Type: | Package |
Title: | Robust Inference for Meta-Analysis with Influential Outlying Studies |
Version: | 1.2-1 |
Date: | 2023-11-08 |
Maintainer: | Hisashi Noma <noma@ism.ac.jp> |
Description: | Robust inference methods for fixed-effect and random-effects models of meta-analysis are implementable. The robust methods are developed using the density power divergence that is a robust estimating criterion developed in machine learning theory, and can effectively circumvent biases and misleading results caused by influential outliers. The density power divergence is originally introduced by Basu et al. (1998) <doi:10.1093/biomet/85.3.549>, and the meta-analysis methods are developed by Noma et al. (2022) <forthcoming>. |
Depends: | R (≥ 3.5.0) |
Imports: | stats, metafor |
License: | GPL-3 |
Encoding: | UTF-8 |
LazyData: | true |
NeedsCompilation: | no |
Packaged: | 2023-11-08 06:51:42 UTC; Hisashi |
Author: | Hisashi Noma [aut, cre], Shonosuke Sugasawa [aut], Toshi A. Furukawa [aut] |
Repository: | CRAN |
Date/Publication: | 2023-11-08 07:10:02 UTC |
The 'robustmeta' package.
Description
A R package for implementing the robust inference methods for meta-analysis involving influential outlying studies.
References
Noma, H., Sugasawa, S. and Furukawa, T. A. (2022). Robust inference methods for meta-analysis involving influential outlying studies. In Preparation.
Rubinstein et al. (2019)'s chronic low back pain data
Description
-
ID
: Study ID -
Souce
: First author name and year of publication -
m1
: Estimated mean in experimental group -
s1
: Standard deviation in experimental group -
n1
: Number of observations in experimental group -
m2
: Estimated mean in control group -
s2
: Standard deviation in control group -
n2
: Number of observations in control group
Usage
data(clbp)
Format
A data frame with 23 rows and 8 variables
References
Rubinstein, S. M,, de Zoete, A., van Middelkoop, M., Assendelft, W. J. J., de Boer, M. R., van Tulder, M. W. (2019). Benefits and harms of spinal manipulative therapy for the treatment of chronic low back pain: systematic review and meta-analysis of randomised controlled trials. BMJ. 364: l689.
Robust estimation for meta-analysis with influential outlying studies
Description
Implementing the robust inference for meta-analysis involving influential outlying studies based on the density power divergence.
Usage
rmeta(y, v, model="RE", gamma=0.01)
Arguments
y |
A vector of the outcome measure estimates (e.g., MD, SMD, log OR, log RR, log HR, RD) |
v |
A vector of the variance estimate of |
model |
Type of the pooling model; |
gamma |
Unit of grid search to explore the optimal value of tuning parameter |
Value
Results of the robust inference for meta-analysis.
-
mu
: Estimate of the common effect (for the fixed-effect model) or the grand mean (for the random-effects model). -
se
: Standard error estimate ofmu
. -
CI
: 95 percent confidence interval ofmu
. -
P
: P-value of the hypothesis test ofmu=0
. -
alpha
: Selectedalpha
by the Hyvarinen score. -
W
: Contribution rates of individual studies (ui
: contribution rates of the conventional methods,wi
: contribution rates of the robust methods).
References
Noma, H., Sugasawa, S. and Furukawa, T. A. (2022). Robust inference methods for meta-analysis involving influential outlying studies. In Preparation.
Basu, A., Harris, I. R., Hjort, N. L., Jones, M. C. (1998). Robust and efficient estimation by minimizing a density power divergence. Biometrika. 85: 549-559.
Sugasawa, S. and Yonekura, S. (2021). On selection criteria for the tuning parameter in robust divergence. Entropy. 23: 1147.
Examples
require(metafor)
data(clbp)
edat1 <- escalc(measure="SMD",m1i=m1,m2i=m2,sd1i=s1,sd2i=s2,n1i=n1,n2i=n2,data=clbp)
DL1 <- rma(yi, vi, data=edat1, method="DL")
print(DL1) # ordinary DerSimonian-Laird method
plot(DL1) # plots of influential statistics, etc.
###
y <- as.numeric(edat1$yi) # definition of summary statistics
v <- edat1$vi
rmeta(y,v) # robust inference based on the random-effects model
rmeta(y,v,model="FE") # robust inference based on the fixed-effect model
Thomas et al. (2015)'s varenicline data
Description
-
study
: Study ID -
d1
: Number of depression events in treatment group -
n1
: Number of observations in treatment group -
d0
: Number of depression events in control group -
n0
: Number of observations in control group
Usage
data(varenicline)
Format
A data frame with 29 rows and 5 variables
References
Thomas, K. H., Martin, R. M., Knipe, D. W., Higgins, J. P., Gunnell, D. (2015). Risk of neuropsychiatric adverse events associated with varenicline: systematic review and meta-analysis. BMJ. 350: h1109.