = 0.4,
loading_position = 0.5,
point_to = "down"
)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPaths, or a similar qgraph object modified by other semptools functions. |
indicator_order |
A string vector of the indicators. The order
of the names is the order of the indicators in the graph, when they
are drawn on the bottom of the graph. The indicators should be
grouped by the factors on which they load on. For example, if x1,
x2, x4 load on f2, and x3, x5, x6 load on f1, then vector should be
either c("x1", "x2", "x4", "x3", "x5", "x6") or c("x3", "x5", "x6",
"x1", "x2", "x4"). Indicators within a group can be ordered in any
way. If it is a named vector, its names will be used for the
argument |
indicator_factor |
A string vector of the same length of the
indicator order, storing the name of the factor for which each of
the indicator in indicator_factor loads on. For example, if x1, x2,
x4 load on f2, and x3, x5, x6 load on f1, and indicator_order is
c("x3", "x5", "x6", "x1", "x2", "x4"), then indicator_factor should
be c("f2", "f2", "f2", "f1", "f1", "f1"). If |
fcov_curve |
A number used to set the curvature of the inter-factor covariances. Default is .4. |
loading_position |
The positions of all factor loadings. Default is .5, on the middle of the arrows. Larger the number, closer the loadings to the indicators. Smaller the number, closer the loadings to the factors. |
point_to |
Can be "down", "left", "up", or "right". Specify the direction that the factors "point" to the indicators. Default is "down". |
Details
Modify a qgraph::qgraph object generated by semPaths based on a confirmatory factor analysis model.
Value
A qgraph::qgraph based on the original one, with various aspects of the model modified.
Examples
library(lavaan)
library(semPlot)
mod <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
'
fit_cfa <- lavaan::sem(mod, cfa_example)
lavaan::parameterEstimates(fit_cfa)[, c("lhs", "op", "rhs", "est", "pvalue")]
p <- semPaths(fit_cfa, whatLabels="est",
sizeMan = 2.5,
nCharNodes = 0, nCharEdges = 0,
edge.width = 0.8, node.width = 0.7,
edge.label.cex = 0.6,
style = "ram",
mar = c(10,10,10,10))
indicator_order <- c("x04", "x05", "x06", "x07", "x01", "x02", "x03", "x11",
"x12", "x13", "x14", "x08", "x09", "x10")
indicator_factor <- c( "f2", "f2", "f2", "f2", "f1", "f1", "f1", "f4",
"f4", "f4", "f4", "f3", "f3", "f3")
p2 <- set_cfa_layout(p, indicator_order,
indicator_factor,
fcov_curve = 1.5,
loading_position = .8)
plot(p2)
# Use a named vector for indicator_order
indicator_order2 <- c(f2 = "x04", f2 = "x05", f2 = "x06", f2 = "x07",
f1 = "x01", f1 = "x02", f1 = "x03",
f4 = "x11", f4 = "x12", f4 = "x13", f4 = "x14",
f3 = "x08", f3 = "x09", f3 = "x10")
p2 <- set_cfa_layout(p,
indicator_order = indicator_order2,
fcov_curve = 1.5,
loading_position = .8)
plot(p2)
# Use automatically generated indicator_order and indicator_factor
p2 <- set_cfa_layout(p,
fcov_curve = 1.5,
loading_position = .8)
plot(p2)
p2 <- set_cfa_layout(p, indicator_order,
indicator_factor,
fcov_curve = 1.5,
loading_position = .8,
point_to = "left")
plot(p2)
p2 <- set_cfa_layout(p, indicator_order,
indicator_factor,
fcov_curve = 1.5,
loading_position = .8,
point_to = "up")
plot(p2)
p2 <- set_cfa_layout(p, indicator_order,
indicator_factor,
fcov_curve = 1.5,
loading_position = .8,
point_to = "right")
plot(p2)
Bend or Straighten Selected edges
Description
Set the curve attributes of selected edges.
Usage
set_curve(semPaths_plot, curve_list = NULL)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions. |
curve_list |
A named vector or a list of named list. For a
named vector, the name of an element should be the path as
specified by lavaan::model.syntax or as appeared in
|
Details
Modified a qgraph::qgraph object generated by semPlot::semPaths and change the curve attributes of selected edges.
