Title: Analysis of Honeycomb Selection Designs
Version: 2.3.4
Description: A useful statistical tool for the construction and analysis of Honeycomb Selection Designs. More information about this type of designs: Fasoula V. (2013) <doi:10.1002/9781118497869.ch6> Fasoula V.A., and Tokatlidis I.S. (2012) <doi:10.1007/s13593-011-0034-0> Fasoulas A.C., and Fasoula V.A. (1995) <doi:10.1002/9780470650059.ch3> Tokatlidis I. (2016) <doi:10.1017/S0014479715000150> Tokatlidis I., and Vlachostergios D. (2016) <doi:10.3390/d8040029>.
Depends: R (≥ 4.2)
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Encoding: UTF-8
RoxygenNote: 7.2.3
Suggests: knitr, rmarkdown
VignetteBuilder: knitr
LazyData: true
Imports: stats, utils, graphics
NeedsCompilation: no
Packaged: 2023-08-23 18:31:51 UTC; Windows
Author: Anastasios Katsileros [aut], Nikos Antonetsis [aut, cre], Marietta Gkika [aut], Eleni Tani [aut], Ioannis Tokatlidis [aut], Penelope Bebeli [aut]
Maintainer: Nikos Antonetsis <stud610027@aua.gr>
Repository: CRAN
Date/Publication: 2023-08-23 18:50:02 UTC

Construction of the honeycomb selection design.

Description

This function creates a data frame of a honeycomb selection design.

Usage

HSD(E, K, rows, plpr, distance, poly = TRUE, control = FALSE)

Arguments

E

The number of entries.

K

The k parameter.

rows

The number of rows.

plpr

The number of plants per row.

distance

The plant-to-plant distance in meters.

poly

If TRUE the polygon pattern is displayed.

control

Convert the design to controlled.

Value

A dataframe.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

HSD(7,2,10,10,1)

Construction of the honeycomb selection design without control.

Description

This function creates a data frame of a honeycomb selection design (one entry, without control).

Usage

HSD0(rows, plpr, distance, poly = TRUE)

Arguments

rows

The number of rows.

plpr

The number of plants per row.

distance

The plant-to-plant distance in meters.

poly

If TRUE set polygon pattern is displayed.

Value

A dataframe.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

HSD0(10,10,1)

Construction of the honeycomb selection design with one control.

Description

This function creates a data frame of a honeycomb selection design (one entry, one control).

Usage

HSD01(K, rows, plpr, distance, poly = TRUE)

Arguments

K

The K parameter.

rows

The number of rows.

plpr

The number of plants per row.

distance

Distance between plants in meters.

poly

If TRUE the polygon pattern is displayed.

Value

A dataframe.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

HSD01(1,10,10,1) 

Construction of the honeycomb selection design with three controls.

Description

This function creates a data frame of a honeycomb selection design (one entry, three controls).

Usage

HSD03(K, rows, plpr, distance, poly = TRUE)

Arguments

K

The k parameter.

rows

The number of rows.

plpr

The number of plants per row.

distance

Distance between plants in meters.

poly

If TRUE the polygon pattern is displayed.

Value

A dataframe

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

HSD03(1,10,10,1)

Analysis of honeycomb selection design based on blocks of unique nearby entries.

Description

A Function to analyze blocks of entries. The "central" plant in each position is not calculated.

Usage

analize_blocks(
  Main_Data_Frame = NULL,
  observation = NULL,
  row_element = NULL,
  plant_element = NULL,
  CRS,
  rep_unrep
)

Arguments

observation

A vector containing the observations.

row_element

The row of the element which the block it belongs to will be displayed.

plant_element

The position of the element in the row which the block it belongs to will be displayed.

CRS

Number of top plants used for the CRS index.

rep_unrep

Replicated of unreplicated design.

Value

A dataframe.


Analysis of the honeycomb selection design.

Description

This function analyzes the response variable of the data frame.

Usage

analysis(
  Main_Data_Frame = NULL,
  Response_Vector = NULL,
  circle = 6,
  blocks = FALSE,
  row_element = NULL,
  plant_element = NULL,
  CRS = NULL
)

Arguments

Main_Data_Frame

A data frame generated by one of the functions HSD(), HSD0(), HSD01() and HSD03().

Response_Vector

A vector containing the response variable data.

circle

The number of plants per moving ring.

blocks

The moving circular block.

row_element

The position of the plant (number of row) in the center of a moving ring/circular block.

plant_element

The position of the plant (number of plant) in the center of a moving ring/circular block.

CRS

The number of selected plants used for the CRS index.

Value

A list.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

main_data<-HSD(7,2,10,10,1)
main_data$Data<-wheat_data$total_yield

analysis(main_data,"Data",6)

Available honeycomb selection designs.

Description

This function is used to generate the available honeycomb selection designs including k parameters.

Usage

generate(E_gen = NULL)

Arguments

E_gen

A single number or a vector of entries.

Value

A dataframe.

References

Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6

Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0

Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3

Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150

Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029

Examples

generate(1:50)

This function returns a plot.

Description

It prints a graphic.

Usage

plot_convert(dataf, poly = TRUE, y_rev = TRUE, x_rev = FALSE, rep_unrep = NULL)

Arguments

dataf

Data frame containing information about the experiment.

poly

If TRUE set the polygon pattern.

y_rev

Reverse the y axis.

x_rev

Reverse the x axis.

rep_unrep

Replicated or unreplicated selection design.

Value

A dataframe.


This function returns only the grouped replicated selection designs.

Description

It calls the check for R function and keeps only the grouped selection designs.

Usage

return_grouped(R_gen)

Arguments

R_gen

A single number or vector containing the replicated selection designs for testing.

Value

A dataframe.


This function returns only the ungrouped replicated selection designs.

Description

It calls the check for R function and keeps only the Ungrouped selection designs.

Usage

return_ungrouped(R_gen)

Arguments

R_gen

A single number or vector containing the replicated selection designs for testing.

Value

A dataframe.


Tests if a selection design exists and returns its X and Y values.

Description

It is used to return the X and Y values of a replicated selection design if it exists.

Usage

test_for_R(R_gen)

Arguments

R_gen

A single number or vector containing the replicated selection designs for testing.

Value

A dataframe.


A dataset

Description

A dataset containing observations from an R7 honeycomb selection design.

Usage

wheat_data

Format

wheat_data$main_spike_weight

The weight (g) of the main spike of a single plant.

wheat_data$tillers_spike_weight

The weight (g) of tillers' spikes of a single plant.

wheat_data$total_yield

The total yield (g) of a single plant.