
Package ‘roads’
July 23, 2025

Title Road Network Projection

Version 1.2.0

Date 2024-06-26

URL https://github.com/LandSciTech/roads,

https://landscitech.github.io/roads/

Description Iterative least cost path and minimum spanning tree methods for projecting
forest road networks. The methods connect a set of target points to an existing
road network using 'igraph' <https://igraph.org> to identify least cost routes.
The cost of constructing a road segment between adjacent pixels is determined
by a user supplied weight raster and a weight function; options include the
average of adjacent weight raster values, and a function of the elevation
differences between adjacent cells that penalizes steep grades. These road
network projection methods are intended for integration into R workflows and
modelling frameworks used for forecasting forest change, and can be applied
over multiple time-steps without rebuilding a graph at each time-step.

License Apache License (>= 2)

Encoding UTF-8

LazyData true

Imports dplyr, igraph (>= 2.0.3), data.table, sf, units, rlang,
methods, tidyselect, terra

RoxygenNote 7.3.1

Suggests testthat (>= 2.1.0), knitr, rmarkdown, viridis, tmap, bench,
gdistance

VignetteBuilder knitr

Depends R (>= 2.10)

Collate 'CLUSexample.R' 'buildSimList.R' 'buildSnapRoads.R'
'demoScen.R' 'getClosestRoad.R' 'getDistFromSource.R'
'getGraph.R' 'weightFunctions.R' 'getLandingsFromTarget.R'
'lcpList.R' 'mstList.R' 'pathsToLines.R' 'projectRoads.R'
'rasterToLineSegments.R' 'shortestPaths.R' 'plotRoads.R'
'rasterizeLine.R' 'prepExData.R' 'roads-package.R'
'dem_example.R'

1

https://github.com/LandSciTech/roads
https://landscitech.github.io/roads/
https://igraph.org

2 CLUSexample

BugReports https://github.com/LandSciTech/roads/issues

NeedsCompilation no

Author Sarah Endicott [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9644-5343>),

Kyle Lochhead [aut],
Josie Hughes [aut],
Patrick Kirby [aut],
Her Majesty the Queen in Right of Canada as represented by the Minister

of the Environment [cph] (Copyright holder for included functions
buildSimList, getLandingsFromTarget, pathsToLines, plotRoads,
projectRoads, rasterizeLine, rasterToLineSegments),

Province of British Columbia [cph] (Copyright holder for included
functions getGraph, lcpList, mstList, shortestPaths,
getClosestRoad, buildSnapRoads)

Maintainer Sarah Endicott <sarah.endicott@ec.gc.ca>

Repository CRAN

Date/Publication 2024-06-27 14:50:02 UTC

Contents
CLUSexample . 2
demoScen . 3
dem_example . 4
getLandingsFromTarget . 5
gradePenaltyFn . 6
plotRoads . 7
prepExData . 8
projectRoads . 9
rasterToLineSegments . 13
simpleCostFn . 14

Index 15

CLUSexample Data from the CLUS example

Description

From Kyle Lochhead and Tyler Muhly’s CLUS road simulation example. SpatRaster files created
with the terra package must be saved with terra::wrap() and need to be unwrapped before they
are used. prepExData() does this.

Usage

data(CLUSexample)

https://github.com/LandSciTech/roads/issues
https://orcid.org/0000-0001-9644-5343

demoScen 3

Format

A named list with components:

• cost: a PackedSpatRaster representing road building cost.

• landings: an sf dataframe of points representing landing locations.

• roads: a PackedSpatRaster representing existing roads.

Examples

CLUSexample
prepExData(CLUSexample)

demoScen Demonstration set of 10 input scenarios

Description

A demonstration set of scenarios that can be used as input to projectRoads(). The data contains
SpatRaster objects that must be wrapped to be stored. To unwrap them use prepExData()

Usage

data(demoScen)

Format

A list of sub-lists, with each sub-list representing an input scenario. The scenarios (sub-lists) each
contain the following components:

• scen.number: An integer value representing the scenario number (generated scenarios are
numbered incrementally from 1).

• road.rast: A logical PackedSpatRaster representing existing roads. TRUE is existing road.
FALSE is not existing road.

• road.line: A sf object representing existing roads.

• cost.rast: A PackedSpatRaster representing the cost of developing new roads on a given cell.

• landings.points: A sf object representing landings sets and landing locations within each set.
The data frame includes a field named ’set’ which contains integer values representing the
landings set that each point belongs to

• landings.stack: A PackedSpatRaster with multiple layers representing the landings and land-
ings sets. Each logical layer represents one landings set. Values of TRUE are a landing in the
given set. Values of FALSE are not.

