
Package ‘propagate’
July 23, 2025

Type Package

LazyLoad no

LazyData no

Title Propagation of Uncertainty

Version 1.0-7

Date 2025-05-24

Maintainer Andrej-Nikolai Spiess <draspiess@gmail.com>

Description Propagation of uncertainty using higher-order Taylor expansion and Monte Carlo simula-
tion. Calculations of propagated uncertainties are based on matrix calculus including covari-
ance structure according to Arras 1998 <doi:10.3929/ethz-a-010113668> (first or-
der), Wang & Iyer 2005 <doi:10.1088/0026-1394/42/5/011> (second order) and BIPM Supple-
ment 1 (Monte Carlo) <doi:10.59161/JCGM101-2008>.

License GPL (>= 2)

Depends R (>= 2.13.0), MASS, tmvtnorm, Rcpp (>= 0.10.1), ff,
minpack.lm

LinkingTo Rcpp

NeedsCompilation yes

Repository CRAN

Date/Publication 2025-05-27 23:10:01 UTC

Author Andrej-Nikolai Spiess [aut, cre]

Contents
bigcor . 2
cor2cov . 4
datasets . 5
fitDistr . 7
interval . 11
makeDat . 14
makeDerivs . 15
matrixStats . 17

1

https://doi.org/10.3929/ethz-a-010113668
https://doi.org/10.1088/0026-1394/42/5/011
https://doi.org/10.59161/JCGM101-2008

2 bigcor

mixCov . 18
moments . 20
numDerivs . 21
plot.propagate . 22
predictNLS . 23
propagate . 27
rDistr . 35
statVec . 38
stochContr . 39
summary.propagate . 40
WelchSatter . 41

Index 43

bigcor Creating very large correlation/covariance matrices

Description

The storage of a value in double format needs 8 bytes. When creating large correlation matrices,
the amount of RAM might not suffice, giving rise to the dreaded "cannot allocate vector of size
..." error. For example, an input matrix with 50000 columns/100 rows will result in a correlation
matrix with a size of 50000 x 50000 x 8 Byte / (1024 x 1024 x 1024) = 18.63 GByte, which is
still more than most standard PCs. bigcor uses the framework of the ’ff’ package to store the
correlation/covariance matrix in a file. The complete matrix is created by filling a large preallocated
empty matrix with sub-matrices at the corresponding positions. See ’Details’. Calculation time is ~
20s for an input matrix of 10000 x 100 (cols x rows).

Usage

bigcor(x, y = NULL, fun = c("cor", "cov"), size = 2000,
verbose = TRUE, ...)

Arguments

x the input matrix.

y NULL (default) or a vector, matrix or data frame with compatible dimensions to
x.

fun create either a corelation or covariance matrix.

size the n x n block size of the submatrices. 2000 has shown to be time-effective.

verbose logical. If TRUE, information is printed in the console when running.

... other parameters to be passed to cor or cor.

bigcor 3

Details

Calculates a correlation matrix C or covariance matrix Σ using the following steps:
1) An input matrix x with N columns is split into k equal size blocks (+ a possible remainder
block) A1, A2, . . . , Ak of size n. The block size can be defined by the user, size = 2000 is a
good value because cor can handle this quite quickly (~ 400 ms). For example, if the matrix has
13796 columns, the split will be A1 = 1 . . . 2000;A2 = 2001 . . . 4000;A3 = 4001 . . . 6000;A4 =
6000 . . . 8000;A5 = 8001 . . . 10000;A6 = 10001 . . . 12000;A7 = 12001 . . . 13796.
2) For all pairwise combinations of blocks

(
k
2

)
, the n×n correlation sub-matrix is calculated. If y =

NULL, cor(A1, A1), cor(A1, A2), . . . , cor(Ak, Ak), otherwise cor(A1, y), cor(A2, y), . . . , cor(Ak, y).
3) The sub-matrices are transferred into a preallocated N × N empty matrix at the corresponding
position (where the correlations would usually reside). To ensure symmetry around the diagonal,
this is done twice in the upper and lower triangle. If y was supplied, a N ×M matrix is filled, with
M = number of columns in y.

Since the resulting matrix is in ’ff’ format, one has to subset to extract regions into normal matrix-
like objects. See ’Examples’.

Value

The corresponding correlation/covariance matrix in ’ff’ format.

Author(s)

Andrej-Nikolai Spiess

References

https://rmazing.wordpress.com/2013/02/22/bigcor-large-correlation-matrices-in-r/

Examples

Small example to prove similarity
to standard 'cor'. We create a matrix
by subsetting the complete 'ff' matrix.
MAT <- matrix(rnorm(70000), ncol = 700)
COR <- bigcor(MAT, size= 500, fun = "cor")
COR <- COR[1:nrow(COR), 1:ncol(COR)]
all.equal(COR, cor(MAT)) # => TRUE

Example for cor(x, y) with
y = small matrix.
MAT1 <- matrix(rnorm(50000), nrow = 10)
MAT2 <- MAT1[, 4950:5000]
COR <- cor(MAT1, MAT2)
BCOR <- bigcor(MAT1, MAT2)
BCOR <- BCOR[1:5000, 1:ncol(BCOR)] # => convert 'ff' to 'matrix'
all.equal(COR, BCOR)

Not run:
Create large matrix.

https://rmazing.wordpress.com/2013/02/22/bigcor-large-correlation-matrices-in-r/

4 cor2cov

MAT <- matrix(rnorm(57500), ncol = 5750)
COR <- bigcor(MAT, size= 2000, fun = "cor")

Extract submatrix.
SUB <- COR[1:3000, 1:3000]
all.equal(SUB, cor(MAT[, 1:3000]))

End(Not run)

cor2cov Converting a correlation matrix into a covariance matrix

Description

Converts a correlation matrix into a covariance matrix using variance information. It is therefore
the opposite of cov2cor.

Usage

cor2cov(C, var)

Arguments

C a symmetric numeric correlation matrix C.

var a vector of variances σ2
n.

Details

Calculates the covariance matrix Σ using a correlation matrix C and outer products of the standard
deviations σn:

Σ = C · σn ⊗ σn

Value

The corresponding covariance matrix.

Author(s)

Andrej-Nikolai Spiess

Examples

Example in Annex H.2 from the GUM 2008 manual
(see 'References'), simultaneous resistance
and reactance measurement.
data(H.2)
attach(H.2)

Original covariance matrix.

datasets 5

COV <- cov(H.2)
extract variances
VAR <- diag(COV)

cor2cov covariance matrix.
COV2 <- cor2cov(cor(H.2), VAR)

Equal to original covariance matrix.
all.equal(COV2, COV)

datasets Datasets from the GUM "Guide to the expression of uncertainties in
measurement" (2008)

Description

Several datasets found in "Annex H" of the GUM that are used in illustrating the different ap-
proaches to quantifying measurement uncertainty.

