
Package ‘recurse’
July 23, 2025

Type Package

Title Computes Revisitation Metrics for Trajectory Data

Version 1.4.0

Date 2024-07-17

Author Chloe Bracis [aut, cre]

Maintainer Chloe Bracis <cbracis@uw.edu>

Description Computes revisitation metrics for trajectory data, such as the number of revisita-
tions for each location as well as the time spent for that visit and the time since the previ-
ous visit. Also includes functions to plot data.

License MIT + file LICENSE

Imports Rcpp (>= 0.12.7)

LinkingTo Rcpp

Suggests testthat, circular, prevR, scales, fields, methods, move,
move2, knitr, rmarkdown, sf

LazyData true

RoxygenNote 7.3.1

Encoding UTF-8

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

Date/Publication 2024-07-18 10:10:02 UTC

Contents
.calculateCrossingPercentageCmplx . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
calculateIntervalResidenceTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
drawCircle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
getRecursions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getRecursions3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
getRecursions3DAtLocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1



2 calculateIntervalResidenceTime

getRecursionsAtLocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
getRecursionsInPolygon.Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
martin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
plot.recurse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
recurse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
wren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Index 20

.calculateCrossingPercentageCmplx

Calculates percentage of trajectory segment within circle

Description

Calculates the percentage of a segment that lies within a circle for a point A inside the circle and
point B outside the circle for a circle with center C and radius R.

Usage

.calculateCrossingPercentageCmplx(Cz, Az, Bz, R)

Arguments

Cz circle center

Az point 1

Bz point 2

R radius

calculateIntervalResidenceTime

Calculates residence time within user-specified breaks

Description

Using the results from getRecursions or getRecursionsAtLocations, calculates the residence
time during user-specified intervals (rather than the entire trajectory period) in the radius around
each location.

Usage

calculateIntervalResidenceTime(x, breaks, labels = NULL)



drawCircle 3

Arguments

x recurse object returned from call to getRecursions or getRecursionsAtLocations
with verbose = TRUE

breaks vector of POSIX datetimes describing the interval boundaries

labels (optional) vector or names for the intervals

Details

When recursions are calculated, the residence time in the radius around each location is also cal-
culated. This method allows the user to post-process the results from calculating recursions to
calculate residence time over user-specified intervals, rather than the entire trajectory. This allows
the calculation of residence time on biologically relevant scales, such as seasons, and in cases where
large gaps between visits (e.g., a seasonal migrant) may make splitting up the residence time prefer-
able.

Note that care should be taken to use the same time zone when specifying the break points as used
in the datetime for the movement trajectory.

Value

A matrix of residence times where the columns are the coordinate indices of the locations (either
movement trajectory locations or user-specified locations) and the rows are the time intervals.

Author(s)

Chloe Bracis <cbracis@uw.edu>

See Also

getRecursions, getRecursionsAtLocations

Examples

data(martin)
revisits = getRecursions(martin, radius = 1)
breaks = strptime(c("2000-01-01 00:00:00", "2000-01-15 00:00:00", "2000-02-01 00:00:00"),
format = "")
intervalResTime = calculateIntervalResidenceTime(revisits, breaks)

drawCircle Draws a circle

Description

Draws a circle in data coordinates, so it will be a circle if the aspect ratio of the plot is 1, or else it
will be appear as an ellipse.



4 drawCircle

Usage

drawCircle(x, y, radius, nv = 100, border = NULL, col = NA, lty = 1, lwd = 1)

Arguments

x x-coordinate of circle center

y y-coordinate of circle center

radius radius of circle

nv how many plotted segments

border polygon border

col line color

lty line type

lwd line width

Details

This function is useful to display a representative circle with the specified radius on a plot of revisits.

Value

invisibly, the x and y points of the drawn circle

Author(s)

Chloe Bracis <cbracis@uw.edu>

See Also

plot.recurse

Examples

data(martin)
revisits = getRecursions(martin, radius = 1)
plot(revisits, martin, legendPos = c(10, -15))
drawCircle(10, -10, 1)



getRecursions 5

getRecursions Calculates recursion information from the trajectory

Description

A circle of radius R is drawn around each point in the trajectory. The number of revisits is calculated
as the number of segments of the trajectory passing through that circle.