• landings.poly: A sf object representing a single set of polygonal landings.

See Also

projectRoads

4 dem_example

Examples

demoScen[[1]]
demoScen <- prepExData(demoScen)
demoScen[[1]]

dem_example Grade penalty example data

Description

A list containing two rasters covering an area near Revelstoke, British Columbia, Canada. ex_elev
is elevation data and ex_wat is the proportion of the cell that contains water. Both are subsets of
data downloaded with the geodata package at 30 arc seconds resolution.SpatRaster files created
with the terra package must be saved with terra::wrap() and need to be unwrapped before they
are used. prepExData() does this.

Usage

data(dem_example)

Format

A named list with components:

• ex_elev: a PackedSpatRaster of elevation.

• ex_wat: a PackedSpatRaster of proportion water.

Details

Elevation data are primarily from Shuttle Radar Topography Mission (SRTM), specifically the hole-
filled CGIAR-SRTM (90 m resolution) from https://srtm.csi.cgiar.org/.

Water data are derived from the ESA WorldCover data set at 0.3-seconds resolution. (License CC
BY 4.0). See https://esa-worldcover.org/en for more information.

References

Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., Quast, R.,
Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, S., Georgieva, I.,
Lesiv, M., Carter, S., Herold, M., Li, Linlin, Tsendbazar, N.E., Ramoino, F., Arino, O., 2021. ESA
WorldCover 10 m 2020 v100. doi:10.5281/zenodo.5571936.

Examples

dem_example
prepExData(dem_example)

getLandingsFromTarget 5

getLandingsFromTarget Get landing target points within harvest blocks

Description

Generate landing points inside polygons representing harvested area. There are three different sam-
pling types available: "centroid" (default) returns the centroid or a point inside the polygon if
the centroid is not (see sf::st_point_on_surface()); "random" returns a random sample given
landingDens see (sf::st_sample()); "regular" returns points on a regular grid with cell size
sqrt(1/landingDens) that intersect the polygon, or centroid if no grid points fall within the poly-
gon.

Usage

getLandingsFromTarget(harvest, landingDens = NULL, sampleType = "centroid")

Arguments

harvest sf, SpatialPolygons, SpatRaster or RasterLayer object with harvested ar-
eas. If it is a raster with values outside 0,1, values are assumed to be harvest
block IDs. If raster values are in 0,1 they are assumed to be a binary raster and
terra::patches is used to identify harvest blocks.

landingDens number of landings per unit area. This should be in the same units as the CRS
of the harvest. Note that 0.001 points per m2 is > 1000 points per km2 so this
number is usually very small for projected CRS.

sampleType character. "centroid" (default), "regular" or "random". "centroid" returns
one landing per harvest block, which is guaranteed to be in the harvest block
for sf objects but not for rasters. "regular" returns points from a grid with
density landingDens that overlap the harvested areas. "random" returns a ran-
dom set of points from each polygon determined by the area of the polygon and
landingDens. If harvest is a raster set of landings always includes the centroid
to ensure at least one landing for each harvest block.

Details

Note that the landingDens is points per unit area where the unit of area is determined by the CRS.
For projected CRS this should likely be a very small number i.e. < 0.001.

Value

an sf simple feature collection with an ID column and POINT geometry

Examples

doPlots <- interactive()
demoScen <- prepExData(demoScen)

6 gradePenaltyFn

polys <- demoScen[[1]]$landings.poly[1:2,]

Get centroid
outCent <- getLandingsFromTarget(polys)

if(doPlots){
plot(sf::st_geometry(polys))
plot(outCent, col = "red", add = TRUE)

}

Get random sample with density 0.1 points per unit area
outRand <- getLandingsFromTarget(polys, 0.1, sampleType = "random")

if(doPlots){
plot(sf::st_geometry(polys))
plot(outRand, col = "red", add = TRUE)

}

Get regular sample with density 0.1 points per unit area
outReg <- getLandingsFromTarget(polys, 0.1, sampleType = "regular")

if(doPlots){
plot(sf::st_geometry(polys))
plot(outReg, col = "red", add = TRUE)

}

gradePenaltyFn Grade penalty edge weight function

Description

Method for calculating the weight of an edge between two nodes from the value of the input raster
at each of those nodes (x1 and x2), designed for a single DEM input. The method assumes an input
weightRaster in which:

• NA indicates a road cannot be built

• Negative values are costs for crossing streams or other barriers that are crossable but expen-
sive. Edges that link to barrier penalty (negative value) nodes are assigned the largest barrier
penalty weight.

