Package 'sectorgap'

July 23, 2025

Type Package

Title Consistent Economic Trend Cycle Decomposition

Version 0.1.0

Description Determining potential output and the output gap - two inherently unobservable variables - is a major challenge for macroeconomists. 'sectorgap' features a flexible modeling and estimation framework for a multivariate Bayesian state space model identifying economic output fluctuations consistent with subsectors of the economy. The proposed model is able to capture various correlations between output and a set of aggregate as well as subsector indicators. Estimation of the latent states and parameters is achieved using a simple Gibbs sampling procedure and various plotting options facilitate the assessment of the results. For details on the methodology and an illustrative example, see Streicher (2024) <https://www.research-collection.ethz.ch/handle/20.500.11850/653682>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Imports stats, KFAS, zoo, ggplot2, MCMCpack, dplyr, tidyr, tempdisagg

Depends R (>= 2.10)

LazyData true

NeedsCompilation no

Author Sina Streicher [aut, cre] (ORCID:

<https://orcid.org/0000-0001-7848-1842>)

Maintainer Sina Streicher <streicher.sina@gmail.com>

Repository CRAN

Date/Publication 2024-01-22 17:40:02 UTC

Contents

ompute_mcmc_results	2
ata_ch	3
efine_ssmodel	4
stimate_ssmodel	5

initialize_prior	6
initialize_settings	8
is.settings	9
plot.ss_fit	10
prepate_data	11
print.prior	13
print.settings	13
print.ss_fit	
print.ss_model	
recessions_ch	
recessions_us	
transform_results	16
1	18

Index

compute_mcmc_results *Results for sampled parameters and states*

Description

Computes estimation results for the MCMC sampling output for a specific HPDI and evaluation function (e.g. mean or median).

Usage

```
compute_mcmc_results(
  model,
  settings,
  mcmc,
  data,
  HPDIprob = NULL,
  fit = NULL,
  ...
)
```

model	state space model object, returned by the function define_ssmodel
settings	list with model setting, in the format returned by the function initialize_settings
mcmc	list with draws of parameters and states (including burnin phase)
data	list with at least two named components: tsm is a multiple time series object that contains all observation series, weights is a named list of time series with (nom- inal) weights, the list names correspond to the different groups, i.e., group1, group2, subgroup1, if present in the model
HPDIprob	probability of highest posterior density interval, optional if fit is supplied
fit	(optional) an object of class fit (returned by the function estimate_ssmodel and this function).
•••	additional arguments (in case fit is supplied)

data_ch

Details

If fit is supplied, the arguments model, settings, mcmc will be taken from this object.

Value

An object of class ss_fit.

data_ch	Swiss data set	

Description

A dataset containing quarterly Swiss economic data, sourced on November 20, 2023.

Usage

data_ch

Format

A list object with two lists. The first list cotains all untransformed endogenous variables:

output Gross domestic product at 2020 prices, in million

vaA value added in sector A: Goods-producing industries, at 2020 prices in million

vaB value added in sector B: Service industries, at 2020 prices in million

vaC value added in sector C: Government and adjustments, at 2020 prices in million

exp1 expenditure side sector i: Total consumption, at 2020 prices in million

exp2 expenditure side sector ii: Investment, at 2020 prices in million

exp3 expenditure side sector iii: Exports, at 2020 prices in million

exp4 expenditure side sector iv: Imports, at 2020 prices in million

fteA full-time equivalent empoyment in sector A: Goods-producing industries, in thousand

fteB full-time equivalent empoyment in sector B: Service industries, in thousand

fteC full-time equivalent empoyment in government sector, in thousand

employment full-time equivalent empoyment, in thousand

urate ILO unemployment rate, in percent

inflation consumer price inflation, year on year in percent

Source

KOF Swiss Economic Institute, ETH Zurich, Switzerland

define_ssmodel

State space model

Description

Defines a state space model for the provided settings and data.

Usage

```
define_ssmodel(settings, data)
```

Arguments

settings	list with model setting, in the format returned by the function $initialize_settings$
data	list with at least two named components: tsm is a multiple time series object that contains all observation series, weights is a named list of time series with (nom- inal) weights, the list names correspond to the different groups, i.e., group1, group2, subgroup1, if present in the model

Details

data is preferably the output of funtion prepare_data.

Value

A state space model object of class ss_model, which consists of an object returned by the function SSModel of the package KFAS and in addition a list item called names which contains information on the parameters to be estimated.

```
data("data_ch")
settings <- initialize_settings()
data <- prepate_data(
   settings = settings,
   tsl = data_ch$tsl,
   tsl_n = data_ch$tsl_n
)
model <- define_ssmodel(
   settings = settings,
   data = data
)</pre>
```

estimate_ssmodel Bayesian estimation via Gibbs sampling

Description

Estimates the parameters and states of a multi-dimensional state space model by Bayesian methods using a Gibbs sampling procedure.