Details

H.2: Simultaneous resistance and reactance measurement, Table H.2
This example demonstrates the treatment of multiple measurands or output quantities determined
simultaneously in the same measurement and the correlation of their estimates. It considers only
the random variations of the observations; in actual practice, the uncertainties of corrections for
systematic effects would also contribute to the uncertainty of the measurement results. The data are
analysed in two different ways with each yielding essentially the same numerical values.
H.2.1 The measurement problem:
The resistance R and the reactance X of a circuit element are determined by measuring the am-
plitude V of a sinusoidally-alternating potential difference across its terminals, the amplitude I of
the alternating current passing through it, and the phase-shift angle ϕ of the alternating potential
difference relative to the alternating current. Thus the three input quantities are V, I, and ϕ and the
three output quantities -the measurands- are the three impedance components R, X, and Z. Since
Z2 = R2 +X2, there are only two independent output quantities.
H.2.2 Mathematical model and data:
The measurands are related to the input quantities by Ohm’s law:

R =
V

I
cosϕ; X =

V

I
sinϕ; Z =

V

I
(H.7)

H.3: Calibration of a thermometer, Table H.6
This example illustrates the use of the method of least squares to obtain a linear calibration curve and
how the parameters of the fit, the intercept and slope, and their estimated variances and covariance,
are used to obtain from the curve the value and standard uncertainty of a predicted correction.
H.3.1 The measurement problem:
A thermometer is calibrated by comparing n = 11 temperature readings tk of the thermometer,
each having negligible uncertainty, with corresponding known reference temperatures tR,k in the
temperature range 21?C to 27?C to obtain the corrections bk = tR,k − tk to the readings. The

6 datasets

measured corrections bk and measured temperatures tk are the input quantities of the evaluation. A
linear calibration curve

b(t) = y1 + y2(t− t0) (H.12)

is fitted to the measured corrections and temperatures by the method of least squares. The param-
eters y1 and y2, which are respectively the intercept and slope of the calibration curve, are the two
measurands or output quantities to be determined. The temperature t0 is a conveniently chosen ex-
act reference temperature; it is not an independent parameter to be determined by the least-squares
fit. Once y1 and y2 are found, along with their estimated variances and covariance, Equation (H.12)
can be used to predict the value and standard uncertainty of the correction to be applied to the
thermometer for any value t of the temperature.

H.4: Measurement of activity, Table H.7
This example is similar to example H.2, the simultaneous measurement of resistance and reactance,
in that the data can be analysed in two different ways but each yields essentially the same numerical
result. The first approach illustrates once again the need to take the observed correlations between
input quantities into account.
H.4.1 The measurement problem:
The unknown radon (222Rn) activity concentration in a water sample is determined by liquid-
scintillation counting against a radon-in-water standard sample having a known activity concen-
tration. The unknown activity concentration is obtained by measuring three counting sources con-
sisting of approximately 5g of water and 12g of organic emulsion scintillator in vials of volume
22ml:
Source (a) a standard consisting of a mass mS of the standard solution with a known activity con-
centration;
Source (b) a matched blank water sample containing no radioactive material, used to obtain the
background counting rate;
Source (c) the sample consisting of an aliquot of mass mx with unknown activity concentration.
Six cycles of measurement of the three counting sources are made in the order standard - blank
- sample; and each dead-time-corrected counting interval T0 for each source during all six cycles
is 60 minutes. Although the background counting rate cannot be assumed to be constant over the
entire counting interval (65 hours), it is assumed that the number of counts obtained for each blank
may be used as representative of the background counting rate during the measurements of the stan-
dard and sample in the same cycle. The data are given in Table H.7, where
tS , tB , tx are the times from the reference time t = 0 to the midpoint of the dead-time-corrected
counting intervals T0 = 60 min for the standard, blank, and sample vials, respectively; although tB
is given for completeness, it is not needed in the analysis;
CS , CB , Cx are the number of counts recorded in the dead-time-corrected counting intervals T0 =
60 min for the standard, blank, and sample vials, respectively.
The observed counts may be expressed as

CS = CB + εAST0mSe
−λtS (H.18a)

Cx = CB + εAxT0mxe
−λtx (H.18b)

where
ε is the liquid scintillation detection efficiency for 222Rn for a given source composition, assumed
to be independent of the activity level;
AS is the activity concentration of the standard at the reference time t = 0;
Ax is the measurand and is defined as the unknown activity concentration of the sample at the ref-
erence time t = 0;

fitDistr 7

mS is the mass of the standard solution;
mx is the mass of the sample aliquot;
λ is the decay constant for 222Rn: λ = (ln2)/T1/2 = 1.25894 · 10−4 min−1(T1/2 = 5505.8 min).
(...) This suggests combining Equations (H.18a) and (H.18b) to obtain the following expression for
the unknown concentration in terms of the known quantities:

... = AS
mS

mx

Cx − CB

CS − CB
eλ(tx−tS) (H.19)

where (Cx − CB)e
λtx and (CS − CB)e

λtS are, respectively, the background-corrected counts of
the sample and the standard at the reference time t = 0 and for the time interval T0 = 60 min.

Author(s)

Andrej-Nikolai Spiess, taken mainly from the GUM 2008 manual.

References

Evaluation of measurement data - Guide to the expression of uncertainty in measurement.
JCGM 100:2008 (GUM 1995 with minor corrections).
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/.

Evaluation of measurement data - Supplement 1 to the Guide to the expression of uncertainty in
measurement - Propagation of distributions using a Monte Carlo Method.
JCGM 101:2008.
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/.

Examples

See "Examples" in 'propagate'.

fitDistr Fitting distributions to observations/Monte Carlo simulations

Description

This function fits 32 different continuous distributions by (weighted) NLS to the histogram of Monte
Carlo simulation results as obtained by propagate or any other vector containing large-scale ob-
servations. Finally, the fits are sorted by ascending BIC.

Usage

fitDistr(object, nbin = 100, weights = FALSE, verbose = TRUE,
brute = c("fast", "slow"), plot = c("hist", "qq"), distsel = NULL, ...)

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/

8 fitDistr

Arguments

object an object of class ’propagate’ or a vector containing observations.

nbin the number of bins in the histogram.

weights numeric or logical. Either a numeric vector of weights, or if TRUE, the distribu-
tions are fitted with weights = 1/(counts per bin).

verbose logical. If TRUE, steps of the analysis are printed to the console.

brute complexity of the brute force approach. See ’Details’.

plot if "hist", a plot with the "best" distribution (in terms of lowest BIC) on top
of the histogram is displayed. If "qq", a QQ-Plot will display the difference
between the observed and fitted quantiles.

distsel a vector of distribution numbers to select from the complete cohort as listed
below, e.g. c(1:10, 15).

... other parameters to be passed to the plots.

Details

Fits the following 32 distributions using (weighted) residual sum-of-squares as the minimization
criterion for minpack.lm:::nls.lm:
1) Normal distribution (dnorm) => https://en.wikipedia.org/wiki/Normal_distribution
2) Skewed-normal distribution (propagate:::dsn) => https://en.wikipedia.org/wiki/Skew_
normal_distribution
3) Generalized normal distribution (propagate:::dgnorm) => https://en.wikipedia.org/wiki/
Generalized_normal_distribution
4) Log-normal distribution (dlnorm) => https://en.wikipedia.org/wiki/Log-normal_distribution
5) Scaled and shifted t-distribution (propagate:::dst) => GUM 2008, Chapter 6.4.9.2.
6) Logistic distribution (dlogis) => https://en.wikipedia.org/wiki/Logistic_distribution
7) Uniform distribution (dunif) => https://en.wikipedia.org/wiki/Uniform_distribution_
(continuous)
8) Triangular distribution (propagate:::dtriang) => https://en.wikipedia.org/wiki/Triangular_
distribution
9) Trapezoidal distribution (propagate:::dtrap) => https://en.wikipedia.org/wiki/Trapezoidal_
distribution
10) Curvilinear Trapezoidal distribution (propagate:::dctrap) => GUM 2008, Chapter 6.4.3.1
11) Gamma distribution (dgamma) => https://en.wikipedia.org/wiki/Gamma_distribution
12) Inverse Gamma distribution (propagate:::dinvgamma) => https://en.wikipedia.org/wiki/
Inverse-gamma_distribution
13) Cauchy distribution (dcauchy) => https://en.wikipedia.org/wiki/Cauchy_distribution
14) Laplace distribution (propagate:::dlaplace) => https://en.wikipedia.org/wiki/Laplace_
distribution
15) Gumbel distribution (propagate:::dgumbel) => https://en.wikipedia.org/wiki/Gumbel_
distribution
16) Johnson SU distribution (propagate:::dJSU) => https://en.wikipedia.org/wiki/Johnson_
SU_distribution
17) Johnson SB distribution (propagate:::dJSB) => https://variation.com/wp-content/distribution_
analyzer_help/hs126.htm
18) Three-parameter Weibull distribution (propagate:::dweibull2) => https://en.wikipedia.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Skew_normal_distribution
https://en.wikipedia.org/wiki/Skew_normal_distribution
https://en.wikipedia.org/wiki/Generalized_normal_distribution
https://en.wikipedia.org/wiki/Generalized_normal_distribution
https://en.wikipedia.org/wiki/Log-normal_distribution
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
https://en.wikipedia.org/wiki/Triangular_distribution
https://en.wikipedia.org/wiki/Triangular_distribution
https://en.wikipedia.org/wiki/Trapezoidal_distribution
https://en.wikipedia.org/wiki/Trapezoidal_distribution
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Inverse-gamma_distribution
https://en.wikipedia.org/wiki/Inverse-gamma_distribution
https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Laplace_distribution
https://en.wikipedia.org/wiki/Laplace_distribution
https://en.wikipedia.org/wiki/Gumbel_distribution
https://en.wikipedia.org/wiki/Gumbel_distribution
https://en.wikipedia.org/wiki/Johnson_SU_distribution
https://en.wikipedia.org/wiki/Johnson_SU_distribution
https://variation.com/wp-content/distribution_analyzer_help/hs126.htm
https://variation.com/wp-content/distribution_analyzer_help/hs126.htm
https://en.wikipedia.org/wiki/Weibull_distribution

