Package 'rSAFE'

July 23, 2025

Title Surrogate-Assisted Feature Extraction

Date/Publication 2022-08-13 13:20:02 UTC

```
Version 0.1.4
Description
     Provides a model agnostic tool for white-box model trained on features extracted from a black-
     box model. For more information see: Gosiewska et al. (2020) <doi:10.1016/j.dss.2021.113556>.
Depends R (>= 3.5.0)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.1
Imports DALEX, dendextend, ggplot2, ggpubr, grDevices, ingredients,
     sets, stats
Suggests gbm, knitr, pander, randomForest, rmarkdown, spelling,
     testthat, vdiffr
VignetteBuilder knitr
URL https://github.com/ModelOriented/rSAFE
BugReports https://github.com/ModelOriented/rSAFE/issues
Language en-US
NeedsCompilation no
Author Alicja Gosiewska [aut, cre],
     Anna Gierlak [aut],
     Przemyslaw Biecek [aut, ths],
     Michal Burdukiewicz [ctb] (ORCID:
      <https://orcid.org/0000-0001-8926-582X>)
Maintainer Alicja Gosiewska <alicjagosiewska@gmail.com>
Repository CRAN
```

2 apartments

Contents

	apartments	2
	HR_data	
	plot.safe_extractor	3
	print.safe_extractor	4
	safely_detect_changepoints	5
	safely_detect_interactions	
	safely_select_variables	7
	safely_transform_categorical	8
	safely_transform_continuous	9
	safely_transform_data	10
	safe_extraction	11
Index		14

apartments

Apartments data

Description

Datasets apartments and apartmentsTest are artificial, generated from the same model. Structure of the dataset is copied from real dataset from PBImisc package, but they were generated in a way to mimic effect of Anscombe quartet for complex black box models.

Usage

data(apartments)

Format

a data frame with 1000 rows and 6 columns

Details

- m2.price price per square meter
- surface apartment area in square meters
- no.rooms number of rooms (correlated with surface)
- district district in which apartment is located, factor with 10 levels (Bemowo, Bielany, Mokotow, Ochota, Praga, Srodmiescie, Ursus, Ursynow, Wola, Zoliborz)
- floor floor
- construction.year construction year

HR_data 3

HR_data	Why are our best and most experienced employees leaving prematurely?

Description

A dataset from Kaggle competition Human Resources Analytics. https://www.kaggle.com/

Format

A data frame with 14999 rows and 10 variables

Details

- satisfaction_level Level of satisfaction (0-1)
- last_evaluation Time since last performance evaluation (in Years)
- number_project Number of projects completed while at work
- average_monthly_hours Average monthly hours at workplace
- time_spend_company Number of years spent in the company
- work_accident Whether the employee had a workplace accident
- left Whether the employee left the workplace or not (1 or 0) Factor
- promotion_last_5years Whether the employee was promoted in the last five years
- sales Department in which they work for
- salary Relative level of salary (high)

Source

Dataset HR-analytics from https://www.kaggle.com

plot.safe_extractor

Plotting Transformations of the SAFE Extractor Object

Description

Plotting Transformations of the SAFE Extractor Object

```
## S3 method for class 'safe_extractor'
plot(x, ..., variable = NULL)
```

print.safe_extractor

Arguments

x safe_extractor object containing information about variables transformations cre-

ated with safe_extraction() function

... other parameters

variable character, name of the variable to be plotted

Value

a plot object

print.safe_extractor Printing Summary of the SAFE Extractor Object

Description

Printing Summary of the SAFE Extractor Object

Usage

```
## S3 method for class 'safe_extractor'
print(x, ..., variable = NULL)
```

Arguments

x safe_extractor object containing information about variables transformations cre-

ated with safe_extraction() function

... other parameters

variable character, name of the variable to be plotted. If this argument is not specified

then transformations for all variables are printed

Value

No return value, prints the structure of the object

safely_detect_changepoints

Identifying Changes in a Series Using PELT Algorithm

Description

The safely_detect_changepoints() function calculates the optimal positioning and number of changepoints for given data and penalty. It uses a PELT algorithm with a nonparametric cost function based on the empirical distribution. The implementation is inspired by the code available on https://github.com/rkillick/changepoint.