Usage

```
estimate_ssmodel(
  model,
  settings,
  data,
  prior = initialize_prior(model),
  R = 10000,
  burnin = 0.5,
  thin = 1,
  HPDIprob = 0.68,
  fit = NULL
)
```

Arguments

model	state space model object, returned by the function define_ssmodel
settings	list with model setting, in the format returned by the function $\mbox{initialize_settings}$
data	list with at least two named components: tsm is a multiple time series object that contains all observation series, weights is a named list of time series with (nom- inal) weights, the list names correspond to the different groups, i.e., group1, group2, subgroup1, if present in the model
prior	list of matrices, each list item corresponds to one endogenous variable. See initialize_prior
R	number of draws, the default is 10000
burnin	share of draws as burnin period, the default is 0.5
thin	thinning parameter defining how many draws are discarded. 1 means no draw is discarded, 2 means each second draw is kept, and so on
HPDIprob	probability of highest posterior density interval, the default is HPDIprob = 0.68
fit	already fitted object of class ss_fit, to continue drawing, see details

Details

If fit is supplied, the function will continue drawing R additional repetitions. In this case, all input variables except for fit and R are ignored.

Value

An object of class ss_fit.

Examples

```
data("data_ch")
settings <- initialize_settings()</pre>
data <- prepate_data(</pre>
  settings = settings,
  tsl = data_ch$tsl,
  tsl_n = data_ch$tsl_n
)
model <- define_ssmodel(</pre>
  settings = settings,
  data = data
)
prior <- initialize_prior(</pre>
  model = model,
  settings = settings
)
fit <- estimate_ssmodel(</pre>
  model = model,
  settings = settings,
  data = data,
  prior = prior,
  R = 100
)
```

initialize_prior Prior distribution

Description

Initializes the prior distributions.

Usage

```
initialize_prior(model, settings, lambda_d = 100, lambda_t = 100, df = 6)
```

model	state space model object, returned by the function define_ssmodel
settings	list with model setting, in the format returned by the function $initialize_settings$
lambda_d	drift smoothing constant (default: 100)
lambda_t	trend smoothing constant (default: 100)
df	degrees of freedom for inverse gamma distributions

Details

All loadings and autoregressive parameters are assumed to be normal with mean zero and variance 1000.

All variance parameters are assumed to be inverse gamma distributed. The cycle variance has prior mean 1, and the trend variances have prior mean 1/100.

The normal distribution is parametrized via mean and variance.

the inverse gamma distribution is parametrized degrees of freedom nu and scale s.

The mean of the inverse gamma distribution is given by beta / (alpha - 1) = beta / 2 = s, where s = 2 beta, nu = 2 alpha.

Value

A data frame with one row per parameter and the following columns:

variable	name of endogneous variable of equation
parameter_name	name of parameter
par1	first parameter of specified distribution, mean for normal parameters and scale for inverse gamma parameters
par2	second parameter of specified distribution, variance for normal parameters and degrees of freedom for inverse gamma parameters
ini	initial value for Gibbs sampler, i.e. mean of distribution given par1 and par2
distribution	name of prior distribution

```
data("data_ch")
settings <- initialize_settings()
data <- prepate_data(
   settings = settings,
   tsl = data_ch$tsl,
   tsl_n = data_ch$tsl_n
)
model <- define_ssmodel(
   settings = settings,
   data = data
)
prior <- initialize_prior(
   model = model,
   settings = settings
)</pre>
```

initialize_settings Model settings

Description

Initializes settings with a basic example.

Usage

```
initialize_settings(
  FUN_transform = function(x) 100 * log(x),
  FUN_transform_inv = function(x) exp(x/100),
  DFUN_transform_inv = function(x) 1/100 * exp(x/100)
)
```

Arguments

FUN_transform	transformation function, the default is $function(x) 100 * log(x)$	
FUN_transform_inv		
	inverse transformation function, the default is $function(x) exp(x / 100)$	
DFUN_transform_inv		
	derivative of inverse transformation function, the default is function(x) 1 exp(x	
	/ 100), only used if non-linear constraints are present	