fitDistr 9

org/wiki/Weibull_distribution
19) Two-parameter beta distribution (dbeta2) => https://en.wikipedia.org/wiki/Beta_distribution#
Two_parameters_2
20) Four-parameter beta distribution (propagate:::dbeta2) => https://en.wikipedia.org/
wiki/Beta_distribution#Four_parameters_2
21) Arcsine distribution (propagate:::darcsin) => https://en.wikipedia.org/wiki/Arcsine_
distribution
22) Von Mises distribution (propagate:::dmises) => https://en.wikipedia.org/wiki/Von_
Mises_distribution
23) Inverse Gaussian distribution (propagate:::dinvgauss) => https://en.wikipedia.org/
wiki/Inverse_Gaussian_distribution
24) Generalized Extreme Value distribution (propagate:::dgevd) => https://en.wikipedia.
org/wiki/Generalized_extreme_value_distribution
25) Rayleigh distribution (propagate:::drayleigh) => https://en.wikipedia.org/wiki/Rayleigh_
distribution
26) Chi-square distribution (dchisq) => https://en.wikipedia.org/wiki/Chi-squared_distribution
27) Exponential distribution (dexp) => https://en.wikipedia.org/wiki/Exponential_distribution
28) F-distribution (df) => https://en.wikipedia.org/wiki/F-distribution
29) Burr distribution (dburr) => https://en.wikipedia.org/wiki/Burr_distribution
30) Chi distribution (dchi) => https://en.wikipedia.org/wiki/Chi_distribution
31) Inverse Chi-square distribution (dinvchisq) => https://en.wikipedia.org/wiki/Inverse-chi-squared_
distribution
32) Cosine distribution (dcosine) => https://en.wikipedia.org/wiki/Raised_cosine_distribution

All distributions are fitted with a brute force approach, in which the parameter space is extended over
three orders of magnitude (0.1, 1, 10)×βi when brute = "fast", or five orders (0.01, 0.1, 1, 10, 100)×
βi when brute = "slow". Approx. 20-90s are needed to fit for the fast version, depending mainly
on the number of bins.

The goodness-of-fit (GOF) is calculated with BIC from the (weighted) log-likelihood of the fit:

ln(L) = 0.5 ·

(
−N ·

(
ln(2π) + 1 + ln(N)−

n∑
i=1

log(wi) + ln

(
n∑

i=1

wi · x2i

)))

BIC = −2ln(L) + (N− k)ln(N)

with xi = the residuals from the NLS fit, N = the length of the residual vector, k = the number of
parameters of the fitted model and wi = the weights.

In contrast to some other distribution fitting softwares (i.e. Easyfit, Mathwave) that use residual
sum-of-squares/Anderson-Darling/Kolmogorov-Smirnov statistics as GOF measures, the applica-
tion of BIC accounts for increasing number of parameters in the distribution fit and therefore com-
pensates for overfitting. Hence, this approach is more similar to ModelRisk (Vose Software) and as
employed in fitdistr of the ’MASS’ package. Another application is to identify a possible distri-
bution for the raw data prior to using Monte Carlo simulations from this distribution. However, a
decent number of observations should be at hand in order to obtain a realistic estimate of the proper
distribution. See ’Examples’.
The code for the density functions can be found in file "distr-densities.R".

IMPORTANT: It can be feasible to set weights = TRUE in order to give more weight to bins with
low counts. See ’Examples’. ALSO: Distribution fitting is highly sensitive to the number of de-

https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Weibull_distribution
https://en.wikipedia.org/wiki/Beta_distribution#Two_parameters_2
https://en.wikipedia.org/wiki/Beta_distribution#Two_parameters_2
https://en.wikipedia.org/wiki/Beta_distribution#Four_parameters_2
https://en.wikipedia.org/wiki/Beta_distribution#Four_parameters_2
https://en.wikipedia.org/wiki/Arcsine_distribution
https://en.wikipedia.org/wiki/Arcsine_distribution
https://en.wikipedia.org/wiki/Von_Mises_distribution
https://en.wikipedia.org/wiki/Von_Mises_distribution
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution
https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
https://en.wikipedia.org/wiki/Rayleigh_distribution
https://en.wikipedia.org/wiki/Rayleigh_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/F-distribution
https://en.wikipedia.org/wiki/Burr_distribution
https://en.wikipedia.org/wiki/Chi_distribution
https://en.wikipedia.org/wiki/Inverse-chi-squared_distribution
https://en.wikipedia.org/wiki/Inverse-chi-squared_distribution
https://en.wikipedia.org/wiki/Raised_cosine_distribution

10 fitDistr

fined histogram bins, so it is advisable to change this parameter and inspect if the order of fitted
distributions remains stable.

Value

A list with the following items:

stat: the by BIC value ascendingly sorted distribution names, including RSS and MSE.
fit: a list of the results from minpack.lm:::nls.lm for each distribution model, also sorted as-
cendingly by BIC values.
par: a list of the estimated parameters of the models in fit.
se: a list of the parameters’ standard errors, calculated from the square root of the covariance ma-
trices diagonals.
dens: a list with all density function used for fitting, sorted as in fit.
bestfit: the best model in terms of lowest BIC.
bestpar: the parameters of bestfit.
bestse: the parameters’ standard errors of bestfit.
fitted: the fitted values of bestfit.
residuals: the residuals of bestfit.

Author(s)

Andrej-Nikolai Spiess

References

Continuous univariate distributions, Volume 1.
Johnson NL, Kotz S and Balakrishnan N.
Wiley Series in Probability and Statistics, 2.ed (2004).

Univariate distribution relationships.
Leemis LM and McQueston JT.
The American Statistician (2008), 62: 45-53.

