Title: | Multivariate ANalysis of VAriance with Ridge Regularization for Semicontinuous High-Dimensional Data |
LazyLoad: | yes |
Version: | 0.2 |
Depends: | R (≥ 2.15.1) |
Imports: | matrixcalc, mvtnorm |
Date: | 2025-06-11 |
Description: | Implements Multivariate ANalysis Of VAriance (MANOVA) parameters' inference and test with regularization for semicontinuous high-dimensional data. The method can be applied also in presence of low-dimensional data. The p-value can be obtained through asymptotic distribution or using a permutation procedure. The package gives also the possibility to simulate this type of data. Method is described in Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054. DOI <doi:10.1002/bimj.70054>, arXiv DOI <doi:10.48550/arXiv.2401.04036>. |
License: | GPL-2 |
NeedsCompilation: | no |
Packaged: | 2025-06-11 12:06:20 UTC; claudio |
Author: | Elena Sabbioni |
Maintainer: | Elena Sabbioni <elena.sabbioni@stats.ox.ac.uk> |
Repository: | CRAN |
Date/Publication: | 2025-06-11 16:00:02 UTC |
Multivariate ANalysis Of VAriance Inference and Test with Ridge Regularization for Semicontinuous High-Dimensional Data
Description
scMANOVA
performs Multivariate ANalysis Of VAriance (MANOVA) inference and test with ridge regularization in presence of
semicontinuous high-dimensional data. The test is based on a Likelihood Ratio Test statistic
and the p-value can be computed using either asymptotic distribution (p.value.perm = FALSE
)
or via permutation procedure (p.value.perm = TRUE
). There is the possibility to provide
as input the regularization parameters or to choose them through an optimization procedure.
Usage
scMANOVA(x, n, lambda = NULL, lambda0 = NULL, lambda.step = 0.1,
ident = FALSE, tol = 1e-08, penalty = function(n, p) log(n),
B = 500, p.value.perm = FALSE, fixed.lambda = FALSE,
fixed.lambda0 = FALSE, ...)
Arguments
x |
|
n |
|
lambda |
|
lambda0 |
|
lambda.step |
scalar. Step size used in the optimization procedure to find the smallest value of |
ident |
|
tol |
scalar. Used in the optimization procedure to find the smallest value of |
penalty |
|
B |
scalar. Number of permutations to run in the permutation test |
p.value.perm |
|
fixed.lambda |
|
fixed.lambda0 |
|
... |
further parameters passed to function |
Value
An object of class
scMANOVA which is a list with the following components
pi |
|
mu |
|
sigmaRidge |
|
sigma |
|
pi0 |
|
mu0 |
|
sigma0Ridge |
|
sigma0 |
|
removed.vars |
|
logLikPi |
scalar. Log-likelihood for the discrete part of the model |
logLik |
scalar. Log-likelihood |
logLikPi0 |
scalar. Log-likelihood for the discrete part of the model under the null hypothesis |
logLik0 |
scalar. Log-likelihood under null hypothesis |
statistic |
scalar. Wilks statistics |
lambda |
scalar. Regularization parameter |
lambda0 |
scalar. Regularization parameter under null hypothesis |
df |
scalar. Model degree of freedom |
df0 |
scalar. Model degree of freedom under null hypothesis |
aic |
scalar. Information criteria |
aic0 |
scalar. Information criteria under null hypothesis |
p.value |
scalar. p-value of the Wilks statistic |
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054 DOI <doi:10.1002/bimj.70054> arXiv DOI <doi:10.48550/arXiv.2401.04036>
See Also
scMANOVAestimation
and scMANOVApermTest
Examples
set.seed(1234)
n <- c(5,5)
p <- 20
pmiss <- 0.1
x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)
res.asy <- scMANOVA(x=x, n=n) # Asymptotic p.value
res.asy
res.perm <- scMANOVA(x=x, n=n, p.value.perm=TRUE) # p-value by permutation test
res.perm
Multivariate ANalysis Of VAriance Maximum Likelihood Estimation with Ridge Regularization for Semicontinuous High-Dimensional Data
Description
scMANOVAestimation
computes the regularized Multivariate ANalysis Of
VAriance (MANOVA) maximum likelihood estimates for semicontinuous
high-dimensional data. The estimation can be performed also for
low-dimensional data. The regularization parameters are provided as input
and the user can decide to perform the regularization adding the identity
matrix to the raw estimated covariance matrix (default, ident=TRUE
)
or adding the diagonal values of the raw estimated covariance matrix
(ident=FALSE
).