Value

A nested list with settings for the following groups:

agg	settings for the aggregate variable	
group1	settings for group1, all variables in this group load on the aggregate variable, unless otherwise specified	
group2	settings for group2, all variables in this group load on the aggregate variable, unless otherwise specified	
subgroup1	settings for subgroup1, each variable in this group loads on the respective variable in group1	
agggroup	settings for a group of variables that all load on the same variable	
misc	settings for variables that require individual settings	
Each group contains at least the following list items:		
trend	4 is a local linear trend, 3 a local linear trend with $AR(1)$ drift, 2 a local linear drift without shocks to trend growth, 0 implies no trend (e.g. if a variable shares a trend with another one)	
cycle	2 is an AR(2) cycle, 1 an AR(1) cycle, and 0 a white noise cycle, each with normal innovations	

is.settings

transform	logical indicating if the transformation function should be applied to the variable or group of variables	
variable	variable name(s)	
variable_label	variable label(s)	
label	label of group	
The blocks group	1, group2, subgroup1 additionally contain the following list items:	
corr	4 implies that trends and drifts are correlated, 2 that only dirfts are correlated, 1 that only trends are correlated, and 0 or NA implies no correlation. Only applicable for group1, group2, subgroup1	
load_name	name of the variable that all variables in the group load (for group1, group2) and which is used for the aggregation	
load_lag	lags of the of the variable that all variables in the group load (for group1, group2)	
constr_drift	logical indicating if constraints for the drifts should be enforced	
constr_trends	logical indicating if constraints for the trends should be enforced	
constr_trends_linear		
	logical indicating if constraints for the trends are linear or nonlinear, the default is FALSE in which case the constraint is enforced on the level series, else, it is enforced on the growth rates.	
variable_neg	variable names that are negative and thus need to be subtracted when construct- ing weights	
The block subgroup1 additionally contain the following list item:		
match_group1	a character vector of the same length as variable indicating the matching variables in group1, in the same order as variable, NA indicates no match	

is.settings

Settings object validity check

Description

Checks if settings are a valid object of class settings.

Usage

```
is.settings(x, dfl = NULL, return.logical = FALSE)
```

х	settings object
dfl	list of data frames, returned by function settings_to_df
return.logical	If return.logical = FALSE (default), an error message is printed if the object is not of class settings, if return.logical = TRUE, a logical value is returned

Value

A logical value or nothing, depending on the value of return.logical.

plot.ss_fit Plots of results

Description

Creates a set of time series, density, or trace plots.

Usage

```
## S3 method for class 'ss_fit'
plot(
 х,
 plot_type = "timeseries",
 estimate = "median",
 data = data,
 n_{col} = 3,
 n_{sep} = 5,
 file_path = NULL,
  title = TRUE,
  save = FALSE,
 device = "jpg",
 width = 10,
 height = 3,
  units = "in",
 highlighted_area = NULL,
  plot_start = NULL,
  plot_end = NULL,
  alpha = 0.05,
  include_burnin = FALSE,
  . . .
)
```

x	object of class ss_fit
plot_type	type of plots, options are "timeseries", "density", "trace"
estimate	character specifying the posterior estimate. Valid options are "mean" and "median", the default is estimate = "median".
data	list with at least two named components: tsm is a multiple time series object that contains all observation series, weights is a named list of time series with (nom- inal) weights, the list names correspond to the different groups, i.e., group1, group2, subgroup1, if present in the model

n_col	number of columns for grid plots
n_sep	increments of x axis ticks in years
file_path	file path for plots
title	boolean indicating if plots should contain titles
save	boolean indicating if plots should be saved, if FALSE, the plots will be printed instead, default is save = FALSE (ignored if file_path is provided)
device	character string with format used in ggsave
width	plot width in units, for grid plots adjusted for the number of plot columns n_{col}
height	plot height in units, for grid plots adjusted for the number of plot rows implied by n_col
units	units for plot size ("in", "cm", "mm", or "px")
highlighted_are	ea
	<pre>data frame with two columns called start and end containing start and end date, e.g. 1990.25 and 1992.75 for 1990 Q2 until 1992 Q4 (only used if plot_type = "timeseries")</pre>
plot_start	<pre>start of x axis in years, e.g., 1990.5 (only used if plot_type = "timeseries")</pre>
plot_end	end of x axis in years, e.g., 2010.25 (only used if plot_type = "timeseries")
alpha	<pre>cut off value for posterior (only used if plot_type = "density")</pre>
include_burnin	logical indicating if burnin phase should be included (only used if plot_type = "trace")
	ignored

Value

nothing

prepate_data Input data

Description

Prepares the required input data, it performs the transformations to the raw data and computes the necessary weights for the constraints.

Usage

```
prepate_data(
   settings,
   tsl,
   tsl_n = NULL,
   tsl_p = NULL,
   ts_start = NULL,
   ts_end = NULL,
   extend_weights = FALSE
)
```

Arguments

settings	list with model setting, in the format returned by the function initialize_settings
tsl	time series list with all untransformed endogenous series
tsl_n	time series list with nominal level series for aggregate output agg and its sub- components in group1, group2
tsl_p	time series list with price series for aggregate output agg and its subcomponents in group1, group2
ts_start	start date, e.g. c(2000, 2) or 2000.25
ts_end	end date, e.g. c(2000, 2) or 2000.25
extend_weights	logical indicating if missing weights at beginning/end of sample should be filled with the last/first available value

Details

Either tsl_n or tsl_p must be supplied.