Usage

getRecursions(
x,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'data.frame'
getRecursions(
x,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'Move'
getRecursions(
x,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'move2'
getRecursions(
x,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'MoveStack'
getRecursions(



6 getRecursions

x,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

Arguments

x Either a data frame, move2, Move-class, or MoveStack object. For a data frame,
the trajectory data with four columns (the x-coordinate, the y-coordinate, the
datetime, and the animal id).

radius numeric radius to use in units of the (x,y) location data to detect recursions.
threshold a time difference (in units timeunits) to ignore excursions outside the radius.

Defaults to 0.
timeunits character string specifying units to calculate time differences in for the time

spans inside the radius and since the visit in revisitStats. Defaults to hours.
verbose TRUE to output complete information (can be large for large input data frames)

or FALSE to output basic information.

Details

For each point in the trajectory, a circle of radius R is drawn around that point. Then the number
of segments of the trajectory passing through that circle is counted. This is the number of revisits,
so each point will have at least one revisit (the initial visit). For each revisit, the time spent inside
the circle is calculated, as well as the time since the last visit (NA for the first visit). In order to
calculate the time values, the crossing time of the radius is calculated by assuming linear movement
at a constant speed between the points inside and outside the circle.

Projection. Consider the projection used. Since segments are counted passing through circles
drawn around points, an equal area projection would ensure similar size comparisons (e.g., spTransform).

Either single or multiple individuals are supported, but be aware that this function will be slow
with large amounts of data (e.g. millions of points), so consider pre-specifying the locations
(getRecursionsAtLocations) or use clustering. Multiple individuals are handled via the id col-
umn of the data.frame or using a move2 or MoveStack object.

Value

A list with several components, revisits and residenceTime are vectors of the same length as the
x dataframe. revisits is the number of revisits for each location, where 1 means that there were
no revisits, only the initial visit. residenceTime is the total time spent withing the radius. radius
is the specified radius used for all the calculations. timeunits is the specified time units used to
specify timespans.

When verbose = TRUE, additional information is also returned, dists and revisitStats. Next,
dists gives the distance matrix between all locations. Finally, revisitStats gives further statistics
on each visit. These are calculated per location (i.e., no aggregation of nearby points is performed),
and give the index and location of the point of the track at the center of the radius, the radius entrance
and exit time of the track for that visit, how much time was spent inside the radius, and how long
since the last visit (NA for the first visit).



getRecursions3D 7

Methods (by class)

• getRecursions(data.frame): Get recursions for a data.frame object consisting of columns
x, y, datetime, and id

• getRecursions(Move): Get recursions for a Move-class object

• getRecursions(move2): Get recursions for a move2 object (for details see vignette("programming_move2_object",
package = "move2"))

• getRecursions(MoveStack): Get recursions for a MoveStack object

Author(s)

Chloe Bracis <cbracis@uw.edu>

See Also

getRecursionsAtLocations

Examples

data(martin)
revisits = getRecursions(martin, radius = 1)
plot(revisits, martin, legendPos = c(10, -15))
drawCircle(10, -10, 1)

getRecursions3D Calculates recursion information from the 3D trajectory

Description

A sphere of radius R is drawn around each point in the trajectory. The number of revisits is calcu-
lated as the number of segments of the trajectory passing through that sphere.

Usage

getRecursions3D(
x,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'data.frame'
getRecursions3D(
x,
radius,



8 getRecursions3D

threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

Arguments

x A data frame with the trajectory data in five columns (the x-coordinate, the y-
coordinate, the z-coordinate, the datetime, and the animal id).

radius numeric radius to use in units of the (x,y,z) location data to detect recursions.

threshold a time difference (in units timeunits) to ignore excursions outside the radius.
Defaults to 0.

timeunits character string specifying units to calculate time differences in for the time
spans inside the radius and since the visit in revisitStats. Defaults to hours.

verbose TRUE to output complete information (can be large for large input data frames)
or FALSE to output basic information.

Details

For each point in the trajectory, a sphere of radius R is drawn around that point. Then the number
of segments of the trajectory passing through that sphere is counted. This is the number of revisits,
so each point will have at least one revisit (the initial visit). For each revisit, the time spent inside
the sphere is calculated, as well as the time since the last visit (NA for the first visit). In order to
calculate the time values, the crossing time of the radius is calculated by assuming linear movement
at a constant speed between the points inside and outside the sphere.