Examples

Not run:
Linear example, small error
=> Normal distribution.
EXPR1 <- expression(x + 2 * y)
x <- c(5, 0.01)
y <- c(1, 0.01)
DF1 <- cbind(x, y)
RES1 <- propagate(expr = EXPR1, data = DF1, type = "stat",

do.sim = TRUE, verbose = TRUE)
fitDistr(RES1)

Ratio example, larger error
=> Gamma distribution.
EXPR2 <- expression(x/2 * y)
x <- c(5, 0.1)

interval 11

y <- c(1, 0.02)
DF2 <- cbind(x, y)
RES2 <- propagate(expr = EXPR2, data = DF2, type = "stat",

do.sim = TRUE, verbose = TRUE)
fitDistr(RES2)

Exponential example, large error
=> Log-Normal distribution.
EXPR3 <- expression(x^(2 * y))
x <- c(5, 0.1)
y <- c(1, 0.1)
DF3 <- cbind(x, y)
RES3 <- propagate(expr = EXPR3, data = DF3, type = "stat",

do.sim = TRUE, verbose = TRUE)
fitDistr(RES3)

Rectangular input distributions result
in Curvilinear Trapezoidal output distribution.
A <- runif(100000, 20, 25)
B <- runif(100000, 3, 3.5)
DF4 <- cbind(A, B)
EXPR4 <- expression(A + B)
RES4 <- propagate(EXPR4, data = DF4, type = "sim",

use.cov = FALSE, do.sim = TRUE)
fitDistr(RES4)

Fitting with 1/counts as weights.
EXPR5 <- expression(x + 2 * y)
x <- c(5, 0.05)
y <- c(1, 0.05)
DF5 <- cbind(x, y)
RES5 <- propagate(expr = EXPR5, data = DF5, type = "stat",

do.sim = TRUE, verbose = TRUE, weights = TRUE)
fitDistr(RES5)

Using only selected distributions.
EXPR6 <- expression(x + sin(y))
x <- c(5, 0.1)
y <- c(1, 0.2)
DF6 <- cbind(x, y)
RES6 <- propagate(expr = EXPR6, data = DF6, type = "stat",

do.sim = TRUE)
fitDistr(RES6, distsel = c(1:10, 15, 28))

End(Not run)

interval Uncertainty propagation based on interval arithmetics

12 interval

Description

Calculates the uncertainty of a model by using interval arithmetics based on a "combinatorial se-
quence grid evaluation" approach, thereby avoiding the classical dependency problem that inflates
the result interval.

Usage

interval(df, expr, seq = 10, plot = TRUE)

Arguments

df a 2-row dataframe/matrix with lower border values Ai in the first row and upper
border values Bi in the second row. Column names must correspond to the
variable names in expr.

expr an expression, such as expression(x/y).

seq the sequence length from Ai to Bi in [Ai, Bi].

plot logical. If TRUE, plots the evaluations and min/max values as blue border lines.

Details

For two variables x, y with intervals [x1, x2] and [y1, y2], the four basic arithmetic operations ⟨op⟩ ∈
{+,−, ·, /} are

[x1, x2] ⟨op⟩ [y1, y2] =

[min(x1⟨op⟩y1, x1⟨op⟩y2, x2⟨op⟩y1, x2⟨op⟩y2),max(x1⟨op⟩y1, x1⟨op⟩y2, x2⟨op⟩y1, x2⟨op⟩y2)]

So for a function f([x1, x2], [y1, y2], [z1, z2], ...) with k variables, we have to create all combi-
nations Ci =

({{x1,x2},{y1,y2},{z1,z2},...}
k

)
, evaluate their function values Ri = f(Ci) and select

R = [minRi,maxRi].
The so-called dependency problem is a major obstacle to the application of interval arithmetic
and arises when the same variable exists in several terms of a complicated and often nonlin-
ear function. In these cases, over-estimation can cover a range that is significantly larger, i.e.
minRi ≪ min f(x, y, z, ...),maxRi ≫ max f(x, y, z, ...). For an example, see https://en.
wikipedia.org/w/index.php?title=Interval_arithmetic under "Dependency problem". A
partial solution to this problem is to refine Ri by dividing [x1, x2] into i smaller subranges to ob-
tain sequence (x1, x1.1, x1.2, x1.i, x2). Again, all combinations are evaluated as described above,
resulting in a larger number of Ri in which minRi and maxRi may be closer to min f(x, y, z, ...)
and max f(x, y, z, ...), respectively. This is the "combinatorial sequence grid evaluation" approach
which works quite well in scenarios where monotonicity changes direction (see ’Examples’), obvi-
ating the need to create multivariate derivatives (Hessians) or use some multivariate minimization
algorithm.
If intervals are of type [x1 < 0, x2 > 0], a zero is included into the middle of the sequence to avoid
wrong results in case of even powers, i.e. [−1, 1]2 = [−1, 1][−1, 1] = [−1, 1] when actually the
right interval is [0, 1], see curve(x^2, -1, 1).

Value

A 2-element vector with the resulting interval and an (optional) plot of all evaluations.

https://en.wikipedia.org/w/index.php?title=Interval_arithmetic
https://en.wikipedia.org/w/index.php?title=Interval_arithmetic

interval 13

Author(s)

Andrej-Nikolai Spiess

References

Wikipedia entry is quite good, especially the section on the ’dependency problem’:
https://en.wikipedia.org/w/index.php?title=Interval_arithmetic

Comparison to Monte Carlo and error propagation:
Interval Arithmetic in Power Flow Analysis.
Wang Z & Alvarado FL.
Power Industry Computer Application Conference (1991): 156-162.

Computer implementation
Interval arithmetic: From principles to implementation.
Hickey T, Ju Q, Van Emden MH.
JACM (2001), 48: 1038-1068.

Complete Interval Arithmetic and its Implementation on the Computer.
Kulisch UW.
In: Numerical Validation in Current Hardware Architectures. Lecture Notes in Computer Science
5492 (2009): 7-26.

Examples

Example 1: even squaring of negative interval.
EXPR1 <- expression(x^2)
DAT1 <- data.frame(x = c(-1, 1))
interval(DAT1, EXPR1)

Example 2: A complicated nonlinear model.
Reduce sequence length to 2 => original interval
for quicker evaluation.
EXPR2 <- expression(C * sqrt((520 * H * P)/(M *(t + 460))))
H <- c(64, 65)
M <- c(16, 16.2)
P <- c(361, 365)
t <- c(165, 170)
C <- c(38.4, 38.5)
DAT2 <- makeDat(EXPR2)
interval(DAT2, EXPR2, seq = 2)

Example 3: Body Mass Index taken from
http://en.wikipedia.org/w/index.php?title=Interval_arithmetic
EXPR3 <- expression(m/h^2)
m <- c(79.5, 80.5)
h <- c(1.795, 1.805)
DAT3 <- makeDat(EXPR3)
interval(DAT3, EXPR3)

Example 4: Linear model.
EXPR4 <- expression(a * x + b)
a <- c(1, 2)

https://en.wikipedia.org/w/index.php?title=Interval_arithmetic

14 makeDat

b <- c(5, 7)
x <- c(2, 3)
DAT4 <- makeDat(EXPR4)
interval(DAT4, EXPR4)

Example 5: Overestimation from dependency problem.
Original interval with seq = 2 => [1, 7]
EXPR5 <- expression(x^2 - x + 1)
x <- c(-2, 1)
DAT5 <- makeDat(EXPR5)
interval(DAT5, EXPR5, seq = 2)

Refine with large sequence => [0.75, 7]
interval(DAT5, EXPR5, seq = 100)
Tallies with curve function.
curve(x^2 - x + 1, -2, 1)

Example 6: Underestimation from dependency problem.
Original interval with seq = 2 => [0, 0]
EXPR6 <- expression(x - x^2)
x <- c(0, 1)
DAT6 <- makeDat(EXPR6)
interval(DAT6, EXPR6, seq = 2)

Refine with large sequence => [0, 0.25]
interval(DAT6, EXPR6, seq = 100)
Tallies with curve function.
curve(x - x^2, 0, 1)

makeDat Create a dataframe from the variables defined in an expression

Description

Creates a dataframe from the variables defined in an expression by cbinding the corresponding
data found in the workspace. This is a convenience function for creating a dataframe to be passed
to propagate, when starting with data which was simulated from distributions, i.e. when type =
"sim". Will throw an error if a variable is defined in the expression but is not available from the
workspace.