• Zero values are assumed to be existing roads.

• All other values are interpreted as elevation in the units of the raster map (so that a difference
between two cells equal to the map resolution can be interpreted as 100% grade) This is a
simplified version of the grade penalty approach taken by Anderson and Nelson (2004): The
approach does not distinguish between adverse and favourable grades. Default construction
cost values are from the BC interior appraisal manual. The approach ignores (unknown) grade
penalties beside roads and barriers in order to avoid increased memory and computational
burden associated with multiple input rasters.

plotRoads 7

Usage

gradePenaltyFn(
x1,
x2,
hdistance,
baseCost = 16178,
limit = 20,
penalty = 504,
limitWeight = NA

)

Arguments

x1, x2 Number. Value of the input raster at two nodes.

hdistance Number. Horizontal distance between nodes. hdistance, x1, and x2 should
have the same units.

baseCost Number. Construction cost of 0% grade road per km.

limit Number. Maximum grade (%) on which roads can be built.

penalty Number. Cost increase (per km) associated with each additional % increase in
road grade.

limitWeight Number. Value assigned to edges that exceed the grade limit. Try setting to a
high (not NA) value if encountering problems with disconnected graphs.

References

Anderson AE, Nelson J (2004) Projecting vector-based road networks with a shortest path algo-
rithm. Canadian Journal of Forest Research 34:1444–1457. https://doi.org/10.1139/x04-030

Examples

gradePenaltyFn(0.5,0.51,1)
gradePenaltyFn(0.5,0.65,1)
grade > 20% so NA
gradePenaltyFn(0.5,0.75,1)

plotRoads Plot projected roads

Description

Plot the results of projectRoads()

Usage

plotRoads(sim, mainTitle, subTitle = paste0("Method: ", sim$roadMethod), ...)

8 prepExData

Arguments

sim sim list result from projectRoads

mainTitle character. A title for the plot

subTitle character. A sub title for the plot, by default the roadMethod is used

... Other arguments passed to raster plot call for the weightRaster

Value

Creates a plot using base graphics

Examples

CLUSexample <- prepExData(CLUSexample)
prRes <- projectRoads(CLUSexample$landings, CLUSexample$cost, CLUSexample$roads)
if(interactive()){

plotRoads(prRes, "Title")
}

prepExData Prepare example data

Description

Prepare example data included in the package that contain wrapped terra objects. This applies
terra::unwrap() recursively to the list provided so that all PackedSpatRasters are converted to
SpatRasters.

Usage

prepExData(x)

Arguments

x list. Contains elements some of which are packed SpatRasters.

Value

The same list but with unwrapped SpatRasters

Examples

CLUSexample
prepExData(CLUSexample)

projectRoads 9

projectRoads Project road network

Description

Project a road network that links target landings to existing roads. For all methods except "snap",
a weightRaster and weightFunction together determine the cost to build a road between two
adjacent raster cells.

Usage

projectRoads(
landings = NULL,
weightRaster = NULL,
roads = NULL,
roadMethod = "ilcp",
plotRoads = FALSE,
mainTitle = "",
neighbourhood = "octagon",
weightFunction = simpleCostFn,
sim = NULL,
roadsOut = NULL,
roadsInWeight = TRUE,
ordering = "closest",
roadsConnected = FALSE,
...

)

S4 method for signature 'ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY,missing'
projectRoads(
landings = NULL,
weightRaster = NULL,
roads = NULL,
roadMethod = "ilcp",
plotRoads = FALSE,
mainTitle = "",
neighbourhood = "octagon",
weightFunction = simpleCostFn,
sim = NULL,
roadsOut = NULL,
roadsInWeight = TRUE,
ordering = "closest",
roadsConnected = FALSE,
...

)

S4 method for signature 'ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY,list'

10 projectRoads

projectRoads(
landings = NULL,
weightRaster = NULL,
roads = NULL,
roadMethod = "ilcp",
plotRoads = FALSE,
mainTitle = "",
neighbourhood = "octagon",
weightFunction = simpleCostFn,
sim = NULL,
roadsOut = NULL,
roadsInWeight = TRUE,
ordering = "closest",
roadsConnected = FALSE,
...