Projection. Consider the projection used. Since segments are counted passing through spheres
drawn around points, an equal area projection would ensure similar size comparisons (e.g., spTransform).

Either single or multiple individuals are supported, but be aware that this function will be slow
with large amounts of data (e.g. millions of points), so consider pre-specifying the locations
(getRecursionsAtLocations) or use clustering. Multiple individuals are handled via the id col-
umn of the data.frame.

Value

A list with several components, revisits and residenceTime are vectors of the same length as the
x dataframe. revisits is the number of revisits for each location, where 1 means that there were
no revisits, only the initial visit. residenceTime is the total time spent withing the radius. radius
is the specified radius used for all the calculations. timeunits is the specified time units used to
specify timespans.

When verbose = TRUE, additional information is also returned, dists and revisitStats. Next,
dists gives the distance matrix between all locations. Finally, revisitStats gives further statistics
on each visit. These are calculated per location (i.e., no aggregation of nearby points is performed),
and give the index and location of the point of the track at the center of the radius, the radius entrance
and exit time of the track for that visit, how much time was spent inside the radius, and how long
since the last visit (NA for the first visit).



getRecursions3DAtLocations 9

Methods (by class)

• getRecursions3D(data.frame): Get recursions for a data.frame object consisting of columns
x, y, z, datetime, and id

Author(s)

Chloe Bracis <cbracis@uw.edu>

See Also

getRecursions3DAtLocations

Examples

data(martin)
revisits = getRecursions(martin, radius = 1)
plot(revisits, martin, legendPos = c(10, -15))
drawCircle(10, -10, 1)

getRecursions3DAtLocations

Calculates recursion information from the 3D trajectory for specific
locations

Description

A sphere of radius R is drawn around each specified location. The number of revisits is calculated
as the number of segments of the trajectory passing through that sphere.

Usage

getRecursions3DAtLocations(
x,
locations,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'data.frame'
getRecursions3DAtLocations(
x,
locations,
radius,
threshold = 0,



10 getRecursions3DAtLocations

timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

Arguments

x A data frame with the trajectory data with five columns (the x-coordinate, the
y-coordinate, the z-coordinate, the datetime, and the animal id).

locations A data frame with x and y locations at which to calculate the recursions.

radius numeric radius to use in units of the (x,y,z) location data to detect recursions.

threshold a time difference (in units timeunits) to ignore excursions outside the radius.
Defaults to 0.

timeunits character string specifying units to calculate time differences in for the time
spans inside the radius and since the visit in revisitStats. Defaults to hours.

verbose TRUE to output complete information (can be large for large input data frames)
or FALSE to output basic information.

Details

For specified location, a sphere of radius R is drawn around that point. This method differs from
getRecursions in that only specified locations are used, rather than all points in the trajectory.
Then the number of segments of the trajectory passing through that sphere is counted. This is the
number of revisits to that location. For each revisit, the time spent inside the sphere is calculated, as
well as the time since the last visit (NA for the first visit). In order to calculate the time values, the
crossing time of the radius is calculated by assuming linear movement at a constant speed between
the points inside and outside the sphere.

Projection. Consider the projection used. Since segments are counted passing through spheres
drawn around points, an equal area projection would ensure similar size comparisons (e.g., sp-
Transform).

Either single or multiple individuals are supported, but be aware that this function will be slow
with large amounts of data (e.g. millions of points), so consider pre-specifying the locations
(getRecursionsAtLocations) or use clustering. Multiple individuals are handled via the id col-
umn of the data.frame.

Value

A list with several components, revisits and residenceTime are vectors of the same length as the
x dataframe. revisits is the number of revisits for each location, where 1 means that there were
no revisits, only the initial visit. residenceTime is the total time spent withing the radius. radius
is the specified radius used for all the calculations. timeunits is the specified time units used to
specify timespans.