Usage

makeDat(expr)

Arguments

expr an expression to be use for propagate.

Value

A dataframe containing the data defined in expr in columns.

makeDerivs 15

Author(s)

Andrej-Nikolai Spiess

Examples

Simulating from uniform
and normal distribution,
run 'propagate'.
EXPR1 <- expression(a + b^c)
a <- rnorm(100000, 12, 1)
b <- rnorm(100000, 5, 0.1)
c <- runif(100000, 6, 7)

DAT1 <- makeDat(EXPR1)
propagate(EXPR1, DAT1, type = "sim", cov = FALSE)

makeDerivs Utility functions for creating Gradient- and Hessian-like matrices with
symbolic derivatives and evaluating them in an environment

Description

These are three different utility functions that create matrices containing the symbolic partial deriva-
tives of first (makeGrad) and second (makeHess) order and a function for evaluating these matrices
in an environment. The evaluations of the symbolic derivatives are used within the propagate
function to calculate the propagated uncertainty, but these functions may also be useful for other
applications.

Usage

makeGrad(expr, order = NULL)
makeHess(expr, order = NULL)
evalDerivs(deriv, envir)

Arguments

expr an expression, such as expression(x/y).

order order of creating partial derivatives, i.e. c(2, 1). See ’Examples’.

deriv a matrix returned from makeGrad or makeHess.

envir an environment to evaluate in. By default the workspace.

16 makeDerivs

Details

Given a function f(x1, x2, . . . , xn), the following matrices containing symbolic derivatives of f are
returned:

makeGrad:

∇(f) =

[
∂f

∂x1
, . . . ,

∂f

∂xn

]
makeHess:

H(f) =

∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xn

∂2f
∂x2 ∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2 ∂xn

...
...

. . .
...

∂2f
∂xn ∂x1

∂2f
∂xn ∂x2

· · · ∂2f
∂x2

n

Value

The symbolic or evaluated Gradient/Hessian matrices.

Author(s)

Andrej-Nikolai Spiess

References

The Matrix Cookbook (Version November 2012).
Petersen KB & Pedersen MS.
http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/imm3274.pdf

Examples

EXPR <- expression(a^b + sin(c))
ENVIR <- list(a = 2, b = 3, c = 4)

First-order partial derivatives: Gradient.
GRAD <- makeGrad(EXPR)

This will evaluate the Gradient.
evalDerivs(GRAD, ENVIR)

Second-order partial derivatives: Hessian.
HESS <- makeHess(EXPR)

This will evaluate the Hessian.
evalDerivs(HESS, ENVIR)

Change derivatives order.

http://ais.informatik.uni-freiburg.de/teaching/ws12/mapping/pdf/imm3274.pdf

matrixStats 17

GRAD <- makeGrad(EXPR, order = c(2,1,3))
evalDerivs(GRAD, ENVIR)

matrixStats Fast column- and row-wise versions of variance coded in C++

Description

These two functions are fast C++ versions for column- and row-wise variance calculation on ma-
trices/data.frames and are meant to substitute the classical apply(mat, 1, var) approach.

Usage

colVarsC(x)
rowVarsC(x)

Arguments

x a matrix or data.frame

Details

They are coded in a way that they automatically remove NA values, so they behave like na.rm =
TRUE.

Value

A vector with the variance values.

Author(s)

Andrej-Nikolai Spiess

Examples

Speed comparison on large matrix.
~ 110x speed increase!
Not run:
MAT <- matrix(rnorm(10 * 500000), ncol = 10)
system.time(RES1 <- apply(MAT, 1, var))
system.time(RES2 <- rowVarsC(MAT))
all.equal(RES1, RES2)

End(Not run)

18 mixCov

mixCov Aggregating covariances matrices and/or error vectors into a single
covariance matrix

Description

This function aggregates covariances matrices, single variance values or a vector of multiple vari-
ance values into one final covariance matrix suitable for propagate.

Usage

mixCov(...)

Arguments

... either covariance matrices, or a vector of single/multiple variance values.

Details

’Mixes’ (aggregates) data of the following types into a final covariance matrix:
1) covariance matrices Σ that are already available.
2) single variance values σ2.
3) a vector of variance values σ2

1 , σ
2
2 , ..., σ

2
n.

This is accomplished by filling a m1 + m2 + . . . + mn sized square matrix C succesively with
elements 1 . . .m1,m1+1 . . .m1+m2, . . . ,mn+1 . . .mn+mn+1 with either covariance matrices
at Cmn+1...mn+mn+1,mn+1...mn+mn+1

or single variance values on the diagonals at Cmn,mn
.

Value

The aggregated covariance matrix.

Author(s)

Andrej-Nikolai Spiess

References

Evaluation of measurement data - Guide to the expression of uncertainty in measurement.
JCGM 100:2008 (GUM 1995 with minor corrections).
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/.

Evaluation of measurement data - Supplement 1 to the Guide to the expression of uncertainty in
measurement - Propagation of distributions using a Monte Carlo Method.
JCGM 101:2008.
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/.

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/

mixCov 19

Examples

###
Example in Annex H.4.1 from the GUM 2008 manual
(see 'References'), measurement of activity.
This will give exactly the same values as Table H.8.
data(H.4)
attach(H.4)
T0 <- 60
lambda <- 1.25894E-4
Rx <- ((Cx - Cb)/60) * exp(lambda * tx)
Rs <- ((Cs - Cb)/60) * exp(lambda * ts)

mRx <- mean(Rx)
sRx <- sd(Rx)/sqrt(6)
mRx
sRx

mRs <- mean(Rs)
sRs <- sd(Rs)/sqrt(6)
mRs
sRs

R <- Rx/Rs
mR <- mean(R)
sR <- sd(R)/sqrt(6)
mR
sR

cor(Rx, Rs)

Definition as in H.4.3.
As <- c(0.1368, 0.0018)
ms <- c(5.0192, 0.005)
mx <- c(5.0571, 0.001)

We have to scale Rs/Rx by sqrt(6) to get the
corresponding covariances.
Rs <- Rs/sqrt(6)
Rx <- Rx/sqrt(6)

Here we create an aggregated covariance matrix
from the raw and summary data.
COV1 <- cov(cbind(Rs, Rx))
COV <- mixCov(COV1, As[2]^2, ms[2]^2, mx[2]^2)
COV

Prepare the data for 'propagate'.
MEANS <- c(mRs, mRx, As[1], ms[1], mx[1])
SDS <- c(sRs, sRx, As[2], ms[2], mx[2])
DAT <- rbind(MEANS, SDS)
colnames(DAT) <- c("Rs", "Rx", "As", "ms", "mx")

20 moments

This will give exactly the same values as
in H.4.3/H.4.3.1.
EXPR <- expression(As * (ms/mx) * (Rx/Rs))
RES <- propagate(EXPR, data = DAT, cov = COV, nsim = 100000)
RES

moments Skewness and (excess) Kurtosis of a vector of values

Description

These functions calculate skewness and excess kurtosis of a vector of values. They were taken from
the package ’moments’.

Usage

skewness(x, na.rm = FALSE)
kurtosis(x, na.rm = FALSE)

Arguments

x a numeric vector, matrix or data frame.

na.rm logical. Should missing values be removed?