)

Arguments

landings sf polygons or points, RasterLayer, SpatialPolygons*, SpatialPoints*, or
matrix. Contains features to be connected to the road network. Matrix should
contain columns x, y with coordinates, all other columns will be ignored. Poly-
gon and raster inputs will be processed by getLandingsFromTarget() to get
the centroid of harvest blocks.

weightRaster SpatRaster or RasterLayer. A weightRaster and weightFunction together
determine the cost to build a road between two adjacent raster cells. For the
default weightFunction = simpleCostFn, the weightRaster should specify
the cost of construction across each raster cell. The value of cells that con-
tain existing roads should be set to 0; if not set roadsInWeight = FALSE to ad-
just the cost of existing roads. To use the alternative grade penalty method, set
weightFunction = gradePenaltyFn, and provide a weightRaster in which:

• NA indicates a road cannot be built
• Negative values are costs for crossing streams or other barriers that are

crossable but expensive.
• Zero values are existing roads.
• All other values are interpreted as elevation in the units of the raster map

(so that a difference between two cells equal to the map resolution can be
interpreted as 100% grade).

roads sf lines, SpatialLines*, RasterLayer, SpatRaster. The existing road net-
work.

roadMethod Character. Options are "ilcp", "mst", "lcp", and "snap". See Details below.

plotRoads Boolean. Should the resulting road network be plotted. Default FALSE.

mainTitle Character. A title for the plot.

neighbourhood Character. "rook", "queen", or "octagon". Determines which cells are consid-
ered adjacent. The default "octagon" option is a modified version of the queen’s
8 cell neighbourhood in which diagonal weights are multiplied by 2^0.5.

projectRoads 11

weightFunction function. Method for calculating the weight of an edge between two nodes from
the value of the weightRaster at each of those nodes (x1 and x2). The de-
fault simpleCostFn is the mean. The alternative, gradePenaltyFn, sets edge
weights as a function of the difference between adjacent weightRaster cells to
penalize steep grades. Users supplying their own weightFunction should note
that it must be symmetric, meaning that the value returned should not depend on
the ordering of x1 and x2. The weightFunction must include arguments x1, x2
and

sim list. Returned from a previous iteration of projectRoads. weightRaster,
roads, and roadMethod are ignored if a sim list is provided.

roadsOut Character. Either "raster", "sf" or NULL. If "raster" roads are returned as
a SpatRaster in the sim list. If "sf" the roads are returned as an sf object
which will contain lines if the roads input was sf lines but a geometry collection
of lines and points if the roads input was a raster. The points in the geometry
collection represent the existing roads while new roads are created as lines. If
NULL (default) then the returned roads are sf if the input is sf or Spatial* and
SpatRaster if the input was a raster.

roadsInWeight Logical. If TRUE (default) the value of existing roads in the weightRaster is
assumed to be 0. If FALSE cells in the weightRaster that contain existing roads
will be set to 0.

ordering character. The order in which landings are processed when roadMethod = "ilcp".
Options are "closest" (default) where landings closest to existing roads are
accessed first, or "none" where landings are accessed in the order they are pro-
vided in.

roadsConnected Logical. Are all roads fully connected? If TRUE and roadMethod = "mst" the
MST graph can be simplified and the projection should be faster. Default is
FALSE.

... Optional additional arguments to weightFunction.

Details

Four road network projection methods are:

• "lcp": The Least Cost Path method connects each landing to the closest road with a least cost
path, without reference to other landings.

• "ilcp": The Iterative Least Cost Path method iteratively connects each landing to the closest
road with a least cost path, so that the path to each successive landing can include roads
constructed to access previous landings. The sequence of landings is determined by ordering
and is "closest" by default. The alternative "none" option processes landings in the order
supplied by the user.

• "mst": The Minimum Spanning Tree method connects landings to the existing road with a
minimum spanning tree that does not require users to specify the order in which landings are
processed.

• "snap": Connects each landing to the closest (by Euclidean distance) road without, reference
to the weights or other landings.

12 projectRoads

Value

a list with components:

• roads: the projected road network, including new and input roads.

• weightRaster: the updated weightRaster in which new and old roads have value 0.

• roadMethod: the road simulation method used.

• landings: the landings used in the simulation.

• g: the graph that describes the cost of paths between each cell in the updated weightRaster.
Edges between vertices connected by new roads have weight 0. g can be used to avoid the cost
of rebuilding the graph in a simulation with multiple time steps.