Value
A qgraph::qgraph based on the original one, with curve attributes for selected edges changed.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
my_curve_vector <- c("x2 ~~ x1" = -1,
"x4 ~ x1" = 1)
p_pa2v <- set_curve(p_pa, my_curve_vector)
plot(p_pa2v)
my_curve_list <- list(list(from = "x1", to = "x2", new_curve = -1),
list(from = "x1", to = "x4", new_curve = 1))
p_pa2l <- set_curve(p_pa, my_curve_list)
plot(p_pa2l)
Set the Attributes of Selected Edges
Description
Set arbitrary attributes of selected edges.
Usage
set_edge_attribute(semPaths_plot, values = NULL, attribute_name = NULL)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions. |
values |
A named vector or a list of named list. See the Details section on how to set this argument. |
attribute_name |
The name of the attribute to be changed. |
Details
Modify a qgraph::qgraph object generated by semPlot::semPaths and change the selected attributes of selected edges.
This function is designed to be a general one that changes the attributes named by the user. The user needs to make sure that the attribute actually exists, and the values are valid for the named attribute.
Setting the value of values
This argument can be set in two ways.
For a named vector, the name of an
element should be the path as
specified by lavaan::model.syntax
or as appeared in
lavaan::parameterEstimates()
.
For example, if the attributes to be
changed are the colors of selected
edges, to change the color of the
path regressing y
on x
, the name
should be "y ~ x"
. To change the
color of the covariance between x1
and x2
, the name should be "x1 ~~ x2"
. Therefore, c("y ~ x1" = "red", "x1 ~~ x2" = "blue")
changes the
colors of the path from x1
to y
and the covariance between x1
and
x2
to "red"
and "blue"
,
respectively.
The order of the two nodes may matter for covariances. Therefore, if the attribute of a covariance is not changed, try switching the order of the two nodes.
For a list of named lists, each named
list should have three named values:
from
, to
, and new_value
. The
attribute of the edge from from
to
to
will be set to new_value
.
The second approach is no longer recommended, though kept for backward compatibility.
Value
A qgraph::qgraph based on the original one, with the selected attributes of selected edges changed.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
my_values_vector <- c("x2 ~~ x1" = "red",
"x4 ~ x1" = "blue")
p_pa2v <- set_edge_attribute(p_pa,
values = my_values_vector,
attribute_name = "color")
plot(p_pa2v)
my_values_list <- list(list(from = "x1", to = "x2", new_value = "red"),
list(from = "x1", to = "x4", new_value = "blue"))
p_pa2l <- set_edge_attribute(p_pa,
values = my_values_list,
attribute_name = "color")
plot(p_pa2l)
Set the Colors of Selected Edges
Description
Set the colors of selected edges.
Usage
set_edge_color(semPaths_plot, color_list = NULL)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions. |
color_list |
A named vector or a list of named list. See the Details section on how to set this argument. |
Details
Modified a qgraph::qgraph object generated by semPlot::semPaths and change the colors of selected edges.
Setting the value of color_list
This argument can be set in two ways.
For a named vector, the name of an
element should be the path as
specified by lavaan::model.syntax
or as appeared in
lavaan::parameterEstimates()
.
For example, to change the color of the
path regressing y
on x
, the name
should be "y ~ x"
. To change the
color of the covariance between x1
and x2
, the name should be "x1 ~~ x2"
. Therefore, c("y ~ x1" = "red", "x1 ~~ x2" = "blue")
changes the
colors of the path from x1
to y
and the covariance between x1
and
x2
to "red"
and "blue"
,
respectively.
The order of the two nodes may matter for covariances. Therefore, if the attribute of a covariance is not changed, try switching the order of the two nodes.
For a list of named lists, each named
list should have three named values:
from
, to
, and new_color
. The
attribute of the edge from from
to
to
will be set to new_color
.
The second approach is no longer recommended, though kept for backward compatibility.
Value
A qgraph::qgraph based on the original one, with colors for selected edges changed.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
my_color_vector <- c("x2 ~~ x1" = "red",
"x4 ~ x1" = "blue")
p_pa2v <- set_edge_color(p_pa, my_color_vector)
plot(p_pa2v)
my_color_list <- list(list(from = "x1", to = "x2", new_color = "red"),
list(from = "x1", to = "x4", new_color = "blue"))
p_pa2l <- set_edge_color(p_pa, my_color_list)
plot(p_pa2l)
Set the positions of edge labels of selected edges
Description
Set the positions of edge labels of selected edges.