Usage
scMANOVAestimation(x, n, lambda = NULL, lambda0 = NULL,
ident = TRUE, posdef.check = TRUE, rm.vars = NA)
Arguments
x |
|
n |
|
lambda |
scalar. Ridge regularization parameter |
lambda0 |
scalar. Ridge regularization parameter under null hypothesis |
ident |
|
posdef.check |
|
rm.vars |
|
Value
An object of class
scMANOVAestimation which is a list with the following components
pi |
|
mu |
|
sigmaRidge |
|
sigma |
|
pi0 |
|
mu0 |
|
sigma0Ridge |
|
sigma0 |
|
removed.vars |
|
logLikPi |
scalar. Log-likelihood for the discrete part of the model |
logLik |
scalar. Log-likelihood |
logLikPi0 |
scalar. Log-likelihood for the discrete part of the model under the null hypothesis |
logLik0 |
scalar. Log-likelihood under null hypothesis |
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054 DOI <doi:10.1002/bimj.70054> arXiv DOI <doi:10.48550/arXiv.2401.04036>
See Also
Examples
set.seed(1234)
n <- c(5,5)
p <- 20
pmiss <- 0.1
x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)
res <- scMANOVAestimation(x=x, n=n, lambda=3.59, lambda0=3.13)
res
Multivariate ANalysis Of VAriance log-likelihood Test with Ridge Regularization for Semicontinuous High-Dimensional Data
Description
scMANOVApermTest
uses a permutation procedure to perform a test
based on a Multivariate ANalysis Of VAriance(MANOVA) Likelihood Ratio test statistic with a ridge
regularization. The statistic is developed for semicontinuous and
high-dimensional data, but can be used also in low-dimensional scenarios.
Usage
scMANOVApermTest(x, n, lambda = NULL, lambda0 = NULL, lambda.step = 0.1,
ident = FALSE, tol = 1e-08, penalty = function(n, p) log(n), B = 500,
parallel = c("no", "multicore", "snow"), ncpus = 1L, cl = NULL,
only.pvalue = TRUE, rm.vars = NA, ...)
Arguments
x |
|
n |
|
lambda |
scalar or a |
lambda0 |
|
lambda.step |
scalar. Step size used in the optimization procedure to find the smallest value of |
ident |
|
tol |
scalar. Used in the optimization procedure to find the smallest value of |
penalty |
|
B |
scalar. Number of permutations to run in the permutation test |
parallel |
The type of parallel operation to be used (if any) |
ncpus |
|
cl |
An optional |
only.pvalue |
|
rm.vars |
|
... |
Further parameters passed to |
Value
If only.pvalue=TRUE
(default) a scalar which is the p-value of the Wilks statistic obtain by a permutation procedure, otherwise an object of class
htest
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054 DOI <doi:10.1002/bimj.70054> arXiv DOI <doi:10.48550/arXiv.2401.04036>
See Also
scMANOVA
and scMANOVAestimation
Examples
set.seed(1234)
n <- c(5,5)
p <- 20
pmiss <- 0.1
x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)
res <- scMANOVApermTest(x=x, n=n, lambda=3.59, lambda0=3.13,
only.pvalue=FALSE)
res
Simulation of datasets for a semicontinuous scenarios
Description
Simulation of dataset of semicontinuous data coming from different groups, with specific marginal probabilities of a missing value, specific mean vectors and common covariance matrix.
Usage
scMANOVAsimulation(n, p, pmiss = 0, rho = 0, mu = NULL,
sigma = NULL, only.data = TRUE)
Arguments
n |
|
p |
scalar. Number of variables (columns) |
pmiss |
scalar or |
rho |
scalar. If |
mu |
|
sigma |
|
only.data |
|
Value
If only.data=TRUE
an object of class
matrix
is reported otherwise a list
with the following components
x |
|
y |
|
original |
|
mu |
|
sigma |
|
n |
As in input |
p |
As in input |
pmiss |
|
Author(s)
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni
References
Elena Sabbioni, Claudio Agostinelli and Alessio Farcomeni (2025) A regularized MANOVA test for semicontinuous high-dimensional data. Biometrical Journal, 67:e70054 DOI <doi:10.1002/bimj.70054> arXiv DOI <doi:10.48550/arXiv.2401.04036>
See Also
scMANOVAestimation
and scMANOVApermTest
Examples
set.seed(1234)
n <- c(5,5)
p <- 20
pmiss <- 0.1
x <- scMANOVAsimulation(n=n, p=p, pmiss=pmiss)