Details

Skewness:
1
n

∑n
i=1(xi − x)3(

1
n

∑n
i=1(xi − x)2

)3/2
(excess) Kurtosis:

1
n

∑n
i=1(xi − x)4(

1
n

∑n
i=1(xi − x)2

)2 − 3

Value

The skewness/kurtosis values.

Author(s)

Andrej-Nikolai Spiess

Examples

X <- rnorm(100, 20, 2)
skewness(X)
kurtosis(X)

numDerivs 21

numDerivs Functions for creating Gradient and Hessian matrices by numerical
differentiation (Richardson’s method) of the partial derivatives

Description

These two functions create Gradient and Hessian matrices by Richardson’s central finite difference
method of the partial derivatives for any expression.

Usage

numGrad(expr, envir = .GlobalEnv)
numHess(expr, envir = .GlobalEnv)

Arguments

expr an expression, such as expression(x/y).

envir the environment to evaluate in.

Details

Calculates first- and second-order numerical approximation using Richardson’s central difference
formula:

f ′
i(x) ≈

f(x1, . . . , xi + d, . . . , xn)− f(x1, . . . , xi − d, . . . , xn)

2d

f ′′
i (x) ≈

f(x1, . . . , xi + d, . . . , xn)− 2f(x1, . . . , xn) + f(x1, . . . , xi − d, . . . , xn)

d2

Value

The numeric Gradient/Hessian matrices.

Note

The two functions are modified versions of the genD function in the ’numDeriv’ package, but a bit
more easy to handle because they use expressions and the function’s x value must not be defined as
splitted scalar values x[1], x[2], ... x[n] in the body of the function.

Author(s)

Andrej-Nikolai Spiess

22 plot.propagate

Examples

Check for equality of symbolic
and numerical derivatives.
EXPR <- expression(2^x + sin(2 * y) - cos(z))
x <- 5
y <- 10
z <- 20

symGRAD <- evalDerivs(makeGrad(EXPR))
numGRAD <- numGrad(EXPR)
all.equal(symGRAD, numGRAD)

symHESS <- evalDerivs(makeHess(EXPR))
numHESS <- numHess(EXPR)
all.equal(symHESS, numHESS)

plot.propagate Plotting function for ’propagate’ objects

Description

Creates a histogram of the evaluated results from the multivariate simulated data, along with a
density curve, alpha-based confidence intervals, median and mean.

Usage

S3 method for class 'propagate'
plot(x, logx = FALSE, ...)

Arguments

x an object returned from propagate.

logx logical. Should the data be displayed on a logarithmic abscissa?

... other parameters to hist.

Value

A plot as described above.

Author(s)

Andrej-Nikolai Spiess

predictNLS 23

Examples

EXPR1 <- expression(x^2 * sin(y))
x <- c(5, 0.01)
y <- c(1, 0.01)
DF1 <- cbind(x, y)
RES1 <- propagate(expr = EXPR1, data = DF1, type = "stat",

nsim = 100000, alpha = 0.01)
plot(RES1)

predictNLS Confidence/prediction intervals for (weighted) nonlinear models
based on uncertainty propagation

Description

A function for calculating confidence/prediction intervals of (weighted) nonlinear models for the
supplied or new predictor values, by using first-/second-order Taylor expansion and Monte Carlo
simulation. This approach can be used to construct more realistic error estimates and confidence/prediction
intervals for nonlinear models than what is possible with only a simple linearization (first-order
Taylor expansion) approach. Another application is when there is an "error in x" setup with uncer-
tainties in the predictor variable (See ’Examples’). This function will also work in the presence of
multiple predictors with/without errors.

Usage

predictNLS(model, newdata, newerror, interval = c("confidence", "prediction", "none"),
alpha = 0.05, ...)

Arguments

model a model obtained from nls or nlsLM (package ’minpack.lm’).

newdata a data frame with new predictor values, having the same column names as in
model. See predict.nls and ’Examples’. If omitted, the model’s predictor
values are employed.

newerror a data frame with optional error values, having the same column names as in
model and in the same order as in newdata. See ’Examples’.

interval A character string indicating if confidence/prediction intervals are to be calcu-
lated or not.

alpha the α level.

... other parameters to be supplied to propagate.

24 predictNLS

Details

Calculation of the propagated uncertainty σy using ∇Σ∇T is called the "Delta Method" and is
widely applied in NLS fitting. However, this method is based on first-order Taylor expansion and
thus assummes linearity around f(x). The second-order approach as implemented in the propagate
function can partially correct for this restriction by using a second-order polynomial around f(x).
Confidence and prediction intervals are calculated in a usual way using t(1 − α

2 , ν) · σy (1) or

t(1− α
2 , ν) ·

√
σ2
y + σ2

r (2), respectively, where the residual variance σ2
r =

∑n
i=1(yi−ŷi)

2

n−ν (3). The

inclusion of σ2
r in the prediction interval is implemented as an extended gradient and "augmented"

covariance matrix. So instead of using y = f(x, β) (4) we take y = f(x, β) + σ2
r (5) as the

expression and augment the n × n covariance matrix C to an n + 1 × n + 1 covariance matrix,
where Cn+1,n+1 = σ2

r . Partial differentiation and matrix multiplication will then yield, for example
with two coefficients β1 and β2 and their corresponding covariance matrix Σ:

[
∂f

∂β1

∂f

∂β2
1

] σ2
1 σ1σ2 0

σ2σ1 σ2
2 0

0 0 σ2
r

∂f
∂β1
∂f
∂β2

1

 =

(
∂f

∂β1

)2

σ2
1+2

∂f

∂β1

∂f

∂β2
σ1σ2+

(
∂f

∂β2

)2

σ2
2+σ2

r

≡ σ2
y + σ2

r , where σ2
y + σ2

r then goes into (2).
The advantage of the augmented covariance matrix is that it can be exploited for creating Monte
Carlo simulation-based prediction intervals. This is new from version 1.0-6 and is based on the
paradigm that we simply add another dimension with µ = 0 and σ2 = σ2

r to the multivariate t-
distribution random number generator (in our case tmvtnorm:::rtmvt). All n simulations are then
evaluated with (5) and the usual [1− α

2 ,
α
2] quantiles calculated.

If errors are supplied to the predictor values in newerror, they need to have the same column names
and order than the new predictor values.

Value

A list with the following items:
summary: The mean/error estimates obtained from first-/second-order Taylor expansion and Monte
Carlo simulation, together with calculated confidence/prediction intervals based on asymptotic nor-
mality.
prop: the complete output from propagate for each value in newdata.

Author(s)

Andrej-Nikolai Spiess

References

Nonlinear Regression.
Seber GAF & Wild CJ.
John Wiley & Sons; 1ed, 2003.

Nonlinear Regression Analysis and its Applications.
Bates DM & Watts DG.
Wiley-Interscience; 1ed, 2007.

predictNLS 25

Statistical Error Propagation.
Tellinghuisen J.
J. Phys. Chem. A (2001), 47: 3917-3921.

Least-squares analysis of data with uncertainty in x and y: A Monte Carlo methods comparison.
Tellinghuisen J.
Chemometr Intell Lab (2010), 47: 160-169.

From the author’s blog:
http://rmazing.wordpress.com/2013/08/14/predictnls-part-1-monte-carlo-simulation-confidence-intervals-
for-nls-models/
http://rmazing.wordpress.com/2013/08/26/predictnls-part-2-taylor-approximation-confidence-intervals-
for-nls-models/

Examples

In these examples, 'nsim = 100000' to save
Rcmd check time (CRAN). It is advocated
to use at least 'nsim = 1000000' though...