Weights are forward/backward extended with the first/last value if the supplied time series do not cover the entire period.

Value

A list with five components:

tsm	multiple time series object with all (transformed) endogeneous variables
real	multiple time series object with real series of agg, group1, group2
nominal	multiple time series object with nominal series of agg, group1, group2
prices	multiple time series object with price series of agg, group1, group2
weights_growth	list of multiple time series objects with weights for the growth constraints, i.e., for series group1, group2, subgroup1 if applicable
weights_level	list of multiple time series objects with weights for the non linear level con- straints, i.e., for series group1, group2, subgroup1 if applicable

```
data("data_ch")
settings <- initialize_settings()
data <- prepate_data(
   settings = settings,
   tsl = data_ch$tsl,
   tsl_n = data_ch$tsl_n
)</pre>
```

print.prior

Description

Prints the model specifications of an object of class prior.

Usage

```
## S3 method for class 'prior'
print(x, call = TRUE, check = TRUE, ...)
```

Arguments

х	object of class prior
call	logical, if TRUE, the call will be printed
check	logical, if TRUE, the model class will be checked
	ignored.

Value

No return value

print.settings *Print* settings *object*

Description

Prints the model settings.

Usage

```
## S3 method for class 'settings'
print(x, call = TRUE, check = TRUE, ...)
```

Arguments

Х	object of class settings
call	logical, if TRUE, the call will be printed
check	logical, if TRUE, the model class will be checked
	ignored.

Value

No return value

print.ss_fit Print ss_fit object.

Description

Prints the model specifications of an object of class ss_fit.

Usage

```
## S3 method for class 'ss_fit'
print(x, call = TRUE, check = TRUE, ...)
```

Arguments

х	object of class ss_fit
call	logical, if TRUE, the call will be printed
check	logical, if TRUE, the model class will be checked
	ignored.

Value

No return value

print.ss_model Print ss_model object

Description

Prints the model specifications of an object of class ss_model.

Usage

```
## S3 method for class 'ss_model'
print(x, call = TRUE, check = TRUE, ...)
```

Arguments

х	object of class ss_model
call	logical, if TRUE, the call will be printed
check	logical, if TRUE, the model class will be checked
	ignored.

Value

No return value

recessions_ch Swiss recessions

Description

Recession periods in Switzerland since 1990.

Usage

recessions_ch

Format

A data frame with two columns:

start start date of recession, in quarters

end end date of recession, in quarters

recessions_us US recessions

Description

Recession periods in the United States since 1960.

Usage

recessions_us

Format

A data frame with two columns:

start start date of recession, in quarters

end end date of recession, in quarters

Source

National Bureau of Economic Research (NBER)

Description

Formats the output series into a tibble in long format and computes contribution series.

Usage

```
transform_results(
  fit,
  data,
  settings,
  estimate = "median",
  HPDIprob = 0.68,
  transformed = TRUE
)
```

Arguments

fit	fitted object
data	list with at least two named components: prices is a multiple time series object that contains price indices for all relevant series, weights, is a named list of time series with (nominal) weights, the list names correspond to the different groups, i.e., group1, group2, subgroup1, if present in the model
settings	list with model setting, in the format returned by the function initialize_settings
estimate	character specifying the posterior estimate. Valid options are "mean" and "median", the default is estimate = "median".
HPDIprob	probability of highest posterior density interval, the default is HPDIprob = 0.68
transformed	boolean indicating if the transformed series should be used.

Details

data is preferably the output of funtion prepare_data.

Value

A data frame with results in long format.

```
data("data_ch")
settings <- initialize_settings()
data <- prepate_data(
   settings = settings,
   tsl = data_ch$tsl,
   tsl_n = data_ch$tsl_n</pre>
```

```
transform_results
```

```
)
model <- define_ssmodel(</pre>
  settings = settings,
 data = data
)
prior <- initialize_prior(</pre>
 model = model,
  settings = settings
)
fit <- estimate_ssmodel(</pre>
  model = model,
  settings = settings,
  data = data,
  prior = prior,
 R = 100
)
df <- transform_results(</pre>
 fit = fit,
 data = data,
 estimate = "median"
)
```

Index

* datasets $data_ch, 3$ $recessions_ch, 15$ recessions_us, 15 compute_mcmc_results, 2 data_ch, 3 define_ssmodel, 4 estimate_ssmodel, 5 initialize_prior, 6 initialize_settings, 8 is.settings,9 plot.ss_fit, 10 prepate_data, 11 print.prior, 13 print.settings, 13 print.ss_fit, 14 print.ss_model, 14 recessions_ch, 15 recessions_us, 15 transform_results, 16