When verbose = TRUE, additional information is also returned, dists and revisitStats. Next,
dists gives the distance matrix between all locations. Finally, revisitStats gives further statistics
on each visit. These are calculated per location (i.e., no aggregation of nearby points is performed),
and give the index and location of the point of the track at the center of the radius, the radius entrance
and exit time of the track for that visit, how much time was spent inside the radius, and how long
since the last visit (NA for the first visit).



getRecursionsAtLocations 11

Methods (by class)

• getRecursions3DAtLocations(data.frame): Get recursions at specified locations for a
data.frame object

Author(s)

Chloe Bracis <cbracis@uw.edu>

See Also

getRecursions

Examples

data(martin)
locations = data.frame(x = c(-10, 0, 20), y = c(5, 0, 0))
revisits = getRecursionsAtLocations(martin, locations, radius = 1)
plot(revisits, locations, legendPos = c(10, -15),

alpha = 1, pch = 17, xlim = range(martin$x), ylim = range(martin$y))
points(martin$x, martin$y, pch = ".", col = "gray50")
drawCircle(10, -10, 1)

getRecursionsAtLocations

Calculates recursion information from the trajectory for specific loca-
tions

Description

A circle of radius R is drawn around each specified location. The number of revisits is calculated
as the number of segments of the trajectory passing through that circle.

Usage

getRecursionsAtLocations(
x,
locations,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'data.frame'
getRecursionsAtLocations(
x,
locations,



12 getRecursionsAtLocations

radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'Move'
getRecursionsAtLocations(
x,
locations,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'move2'
getRecursionsAtLocations(
x,
locations,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'MoveStack'
getRecursionsAtLocations(
x,
locations,
radius,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

Arguments

x Either a data frame, move2, Move-class, or MoveStack object. For a data frame,
the trajectory data with four columns (the x-coordinate, the y-coordinate, the
datetime, and the animal id).

locations A data frame with x and y locations at which to calculate the recursions.

radius numeric radius to use in units of the (x,y) location data to detect recursions.

threshold a time difference (in units timeunits) to ignore excursions outside the radius.
Defaults to 0.

timeunits character string specifying units to calculate time differences in for the time
spans inside the radius and since the visit in revisitStats. Defaults to hours.



getRecursionsAtLocations 13

verbose TRUE to output complete information (can be large for large input data frames)
or FALSE to output basic information.

Details

For specified location, a circle of radius R is drawn around that point. This method differs from
getRecursions in that only specified locations are used, rather than all points in the trajectory.
Then the number of segments of the trajectory passing through that circle is counted. This is the
number of revisits to that location. For each revisit, the time spent inside the circle is calculated, as
well as the time since the last visit (NA for the first visit). In order to calculate the time values, the
crossing time of the radius is calculated by assuming linear movement at a constant speed between
the points inside and outside the circle.

Projection. Consider the projection used. Since segments are counted passing through circles
drawn around points, an equal area projection would ensure similar size comparisons (e.g., sp-
Transform).

Either single or multiple individuals are supported, but be aware that this function will be slow
with large amounts of data (e.g. millions of points), so consider pre-specifying the locations
(getRecursionsAtLocations) or use clustering. Multiple individuals are handled via the id col-
umn of the data.frame or using a move2 or MoveStack object.

Value

A list with several components, revisits and residenceTime are vectors of the same length as the
x dataframe. revisits is the number of revisits for each location, where 1 means that there were
no revisits, only the initial visit. residenceTime is the total time spent withing the radius. radius
is the specified radius used for all the calculations. timeunits is the specified time units used to
specify timespans.

When verbose = TRUE, additional information is also returned, dists and revisitStats. Next,
dists gives the distance matrix between all locations. Finally, revisitStats gives further statistics
on each visit. These are calculated per location (i.e., no aggregation of nearby points is performed),
and give the index and location of the point of the track at the center of the radius, the radius entrance
and exit time of the track for that visit, how much time was spent inside the radius, and how long
since the last visit (NA for the first visit).