Usage
set_edge_label_position(semPaths_plot, position_list = NULL)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions. |
position_list |
A named vector or a list of named lists. For a
named vector, the name of an element should be the path as
specified by lavaan::model.syntax or as appeared in
|
Details
Modify a qgraph::qgraph object generated by semPlot::semPaths and change the edge label positions of selected edges.
Value
A qgraph::qgraph based on the original one, with edge label positions for selected edges changed.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
my_position_vector <- c("x3 ~ x2" = .25,
"x4 ~ x1" = .75)
p_pa2v <- set_edge_label_position(p_pa, my_position_vector)
plot(p_pa2v)
my_position_list <- list(list(from = "x2", to = "x3", new_position = .25),
list(from = "x1", to = "x4", new_position = .75))
p_pa2l <- set_edge_label_position(p_pa, my_position_list)
plot(p_pa2l)
Set the Attributes of Selected Nodes
Description
Set arbitrary attributes of selected nodes
Usage
set_node_attribute(semPaths_plot, values = NULL, attribute_name = NULL)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPlot::semPaths, or a similar qgraph object modified by other semptools functions. |
values |
A named vector or a list of named list. See the Details section on how to set this argument. |
attribute_name |
The name of the attribute to be changed. |
Details
Modify a qgraph::qgraph object generated by semPlot::semPaths and change the selected attributes of selected nodes.
This function is designed to be a general one that changes the attributes named by the user. The user needs to make sure that the attribute actually exists, and the values are valid for the named attribute.
Setting the value of values
This argument can be set in two ways.
For a named vector, the name of an element should be the nodes for which their attributes are to be changed. The names need to the displayed names if plotted, which may be different from the names in mode.
For example, if the attributes to be
changed are the colors of selected
nodes, to change the color of x
is to be changed, the name
should be "x"
. Therefore,
c("y" = "red", "x" = "red")
changes
the colors of the nodes y
and x
to "red"
and "blue"
,
respectively.
For a list of named lists, each named
list should have two named values:
node
and new_value
. The
attribute of node
will be set to new_value
.
The second approach is no longer recommended, though kept for backward compatibility.
Value
A qgraph::qgraph based on the original one, with the selected attributes of selected nodes changed.
Examples
mod_pa <-
'x1 ~~ x2
x3 ~ x1 + x2
x4 ~ x1 + x3
'
fit_pa <- lavaan::sem(mod_pa, pa_example)
lavaan::parameterEstimates(fit_pa)[, c("lhs", "op", "rhs", "est", "pvalue")]
m <- matrix(c("x1", NA, NA,
NA, "x3", "x4",
"x2", NA, NA), byrow = TRUE, 3, 3)
p_pa <- semPlot::semPaths(fit_pa, whatLabels="est",
style = "ram",
nCharNodes = 0, nCharEdges = 0,
layout = m)
my_color_vector <- c(x3 = "red", x4 = "blue")
p_pa2v <- set_node_attribute(p_pa, my_color_vector, attribute_name = "color")
plot(p_pa2v)
my_color_list <- list(list(node = "x3", new_value = "green"),
list(node = "x4", new_value = "red"))
p_pa2l <- set_node_attribute(p_pa, my_color_list, attribute_name = "color")
plot(p_pa2l)
Configure the layout of factors of an SEM graph by semPlot::semPaths
Description
Configure the layout of factors and adjust other aspects of an SEM graph by semPlot::semPaths.