Example from ?nls.
DNase1 <- subset(DNase, Run == 1)
fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1))

Using a single predictor value without error.
PROP1 <- predictNLS(fm3DNase1, newdata = data.frame(conc = 2), nsim = 100000)
PRED1 <- predict(fm3DNase1, newdata = data.frame(conc = 2), nsim = 100000)
PROP1$summary
PRED1
=> Prop.Mean.1 equal to PRED1

Using a single predictor value with error.
PROP2 <- predictNLS(fm3DNase1, newdata = data.frame(conc = 2),

newerror = data.frame(conc = 0.5), nsim = 100000)
PROP2$summary

Not run:
Using a sequence of predictor values without error.
CONC <- seq(1, 12, by = 1)
PROP3 <- predictNLS(fm3DNase1, newdata = data.frame(conc = CONC))
PRED3 <- predict(fm3DNase1, newdata = data.frame(conc = CONC))
PROP3$summary
PRED3
=> Prop.Mean.1 equal to PRED3

Plot mean and confidence values from first-/second-order
Taylor expansion and Monte Carlo simulation.
plot(DNase1$conc, DNase1$density)
lines(DNase1$conc, fitted(fm3DNase1), lwd = 2, col = 1)
points(CONC, PROP3$summary[, 1], col = 2, pch = 16)
lines(CONC, PROP3$summary[, 5], col = 2)
lines(CONC, PROP3$summary[, 6], col = 2)

26 predictNLS

lines(CONC, PROP3$summary[, 11], col = 4)
lines(CONC, PROP3$summary[, 12], col = 4)

Using a sequence of predictor values with error.
PROP4 <- predictNLS(fm3DNase1, newdata = data.frame(conc = 1:5),

newerror = data.frame(conc = (1:5)/10))
PROP4$summary

Using multiple predictor values.
1: Setup of response values with gaussian error of 10%.
x <- seq(1, 10, by = 0.01)
y <- seq(10, 1, by = -0.01)
a <- 2
b <- 5
c <- 10
z <- a * exp(b * x)^sin(y/c)
z <- z + sapply(z, function(x) rnorm(1, x, 0.10 * x))

2: Fit 'nls' model.
MOD <- nls(z ~ a * exp(b * x)^sin(y/c),

start = list(a = 2, b = 5, c = 10))

3: Single newdata without errors.
DAT1 <- data.frame(x = 4, y = 3)
PROP5 <- predictNLS(MOD, newdata = DAT1)
PROP5$summary

4: Single newdata with errors.
DAT2 <- data.frame(x = 4, y = 3)
ERR2 <- data.frame(x = 0.2, y = 0.1)
PROP6 <- predictNLS(MOD, newdata = DAT2, newerror = ERR2)
PROP6$summary

5: Multiple newdata with errors.
DAT3 <- data.frame(x = 1:4, y = 3)
ERR3 <- data.frame(x = rep(0.2, 4), y = seq(1:4)/10)
PROP7 <- predictNLS(MOD, newdata = DAT3, newerror = ERR3)
PROP7$summary

6: Linear model to compare conf/pred intervals.
set.seed(123)
X <- 1:20
Y <- 3 + 2 * X + rnorm(20, 0, 2)
plot(X, Y)
LM <- lm(Y ~ X)
NLS <- nlsLM(Y ~ a + b * X, start = list(a = 3, b = 2))
predict(LM, newdata = data.frame(X = 14.5), interval = "conf")
predictNLS(NLS, newdata = data.frame(X = 14.5), interval = "conf")$summary
predict(LM, newdata = data.frame(X = 14.5), interval = "pred")
predictNLS(NLS, newdata = data.frame(X = 14.5), interval = "pred")$summary

7: compare to 'predFit' function of 'investr' package.
Same results when using only first-order Taylor expansion.

propagate 27

require(investr)
data(Puromycin, package = "datasets")
Puromycin2 <- Puromycin[Puromycin$state == "treated",][, 1:2]
Puro.nls <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin2,

start = c(Vm = 200, K = 0.05))
PRED1 <- predFit(Puro.nls, interval = "prediction")
PRED2 <- predictNLS(Puro.nls, interval = "prediction", second.order = FALSE, do.sim = FALSE)
all.equal(PRED1[, "lwr"], PRED2$summary[, 5]) # => TRUE

End(Not run)

propagate Propagation of uncertainty using higher-order Taylor expansion and
Monte Carlo simulation

Description

A general function for the calculation of uncertainty propagation by first-/second-order Taylor ex-
pansion and Monte Carlo simulation including covariances. Input data can be any symbolic/numeric
differentiable expression and data based on summaries (mean & s.d.) or sampled from distribu-
tions. Uncertainty propagation is based completely on matrix calculus accounting for full covari-
ance structure. Monte Carlo simulation is conducted using a multivariate t-distribution with covari-
ance structure. Propagation confidence intervals are calculated from the expanded uncertainties by
means of the degrees of freedom obtained from WelchSatter, or from the [α2 , 1 −

α
2] quantiles of

the MC evaluations.

Usage

propagate(expr, data, second.order = TRUE, do.sim = TRUE, cov = TRUE,
df = NULL, nsim = 1000000, alpha = 0.05, ...)

Arguments

expr an expression, such as expression(x/y).
data a dataframe or matrix containing either a) the means µi, standard deviations σi

and degrees of freedom νi (optionally) in the first, second and third (optionally)
row, or b) sampled data generated from any of R’s distributions or those
implemented in this package (rDistr). If nrow(data) > 3, sampled data is
assumed. The column names must match the variable names.

second.order logical. If TRUE, error propagation will be calculated with first- and second-order
Taylor expansion. See ’Details’.

do.sim logical. Should Monte Carlo simulation be applied?
cov logical or variance-covariance matrix with the same column names as data. See

’Details’.
df an optional scalar with the total degrees of freedom νtot of the system.
nsim the number of Monte Carlo simulations to be performed, minimum is 10000.
alpha the 1 - confidence level.
... other parameters to be supplied to future methods.

28 propagate

Details

The implemented methods are:

1) Monte Carlo simulation:
For each variable m in data, simulated data X = [x1, x2, . . . , xn] with n = nsim samples is gen-
erated from a multivariate t-distribution Xm,n ∼ t(µ,Σ, ν) using means µi and covariance matrix
Σ constructed from the standard deviations σi of each variable. All data is coerced into a new
dataframe that has the same covariance structure as the initial data: Σ(data) = Σ(Xm,n). Each
row i = 1, . . . , n of the simulated dataset Xm,n is evaluated with expr, yi = f(xm,i), and sum-
mary statistics (mean, sd, median, mad, quantile-based confidence interval based on [α2 , 1−

α
2]) are

calculated on y.

2) Error propagation:
The propagated error is calculated by first-/second-order Taylor expansion accounting for full co-
variance structure using matrix algebra.
The following transformations based on two variables x1, x2 illustrate the equivalence of the matrix-
based approach with well-known classical notations:
First-order mean: E[y] = f(x̄i)
First-order variance: σ2

y = ∇Σ∇T :

[j1 j2]

[
σ2
1 σ1σ2

σ2σ1 σ2
2

] [
j1
j2

]
= j1

2σ2
1 + 2j1j2σ1σ2 + j2

2σ2
2

=

2∑
i=1

ji
2σ2

i + 2

2∑
i=1
i̸=k

2∑
k=1
k̸=i

jijkσik

︸ ︷︷ ︸
classical notation

=
1

1!

(
2∑

i=1

∂f

∂xi
σi

)2

Second-order mean: E[y] = f(x̄i) +
1
2 tr(HΣ):

1

2
tr

[
h1 h2
h3 h4

] [
σ2
1 σ1σ2

σ2σ1 σ2
2

]
=

1

2
tr

[
h1σ

2
1 + h2σ1σ2 h1σ1σ2 + h2σ

2
2

h3σ
2
1 + h4σ1σ2 h3σ1σ2 + h4σ

2
2

]

=
1

2
(h1σ

2
1 + h2σ1σ2 + h3σ1σ2 + h4σ

2
2) =

1

2!