Methods (by class)

• getRecursionsAtLocations(data.frame): Get recursions at specified locations for a data.frame
object

• getRecursionsAtLocations(Move): Get recursions at specified locations for a Move-class
object

• getRecursionsAtLocations(move2): Get recursions at specified locations for a move2 ob-
ject (for details see vignette("programming_move2_object", package = "move2"))

• getRecursionsAtLocations(MoveStack): Get recursions at specified locations for a MoveS-
tack object

Author(s)

Chloe Bracis <cbracis@uw.edu>



14 getRecursionsInPolygon.Move

See Also

getRecursions

Examples

data(martin)
locations = data.frame(x = c(-10, 0, 20), y = c(5, 0, 0))
revisits = getRecursionsAtLocations(martin, locations, radius = 1)
plot(revisits, locations, legendPos = c(10, -15),

alpha = 1, pch = 17, xlim = range(martin$x), ylim = range(martin$y))
points(martin$x, martin$y, pch = ".", col = "gray50")
drawCircle(10, -10, 1)

getRecursionsInPolygon.Move

Calculates recursion information from the trajectory inside a polygon

Description

The number of revisits to a polygon is calculated as the number of segments of the trajectory passing
through the polygon.

Usage

## S3 method for class 'Move'
getRecursionsInPolygon(
trajectory,
polygon,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

getRecursionsInPolygon(
trajectory,
polygon,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'data.frame'
getRecursionsInPolygon(
trajectory,
polygon,
threshold = 0,



getRecursionsInPolygon.Move 15

timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'move2'
getRecursionsInPolygon(
trajectory,
polygon,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

## S3 method for class 'MoveStack'
getRecursionsInPolygon(
trajectory,
polygon,
threshold = 0,
timeunits = c("hours", "secs", "mins", "days"),
verbose = TRUE

)

Arguments

trajectory Either a data frame, move2, Move-class, or MoveStack object. For a data frame,
the trajectory data with four columns (the x-coordinate, the y-coordinate, the
datetime, and the animal id)

polygon A st_polygon object with a single convex polygon.

threshold A time difference (in units timeunits) to ignore excursions outside the radius.
Defaults to 0.

timeunits Character string specifying units to calculate time differences in for the time
spans inside the radius and since the visit in revisitStats. Defaults to hours.

verbose TRUE to output complete information (can be large for large input data frames)
or FALSE to output basic information.

Details

The number of segments of the trajectory passing through the polygon is counted as the number of
revisits. For each revisit, the time spent inside the polygon is calculated, as well as the time since
the last visit (NA for the first visit). In order to calculate the time values, the crossing time of the
polygon is calculated by assuming linear movement at a constant speed between the points inside
and outside the polygon. Note the polygon must be convex as described in further detail below.

Projection. Consider the projection used. Since segments are counted passing through the polygon,
an equal area projection would ensure similar size comparisons. A geographic projection is not
appropriate. The projection for the polygon and the trajectory must be the same.

Polygon. The polygon must be specified as a st_polygon object. It should consist of a single
polygon (i.e. st_geometry_type = POLYGON). It should further be convex, though this requirement



16 getRecursionsInPolygon.Move

is not enforced, calculations for non-convex polygons will not necessarily be accurate. It may be
advantageous to simplify complex geometry in order to shorten the time to run. If it is necessary to
use a non-convex polygon, one approach would be to split it into convex pieces that can be run one-
by-one. However, some visits would then be double-counted and would need to be combined back
together based on the entrance/exit times and sequence of trajectory locations. Multiple polygons
would need to be handled with multiple calls with the output then concatenated together.

Either single or multiple individuals are supported, but be aware that this function will be slow with
large amounts of data (e.g. millions of points). Multiple individuals are handled via the id column
of the data.frame.

Value

A list with several components. revisits is the number of revisits to the polygon. residenceTime
is the total time spent withing the polygon. radius is NA in the case of polygons. timeunits is
the specified time units used to specify timespans.

When verbose = TRUE, additional information is also returned in revisitStats. Next, dists gives
the distance matrix between all locations. Finally, revisitStats gives further statistics on each
visit. These are calculated per location (i.e., no aggregation of nearby points is performed), and
give the index and location of the point of the track at the center of the radius (NA and 1 in the case
of polygons), the radius entrance and exit time of the track for that visit, how much time was spent
inside the radius, and how long since the last visit (NA for the first visit).