Usage
set_sem_layout(
semPaths_plot,
indicator_order = NULL,
indicator_factor = NULL,
factor_layout = NULL,
factor_point_to = NULL,
indicator_push = NULL,
indicator_spread = NULL,
loading_position = 0.5
)
Arguments
semPaths_plot |
A qgraph::qgraph object generated by semPaths, or a similar qgraph object modified by other semptools functions. |
indicator_order |
A string vector of the indicators. The order
of the names is the order of the indicators in the graph, when they
are drawn on the bottom of the graph. The indicators should be
grouped by the factors on which they load on. For example, if x1,
x2, x4 load on f2, and x3, x5, x6 load on f1, then vector should be
either c("x1", "x2", "x4", "x3", "x5", "x6") or c("x3", "x5", "x6",
"x1", "x2", "x4"). Indicators within a group can be ordered in any
way. If it is a named vector, its names will be used for the
argument |
indicator_factor |
A string vector of the same length of the
indicator order, storing the name of the factor for which each of
the indicator in indicator_factor loads on. For example, if x1, x2,
x4 load on f2, and x3, x5, x6 load on f1, and indicator_order is
c("x3", "x5", "x6", "x1", "x2", "x4"), then indicator_factor should
be c("f2", "f2", "f2", "f1", "f1", "f1"). If |
factor_layout |
A matrix of arbitrary size. This matrix will serve as a grid for users to specify where each latent factor should be placed approximately on the graph. Each cell should contain NA or the name of a latent factor. The locations of all latent factors must be explicitly specified by this matrix. |
factor_point_to |
Can be a named character vector with
names being the names of factors, or a matrix of the same size as |
indicator_push |
(Optional) This argument is used to adjust the
positions of the indicators of selected latent factors. It can be
named vector or a list of named lists. For a named vector, The name
is the factor of which the indicators will be "pushed", and the
value is how "hard" the push is: the multiplier to the distance
from the factor to the indicators. If this value is 1, then there
is no change. If this value is greater than 1, then the indicators
are pushed away from the latent factor. If this value is less than
1, then the indicators are pulled toward the latent factor. For
example, to push the indicators of |
indicator_spread |
(Optional) This argument is used to adjust
the distance between indicators of selected latent factors. It can
be a named vector or a list of named lists. For a named vector, the
name is the factor of which the indicators will be spread out. The
value is the multiplier to the distance between neighboring
indicators. If this value is equal to 1, there is no change. Larger
than one, the indicators will be "spread" away from each other.
Less than one, the indicators will be placed closer to each others.
For example, to spread the indicators of |
loading_position |
(Optional) Default is .5. This is used
adjust the position of the loadings. If this is one single number,
it will be used to set the positions of all loadings. If it is .5,
the loadings are placed on the center of the arrows. Larger the
number, closer the loadings to the indicators. Smaller the number,
closer to the latent factors. This argument also accepts a named
vector or a list of named lists, allowing users to specify the
positions of loadings for each factor separately. For a named
vector, in each element, the name is the factor whose loadings will
be moved. The value is the positions of its loadings. The default
is .50. We only need to specify the positions for factors to be
changed from .50 to other values. For example, move the loadings of
|
Details
Modify a qgraph::qgraph object generated by semPaths
based on an SEM model with latent factors. Since version 0.2.9.5,
this function natively supports observed exogenous variable.
If a variable is listed in both indicator_order
and
indicator_factor
, as if it is both a factor and an indicator,
this function will assume that it is an observed exogenous variable.
It will be positioned as a factor according to factor_layout
,
but no indicators will be drawn.
For versions older than 0.2.9.5, an observed exogenous variable needs to be specified as an one-indicator factor in the model specification for this function to work.
Value
A qgraph::qgraph based on the original one, with various aspects of the model modified.