Usage

```
safely_detect_changepoints(data, penalty = "MBIC", nquantiles = 10)
```

Arguments

data a vector within which you wish to find changepoints

penalty penalty for introducing another changepoint, one of "AIC", "BIC", "SIC", "MBIC",

"Hannan-Quinn" or numeric non-negative value

nquantiles the number of quantiles used in integral approximation

Value

a vector of optimal changepoint positions (last observations of each segment)

See Also

```
safely_transform_continuous
```

Examples

```
library(rSAFE)

data <- rep(c(2,7), each=4)
safely_detect_changepoints(data)

set.seed(123)
data <- c(rnorm(15, 0), rnorm(20, 2), rnorm(30, 8))
safely_detect_changepoints(data)
safely_detect_changepoints(data, penalty = 25)</pre>
```

```
safely_detect_interactions
```

Detecting Interactions via Permutation Approach

Description

The safely_detect_interactions() function detects second-order interactions based on predictions made by a surrogate model. For each pair of features it performs values permutation in order to evaluate their non_additive effect.

Usage

```
safely_detect_interactions(
  explainer,
  inter_param = 0.5,
  inter_threshold = 0.5,
  verbose = TRUE
)
```

Arguments

explainer DALEX explainer created with explain() function

inter_param numeric, a positive value indicating which of single observation non-additive

effects are to be regarded as significant, the higher value the higher non-additive

effect has to be to be taken into account

inter_threshold

numeric, a value from [0,1] interval indicating which interactions should be returned as significant. It corresponds to the percentage of observations for which interaction measure is greater than inter_param - if this percentage is less than

inter_threshold then interaction effect is ignored.

verbose logical, if progress bar is to be printed

Value

dataframe object containing interactions effects greater than or equal to the specified inter_threshold

See Also

```
safe_extraction
```

Examples

```
library(DALEX)
library(randomForest)
library(rSAFE)

data <- apartments[1:500,]</pre>
```

safely_select_variables 7

```
safely_select_variables
```

Performing Feature Selection on the Dataset with Transformed Variables

Description

The safely_select_variables() function selects variables from dataset returned by safely_transform_data() function. For each original variable exactly one variable is chosen

• either original one or transformed one. The choice is based on the AIC value for linear model (regression) or logistic regression (classification).

Usage

```
safely_select_variables(
  safe_extractor,
  data,
  y = NULL,
  which_y = NULL,
  class_pred = NULL,
  verbose = TRUE
)
```

Arguments

safe_extractor	object containing information about variables transformations created with safe_extraction() function
data	data, original dataset or the one returned by safely_transform_data() function. If data do not contain transformed variables then transformation is done inside this function using 'safe_extractor' argument. Data may contain response variable or not - if it does then 'which_y' argument must be given, otherwise 'y' argument should be provided.
у	vector of responses, must be given if data does not contain it
which_y	numeric or character (optional), must be given if data contains response values
class_pred	numeric or character, used only in multi-classification problems. If response vector has more than two levels, then 'class_pred' should indicate the class of interest which will denote failure - all other classes will stand for success.
verbose	logical, if progress bar is to be printed

Value

vector of variables names, selected based on AIC values

See Also

```
safely_transform_data
```

Examples

```
safely_transform_categorical
```

Calculating a Transformation of Categorical Feature Using Hierarchical Clustering

Description

The safely_transform_categorical() function calculates a transformation function for the categorical variable using predictions obtained from black box model and hierarchical clustering. The gap statistic criterion is used to determine the optimal number of clusters.

Usage

```
safely_transform_categorical(
  explainer,
  variable,
  method = "complete",
  B = 500,
  collapse = "_"
)
```

Arguments

explainer DALEX explainer created with explain() function
variable a feature for which the transformation function is to be computed

method	the agglomeration method to be used in hierarchical clustering, one of: "ward.D",
	"ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid"
В	number of reference datasets used to calculate gap statistics
collapse	a character string to separate original levels while combining them to the new
	one

Value

list of information on the transformation of given variable

See Also

```
safe_extraction
```

Examples

```
{\it safely\_transform\_continuous}
```

Calculating a Transformation of a Continuous Feature Using PDP/ALE Plot

Description

The safely_transform_continuous() function calculates a transformation function for the continuous variable using a PD/ALE plot obtained from black box model.

```
safely_transform_continuous(
  explainer,
  variable,
  response_type = "ale",
  grid_points = 50,
  N = 200,
  penalty = "MBIC",
  nquantiles = 10,
  no_segments = 2
)
```

