Version: 1.0.1
Title: Tools for qPCR
Description: PKG_DESC.
URL: https://github.com/lixiang117423/qPCRtools
BugReports: https://github.com/lixiang117423/qPCRtools/issues
License: MIT + file LICENSE
Imports: broom, dplyr, ggplot2, ggpmisc, ggthemes, kableExtra, magrittr, multcomp, rstatix, stats, tibble, tidyr
RoxygenNote: 7.2.3
NeedsCompilation: no
Packaged: 2023-11-02 09:16:53 UTC; lixia
Author: Xiang LI [cre, aut]
Maintainer: Xiang LI <lixiang117423@gmail.com>
Repository: CRAN
Date/Publication: 2023-11-02 13:10:05 UTC

Standard Curve Calculation.

Description

The function can calculate the standard curve. At the same time, it can get the amplification efficiency of primer(s). Based on the amplification efficiency, we can know which method can be used to calculate the expression level.

Arguments

cq.table

The data frame of the position and Cq value.

concen.table

The data frame of the position and concentration.

highest.concen

The highest concentration for calculation.

lowest.concen

The lowest concentration for calculation.

dilution

Dilution factor of cDNA template. The default value is 4.

by.mean

Calculation by mean Cq value or not. The default value is TRUE.

Value

A list.

Author(s)

Xiang LI <lixiang117423@gmail.com>

Examples

df.1.path <- system.file("examples", "calsc.cq.txt", package = "qPCRtools")
df.2.path <- system.file("examples", "calsc.info.txt", package = "qPCRtools")
df.1 <- read.table(df.1.path, header = TRUE)
df.2 <- read.table(df.2.path, header = TRUE)
CalCurve(
  cq.table = df.1,
  concen.table = df.2,
  lowest.concen = 4,
  highest.concen = 4096,
  dilu = 4,
  by = "mean"
) -> p

p[["table"]]
p[["figure"]]

Calculate expression using standard curve.

Description

Calculate expression using standard curve.

Arguments

cq.table

The data frame of the position and cq value.

design.table

The data frame of the position and corresponding information.

ref.gene

The name of reference gene.

Value

A list contain a table and a figure.

Author(s)

Xiang LI <lixiang117423@gmail.com>

Examples

df1.path <- system.file("examples", "dct.cq.txt", package = "qPCRtools")
df2.path <- system.file("examples", "dct.design.txt", package = "qPCRtools")
cq.table <- read.table(df1.path, sep = ",", header = TRUE)
design.table <- read.table(df2.path, sep = ",", header = TRUE)
CalExp2dCt(cq.table,
           design.table,
           ref.gene = "Actin"
) -> res


Calculate expression using standard curve.

Description

Calculate expression using standard curve.

Arguments

cq.table

The data frame of the position and cq value.

design.table

The data frame of the position and corresponding information.

correction

Correct expression value by reference gene.

ref.gene

The name of reference gene.

ref.group

The name of reference group.

stat.method

Statistical method.

remove.outliers

Remove the outliers of each group and gene, or not.

fig.type

Output image type, 'box' represents 'boxplot', 'bar' represents 'barplot'.

fig.ncol

Number of columes of figure.

Value

A list contain a table and a figure.

Author(s)

Xiang LI <lixiang117423@gmail.com>

Examples

df1.path = system.file("examples", "ddct.cq.txt", package = "qPCRtools")
df2.path = system.file("examples", "ddct.design.txt", package = "qPCRtools")

cq.table = read.table(df1.path, header = TRUE)
design.table = read.table(df2.path, header = TRUE)

CalExp2ddCt(cq.table,
            design.table,
            ref.gene = "OsUBQ",
            ref.group = "CK",
            stat.method = "t.test",
            remove.outliers = TRUE,
            fig.type = "box",
            fig.ncol = NULL) -> res

res[["table"]]
res[["figure"]]


Calculate expression using standard curve.

Description

Calculate expression using standard curve.

Arguments

cq.table

The data frame of the position and Cq value.

design.table

The data frame of the position and corresponding information.

correction

Correct expression value by reference gene.

ref.gene

The name of reference gene.

stat.method

Statistical method.

ref.group

The name of reference group.

fig.type

Output image type, 'box' represents 'boxplot', 'bar' represents 'barplot'.

fig.ncol

Number of columes of figure.

Value

A list contain a table and a figure.

Author(s)

Xiang LI <lixiang117423@gmail.com>

Examples

df1.path = system.file("examples", "cal.exp.curve.cq.txt", package = "qPCRtools")
df2.path = system.file("examples", "cal.expre.curve.sdc.txt", package = "qPCRtools")
df3.path = system.file("examples", "cal.exp.curve.design.txt", package = "qPCRtools")

cq.table = read.table(df1.path, header = TRUE)
curve.table = read.table(df2.path, sep = "\t", header = TRUE)
design.table = read.table(df3.path, header = TRUE)

CalExpCurve(
  cq.table,
  curve.table,
  design.table,
  correction = TRUE,
  ref.gene = "OsUBQ",
  stat.method = "t.test",
  ref.group = "CK",
  fig.type = "box",
  fig.ncol = NULL) -> res

res[["table"]]
res[["figure"]]


Calculate expression using standard curve.

Description

Calculate expression using standard curve.

Arguments

cq.table

The data frame of the position and cq value.

design.table

The data frame of the position and corresponding information.

correction

Correct expression value by reference gene.

ref.gene

The name of reference gene.

ref.group

The name of reference group.

stat.method

Statistical method.

fig.type

Output image type, 'box' represents 'boxplot', 'bar' represents 'barplot'.

fig.ncol

Number of columes of figure.

Value

A list contain a table and a figure.

Author(s)

Xiang LI <lixiang117423@gmail.com>

Examples

df1.path <- system.file("examples", "cal.expre.rqpcr.cq.txt", package = "qPCRtools")
df2.path <- system.file("examples", "cal.expre.rqpcr.design.txt", package = "qPCRtools")

cq.table <- read.table(df1.path, header = TRUE)
design.table <- read.table(df2.path, header = TRUE)

CalExpRqPCR(cq.table,
           design.table,
           ref.gene = NULL,
           ref.group = "CK",
           stat.method = "t.test",
           fig.type = "box",
           fig.ncol = NULL
           ) -> res

res[["table"]]
res[["figure"]]


Calculate RNA volume for reverse transcription.

Description

The first step of qPCR is usually the preparation of cDNA. We need to calculate the column of RNA for reverse transcription to cDNA. So, if we have the concentration of RNA, we can use the function 'CalRTable' to do that.

Arguments

data

A data.frame contained the sample names and the concentration value. The default unit of concentration is ng/uL.

template

A data.frame contained the information of reverse transcription. In this data.frame there must be a column called 'all'.

RNA.weight

RNA weight required for reverse transcription. Default is 1 ug.

Value

A list contain a table and a figure.

Author(s)

Xiang LI <lixiang117423@gmail.com>

Examples

df.1.path <- system.file("examples", "crtv.data.txt", package = "qPCRtools")
df.2.path <- system.file("examples", "crtv.template.txt", package = "qPCRtools")
df.1 <- read.table(df.1.path, sep = "\t", header = TRUE)
df.2 <- read.table(df.2.path, sep = "\t", header = TRUE)
result <- CalRTable(data = df.1, template = df.2, RNA.weight = 2)
head(result)