Methods (by class)

• getRecursionsInPolygon(Move): Get recursions in polygon for a Move-class trajectory
• getRecursionsInPolygon(data.frame): Get recursions inside a polygon for a trajectory

data.frame object consisting of columns x, y, datetime, and id
• getRecursionsInPolygon(move2): Get recursions in polygon for a move2 object (for details

see vignette("programming_move2_object", package = "move2"))
• getRecursionsInPolygon(MoveStack): Get recursions in polygon for a MoveStack trajec-

tory

Author(s)

Chloe Bracis <cbracis@uw.edu>

See Also

getRecursions

Examples

if (requireNamespace("sf"))
{

data(track)
poly = sf::st_polygon(list(cbind(c(4,6,6,3,4), c(1,2,4,3,1))))
poly = sf::st_sfc(poly, crs = "EPSG:3410")
revisits = getRecursionsInPolygon(track, poly)

}



martin 17

martin Sample trajectory (martin).

Description

A dataset containing a sample trajectory with revisits.

Usage

data(martin)

Format

A data frame with 600 rows and 4 columns

Details

• x. x-coordinate
• y. y-coordinate
• t. time
• id. identifier

plot.recurse Calculates recursion information from the trajectory

Description

Plots a trajectory color coded by number of revisits to each point.

Usage

## S3 method for class 'recurse'
plot(x, xyt, ..., col, alpha = 1, legendPos = NULL)

Arguments

x recurse object returned from call to getRecursions

xyt data.frame of x, y, t, and id representing the xy-coordinates and the time (same
as call to getRecursions)

... additional arguments to plot

col optional vector of colors as long as the maximum number of revisits to color
code trajectory points

alpha optional alpha value for color transparency between 0 and 1
legendPos a vector of length 2 with the x and y coordinate of the center of the legend in

user coordinates



18 recurse

Details

This method allows the user to visually represent the number of revisitations by location. The size
of the circle of radius R can be added to the plot with drawCircle.

Value

the plot

Author(s)

Chloe Bracis <cbracis@uw.edu>

See Also

getRecursions, getRecursionsAtLocations, drawCircle

Examples

data(martin)
revisits = getRecursions(martin, radius = 1)
plot(revisits, martin, legendPos = c(10, -15))
drawCircle(10, -10, 1)

recurse Computes revisitation metrics for trajectory data

Description

Computes revisitation metrics for trajectory data, such as the number of revisitations for each lo-
cation as well as the time spent for that visit and the time since the previous visit. Also includes
functions to plot data.

Details

The function getRecursions computes the revisit metrics, which can be plotted with plot.recurse.
Alternatively, getRecursionsAtLocations computes revisit metrics for specified locations, rather
than all locations in the movement trajectory.

Author(s)

Chloe Bracis <cbracis@uw.edu>



track 19

track Sample trajectory (track).

Description

A dataset containing a sample trajectory with revisits.

Usage

data(track)

Format

A data frame with 100 rows and 4 columns

Details

• x. x-coordinate

• y. y-coordinate

• t. time

• id. identifier

wren Sample trajectory (wren).

Description

A dataset containing a sample trajectory with revisits.

Usage

data(wren)

Format

A data frame with 600 rows and 4 columns

Details

• x. x-coordinate

• y. y-coordinate

• t. time

• id. identifier



Index

∗ datasets
martin, 17
track, 19
wren, 19

.calculateCrossingPercentageCmplx, 2

calculateIntervalResidenceTime, 2

drawCircle, 3, 18

getRecursions, 2, 3, 5, 10, 11, 13, 14, 16–18
getRecursions3D, 7
getRecursions3DAtLocations, 9, 9
getRecursionsAtLocations, 2, 3, 6–8, 10,

11, 13, 18
getRecursionsInPolygon

(getRecursionsInPolygon.Move),
14

getRecursionsInPolygon.Move, 14

martin, 17
Move-class, 6, 7, 12, 13, 16
MoveStack, 6, 7, 12, 13, 16

plot, 17
plot.recurse, 4, 17, 18

recurse, 18
recurse-package (recurse), 18

spTransform, 6, 8, 10, 13
st_geometry_type, 15
st_polygon, 15

track, 19

wren, 19

20


	.calculateCrossingPercentageCmplx
	calculateIntervalResidenceTime
	drawCircle
	getRecursions
	getRecursions3D
	getRecursions3DAtLocations
	getRecursionsAtLocations
	getRecursionsInPolygon.Move
	martin
	plot.recurse
	recurse
	track
	wren
	Index