Arguments

explainer	DALEX explainer created with explain() function
variable	a feature for which the transformation function is to be computed
response_type	character, type of response to be calculated, one of: "pdp", "ale". If features are uncorrelated, one can use "pdp" type - otherwise "ale" is strongly recommended.
grid_points	number of points on x-axis used for creating the PD/ALE plot, default 50
N	number of observations from the dataset used for creating the PD/ALE plot, default 200
penalty	penalty for introducing another changepoint, one of "AIC", "BIC", "SIC", "MBIC" "Hannan-Quinn" or numeric non-negative value
nquantiles	the number of quantiles used in integral approximation
no_segments	numeric, a number of segments variable is to be divided into in case of founding no breakpoints

Value

list of information on the transformation of given variable

See Also

```
safe_extraction, safely_detect_changepoints
```

Examples

Description

The safely_transform_data() function creates new variables in dataset using safe_extractor object.

```
safely_transform_data(safe_extractor, data, verbose = TRUE)
```

safe_extraction 11

Arguments

safe_extractor object containing information about variables transformations created with safe_extraction()

function

data for which features are to be transformed

verbose logical, if progress bar is to be printed

Value

data with extra columns containing newly created variables

See Also

```
safe_extraction, safely_select_variables
```

Examples

safe_extraction

Creating SAFE Extractor - an Object Used for Surrogate-Assisted Feature Extraction

Description

The safe_extraction() function creates a SAFE-extractor object which may be used later for surrogate feature extraction.

```
safe_extraction(
  explainer,
  response_type = "ale",
  grid_points = 50,
  N = 200,
  penalty = "MBIC",
  nquantiles = 10,
  no_segments = 2,
```

12 safe_extraction

```
method = "complete",
B = 500,
collapse = "_",
interactions = FALSE,
inter_param = 0.25,
inter_threshold = 0.25,
verbose = TRUE
```

Arguments

explainer DALEX explainer created with explain() function

response_type character, type of response to be calculated, one of: "pdp", "ale". If features are

uncorrelated, one can use "pdp" type - otherwise "ale" is strongly recommended.

grid_points number of points on x-axis used for creating the PD/ALE plot, default 50

N number of observations from the dataset used for creating the PD/ALE plot,

default 200

penalty penalty for introducing another changepoint, one of "AIC", "BIC", "SIC", "MBIC",

"Hannan-Quinn" or numeric non-negative value

nquantiles the number of quantiles used in integral approximation

no_segments numeric, a number of segments variable is to be divided into in case of founding

no breakpoints

method the agglomeration method to be used in hierarchical clustering, one of: "ward.D",

"ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid"

B number of reference datasets used to calculate gap statistics

collapse a character string to separate original levels while combining them to the new

one

interactions logical, if interactions between variables are to be taken into account

inter_param numeric, a positive value indicating which of single observation non-additive

effects are to be regarded as significant, the higher value the higher non-additive

effect has to be to be taken into account

inter_threshold

numeric, a value from [0,1] interval indicating which interactions should be returned as significant. It corresponds to the percentage of observations for which interaction measure is greater than inter_param - if this percentage is less than

inter_threshold then interaction effect is ignored.

verbose logical, if progress bar is to be printed

Value

safe_extractor object containing information about variables transformation

See Also

 $safely_transform_categorical, safely_transform_continuous, safely_detect_interactions, safely_transform_data$

safe_extraction 13

Examples

Index

```
* apartments
    apartments, 2
\ast datasets
    HR_data, 3
apartments, 2
apartmentsTest (apartments), 2
HR_data, 3
plot.safe_extractor, 3
print.safe_extractor, 4
safe_extraction, 6, 9-11, 11
safely_detect_changepoints, 5, 10
safely_detect_interactions, 6, 12
safely\_select\_variables, 7, 11
safely_transform_categorical, 8, 12
safely_transform_continuous, 5, 9, 12
{\tt safely\_transform\_data}, \, 8, \, 10, \, 12
```