Examples
library(lavaan)
library(semPlot)
mod <-
'f1 =~ x01 + x02 + x03
f2 =~ x04 + x05 + x06 + x07
f3 =~ x08 + x09 + x10
f4 =~ x11 + x12 + x13 + x14
f3 ~ f1 + f2
f4 ~ f1 + f3
'
fit_sem <- lavaan::sem(mod, sem_example)
lavaan::parameterEstimates(fit_sem)[, c("lhs", "op", "rhs", "est", "pvalue")]
p <- semPaths(fit_sem, whatLabels="est",
sizeMan = 5,
nCharNodes = 0, nCharEdges = 0,
edge.width = 0.8, node.width = 0.7,
edge.label.cex = 0.6,
style = "ram",
mar = c(10,10,10,10))
indicator_order <- c("x04", "x05", "x06", "x07", "x01", "x02", "x03",
"x11", "x12", "x13", "x14", "x08", "x09", "x10")
indicator_factor <- c( "f2", "f2", "f2", "f2", "f1", "f1", "f1",
"f4", "f4", "f4", "f4", "f3", "f3", "f3")
factor_layout <- matrix(c("f1", NA, NA,
NA, "f3", "f4",
"f2", NA, NA), byrow = TRUE, 3, 3)
factor_point_to <- matrix(c("left", NA, NA,
NA, "down", "down",
"left", NA, NA), byrow = TRUE, 3, 3)
indicator_push <- c(f3 = 2, f4 = 1.5)
indicator_spread <- c(f1 = 2, f2 = 2)
loading_position <- c(f1 = .5, f2 = .8, f3 = .8)
# Pipe operator can be used if desired
p2 <- set_sem_layout(p,
indicator_order = indicator_order,
indicator_factor = indicator_factor,
factor_layout = factor_layout,
factor_point_to = factor_point_to,
indicator_push = indicator_push,
indicator_spread = indicator_spread,
loading_position = loading_position)
p2 <- set_curve(p2, c("f2 ~ f1" = -1,
"f4 ~ f1" = 1.5))
p2 <- mark_sig(p2, fit_sem)
p2 <- mark_se(p2, fit_sem, sep = "\n")
plot(p2)
# Use a named vector for indicator_order
indicator_order2 <- c(f2 = "x04", f2 = "x05", f2 = "x06", f2 = "x07",
f1 = "x01", f1 = "x02", f1 = "x03",
f4 = "x11", f4 = "x12", f4 = "x13", f4 = "x14",
f3 = "x08", f3 = "x09", f3 = "x10")
p2 <- set_sem_layout(p,
indicator_order = indicator_order2,
factor_layout = factor_layout,
factor_point_to = factor_point_to,
indicator_push = indicator_push,
indicator_spread = indicator_spread,
loading_position = loading_position)
plot(p2)
# Use automatically generated indicator_order and indicator_factor
p2 <- set_sem_layout(p,
factor_layout = factor_layout,
factor_point_to = factor_point_to,
indicator_push = indicator_push,
indicator_spread = indicator_spread,
loading_position = loading_position)
plot(p2)
# Use named character vector for factor_point_to
directions <- c(f1 = "left",
f2 = "left",
f3 = "down",
f4 = "down")
p2v2 <- set_sem_layout(p,
indicator_order = indicator_order,
indicator_factor = indicator_factor,
factor_layout = factor_layout,
factor_point_to = directions,
indicator_push = indicator_push,
indicator_spread = indicator_spread,
loading_position = loading_position)
p2v2 <- set_curve(p2v2, c("f2 ~ f1" = -1,
"f4 ~ f1" = 1.5))
p2v2 <- mark_sig(p2v2, fit_sem)
p2v2 <- mark_se(p2v2, fit_sem, sep = "\n")
plot(p2v2)
#Lists of named list which are equivalent to the vectors above:
#indicator_push <- list(list(node = "f3", push = 2),
# list(node = "f4", push = 1.5))
#indicator_spread <- list(list(node = "f1", spread = 2),
# list(node = "f2", spread = 2))
#loading_position <- list(list(node = "f1", position = .5),
# list(node = "f2", position = .8),
# list(node = "f3", position = .8))
Convert a named vector to a list of lists
Description
Convert a named vector to a list of lists, to be used
by various functions in semptools
.
Usage
to_list_of_lists(input, name1 = NULL, name2 = NULL, name3 = NULL)
Arguments
input |
A named vector |
name1 |
The name for the first element in the list-in-list.
Default is |
name2 |
The name for the second element in the list-in-list.
Defaultis |
name3 |
The name for the third element in the list-in-list.
Default is |
Details
This function is not to be used by users, but to be used
internally by other functions of semptools
.
Value
A list of lists.
Examples
x <- c("x1 ~~ x2" = -1, "x4 ~ x1" = 1)
to_list_of_lists(x, name1 = "from", name2 = "to", name3 = "new_curve")
#list(list(from = "x1", to = "x2", new_curve = -1),
# list(from = "x1", to = "x4", new_curve = 1))
y <- c(x1 = 0, x2 = 180, x3 = 140, x4 = 140)
to_list_of_lists(y, name1 = "node", name2 = "rotate")
#list(list(node = "x1", rotate = 0),
# list(node = "x2", rotate = 180),
# list(node = "x3", rotate = 140),
# list(node = "x4", rotate = 140))