Examples

CLUSexample <- prepExData(CLUSexample)
doPlots <- interactive()

projectRoads(CLUSexample$landings, CLUSexample$cost, CLUSexample$roads,
"lcp", plotRoads = doPlots, mainTitle = "CLUSexample")

More realistic examples that take longer to run

demoScen <- prepExData(demoScen)

using: scenario 1 / sf landings / iterative least-cost path ("ilcp")
demo scenario 1
scen <- demoScen[[1]]

landing set 1 of scenario 1:
land.pnts <- scen$landings.points[scen$landings.points$set==1,]

prRes <- projectRoads(land.pnts, scen$cost.rast, scen$road.line, "ilcp",
plotRoads = doPlots, mainTitle = "Scen 1: SPDF-LCP")

using: scenario 1 / `SpatRaster` landings / minimum spanning tree ("mst")
demo scenario 1
scen <- demoScen[[1]]

the RasterLayer version of landing set 1 of scenario 1:
land.rLyr <- scen$landings.stack[[1]]

prRes <- projectRoads(land.rLyr, scen$cost.rast, scen$road.line, "mst",
plotRoads = doPlots, mainTitle = "Scen 1: Raster-MST")

using: scenario 2 / matrix landings raster roads / snapping ("snap")
demo scenario 2
scen <- demoScen[[2]]

rasterToLineSegments 13

landing set 5 of scenario 2, as matrix:
land.mat <- scen$landings.points[scen$landings.points$set==5,] |>

sf::st_coordinates()

prRes <- projectRoads(land.mat, scen$cost.rast, scen$road.rast, "snap",
plotRoads = doPlots, mainTitle = "Scen 2: Matrix-Snap")

using scenario 7 / Polygon landings raster / minimum spanning tree
demo scenario 7
scen <- demoScen[[7]]
rasterize polygonal landings of demo scenario 7:
land.polyR <- terra::rasterize(scen$landings.poly, scen$cost.rast)

prRes <- projectRoads(land.polyR, scen$cost.rast, scen$road.rast, "mst",
plotRoads = doPlots, mainTitle = "Scen 7: PolyRast-MST")

rasterToLineSegments Convert raster to lines

Description

Converts rasters that represent lines into an sf object.

Usage

rasterToLineSegments(rast, method = "mst")

Arguments

rast SpatRaster. Raster representing lines all values > 0 are assumed to be lines

method character. Method of building lines. Options are "mst" (default) or "nearest".
See Details below.

Details

For method = "nearest" raster is first converted to points and then lines are drawn between the
nearest points. If there are two different ways to connect the points that have the same distance both
are kept which can cause doubled lines. USE WITH CAUTION. method = "mst" converts the raster
to points, reclassifies the raster so roads are 0 and other cells are 1 and then uses projectRoads to
connect all the points with a minimum spanning tree. This will always connect all raster cells and
is slower but will not double lines as often. Neither method is likely to work for very large rasters

Value

an sf simple feature collection

14 simpleCostFn

Examples

CLUSexample <- prepExData(CLUSexample)
works well for very simple roads
roadLine1 <- rasterToLineSegments(CLUSexample$roads)

longer running more realistic examples

demoScen <- prepExData(demoScen)
mst method works well in this case
roadLine2 <- rasterToLineSegments(demoScen[[1]]$road.rast)

nearest method has doubled line where the two roads meet
roadLine3 <- rasterToLineSegments(demoScen[[1]]$road.rast, method = "nearest")

The mst method can also produce odd results in some cases
roadLine4 <- rasterToLineSegments(demoScen[[4]]$road.rast)

simpleCostFn Simple cost edge weight function

Description

Calculates the weight of an edge between two nodes as the mean value of an input cost raster at
each of those nodes (x1 and x2).

Usage

simpleCostFn(x1, x2, hdistance)

Arguments

x1, x2 Number. Value of the input cost raster at two nodes.

hdistance Number. Horizontal distance between the nodes - for penalizing longer diagonal
edges.

Examples

simpleCostFn(0.5,0.7,1)

Index

∗ datasets
CLUSexample, 2
dem_example, 4
demoScen, 3

CLUSexample, 2

dem_example, 4
demoScen, 3

getLandingsFromTarget, 5
getLandingsFromTarget(), 10
gradePenaltyFn, 6

plotRoads, 7
prepExData, 8
prepExData(), 2–4
projectRoads, 9
projectRoads(), 3, 7
projectRoads,ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY,list-method

(projectRoads), 9
projectRoads,ANY,ANY,ANY,ANY,ANY,ANY,ANY,ANY,missing-method

(projectRoads), 9

rasterToLineSegments, 13

sf::st_point_on_surface(), 5
sf::st_sample(), 5
simpleCostFn, 14

terra::patches, 5
terra::unwrap(), 8
terra::wrap(), 2, 4

15

	CLUSexample
	demoScen
	dem_example
	getLandingsFromTarget
	gradePenaltyFn
	plotRoads
	prepExData
	projectRoads
	rasterToLineSegments
	simpleCostFn
	Index