(
2∑

i=1

∂

∂xi
σi

)2

f

Second-order variance: σ2
y = ∇Σ∇T + 1

2 tr(HΣHΣ):

1

2
tr

[
h1 h2
h3 h4

] [
σ2
1 σ1σ2

σ2σ1 σ2
2

] [
h1 h2
h3 h4

] [
σ2
1 σ1σ2

σ2σ1 σ2
2

]
= . . .

=
1

2
(h1

2σ4
1 + 2h1h2σ

3
1σ2 + 2h1h3σ

3
1σ2 + h2

2σ2
1σ

2
2 + 2h2h3σ

2
1σ

2
2 + h3

2σ2
1σ

2
2 + 2h1h4σ

2
1σ

2
2

+2h2h4σ1σ
3
2 + 2h3h4σ1σ

3
2 + h4

2σ4
2 =

1

2
(h1σ

2
1 + h2σ1σ2 + h3σ1σ2 + h4σ

2
2)

2

=
1

2!

(2∑
i=1

∂

∂xi
σi

)2

f

2

with E(y) = expectation of y, σ2
y = variance of y, ∇ = the p x n gradient matrix with all partial

propagate 29

first derivatives ji, Σ = the p x p covariance matrix, H the Hessian matrix with all partial second
derivatives hi, σi = the uncertainties and tr(·) = the trace (sum of diagonal) of a matrix. Note that
because the Hessian matrices are symmetric, h2 = h3. For a detailed derivation, see ’References’.
The second-order Taylor expansion corrects for bias in nonlinear expressions as the first-order Tay-
lor expansion assumes linearity around x̄i. There is also a Python library available for second-order
error propagation (’soerp’, https://pypi.org/project/soerp). The ’propagate’ package gives
exactly the same results, see last example under "Examples".
Depending on the input expression, the uncertainty propagation may result in an error that is not
normally distributed. The Monte Carlo simulation, starting with a symmetric t-distributions of the
variables, can clarify this. For instance, a high tendency from deviation of normality is encountered
in formulas in which the error of the denominator is relatively large or in exponential models with
a large error in the exponent.

For setups in which there is no symbolic derivation possible (i.e. e <- expression(abs(x)) =>
"Function ’abs’ is not in the derivatives table") the function automatically switches from symbolic
(using makeGrad or makeHess) to numeric (numGrad or numHess) differentiation.

The function will try to evaluate the expression in an environment using eval which results in a
significant speed enhancement (~ 10-fold). If that fails, evaluation is done over the rows of the
simulated data using apply.

cov is used in the following ways:
1) If µi, σi are supplied, a covariance matrix is built with diagonals σ2

i , independent of cov = TRUE,
FALSE.
2) When simulated data is supplied, a covariance matrix is constructed that either has (cov = TRUE)
or has not (cov = FALSE) off-diagonal covariances.
3) The user can supply an own covariance matrix Σ, with the same column/row names as in data.

The expanded uncertainty used for constructing the confidence interval is calculated from the
Welch-Satterthwaite degrees of freedom νWS of the WelchSatter function.

Value

A list with the following components:

gradient the symbolic gradient vector ∇ of partial first-order derivatives.

evalGrad the evaluated gradient vector ∇ of partial first-order derivatives, also known as
the "sensitivity". See summary.propagate.

hessian the symbolic Hessian matrix H of partial second-order derivatives.

evalHess the evaluated Hessian matrix H of partial second-order derivatives.

rel.contr the relative contribution matrix, see summary.propagate.

covMat the covariance matrix Σ used for Monte Carlo simulation and uncertainty prop-
agation.

ws.df the Welch-Satterthwaite degrees of freedom νws, as obtained from WelchSatter.

k the coverage factor k, as calculated by t(1− (α/2), νws).

u.exp the expanded uncertainty, kσ(y), where σ(y) is derived either from the second-
order uncertainty, if successfully calculated, or first-order otherwise.

https://pypi.org/project/soerp

30 propagate

resSIM a vector containing the nsim values obtained from the row-wise expression eval-
uations f(xm,i) of the simulated data in datSIM.

datSIM a vector containing the nsim simulated multivariate values for each variable in
column format.

prop a summary vector containing first-/second-order expectations and uncertainties
as well as the confidence interval based on alpha.

sim a summary vector containing the mean, standard deviation, median, MAD as
well as the confidence interval based on alpha.

expr the original expression expr.

data the original data data.

alpha the otiginal alpha.

Author(s)

Andrej-Nikolai Spiess

References

Error propagation (in general):
An Introduction to error analysis.
Taylor JR.
University Science Books (1996), New York.

Evaluation of measurement data - Guide to the expression of uncertainty in measurement.
JCGM 100:2008 (GUM 1995 with minor corrections).
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/.

Evaluation of measurement data - Supplement 1 to the Guide to the expression of uncertainty in
measurement - Propagation of distributions using a Monte Carlo Method.
JCGM 101:2008.
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/.

Higher-order Taylor expansion:
On higher-order corrections for propagating uncertainties.
Wang CM & Iyer HK.
Metrologia (2005), 42: 406-410.

Propagation of uncertainty: Expressions of second and third order uncertainty with third and fourth
moments.
Mekid S & Vaja D.
Measurement (2008), 41: 600-609.

Matrix algebra for error propagation:
An Introduction to Error Propagation: Derivation, Meaning and Examples of Equation Cy = Fx-
CxFx^t.
https://www.research-collection.ethz.ch/handle/20.500.11850/82620.

Second order nonlinear uncertainty modeling in strapdown integration using MEMS IMUs.
Zhang M, Hol JD, Slot L, Luinge H.
2011 Proceedings of the 14th International Conference on Information Fusion (FUSION) (2011).

https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/
https://www.research-collection.ethz.ch/handle/20.500.11850/82620

propagate 31

Uncertainty propagation in non-linear measurement equations.
Mana G & Pennecchi F.
Metrologia (2007), 44: 246-251.

A compact tensor algebra expression of the law of propagation of uncertainty.
Bouchot C, Quilantan JLC, Ochoa JCS.
Metrologia (2011), 48: L22-L28.

Nonlinear error propagation law.
Kubacek L.
Appl Math (1996), 41: 329-345.

Monte Carlo simulation (normal- and t-distribution):
MUSE: computational aspects of a GUM supplement 1 implementation.
Mueller M, Wolf M, Roesslein M.
Metrologia (2008), 45: 586-594.

Copulas for uncertainty analysis.
Possolo A.
Metrologia (2010), 47: 262-271.

Multivariate normal distribution:
Stochastic Simulation.
Ripley BD.
Stochastic Simulation (1987). Wiley. Page 98.

Testing for normal distribution:
Testing for Normality.
Thode Jr. HC.
Marcel Dekker (2002), New York.

Approximating the Shapiro-Wilk W-test for non-normality.
Royston P.
Stat Comp (1992), 2: 117-119.

Examples

In these examples, 'nsim = 100000' to save
Rcmd check time (CRAN). It is advocated
to use at least 'nsim = 1000000' though...

Example without given degrees-of-freedom.
EXPR1 <- expression(x/y)
x <- c(5, 0.01)
y <- c(1, 0.01)
DF1 <- cbind(x, y)
RES1 <- propagate(expr = EXPR1, data = DF1, type = "stat",

do.sim = TRUE, verbose = TRUE,
nsim = 100000)

RES1

Same example with given degrees-of-freedom
=> third row in input 'data'.
EXPR2 <- expression(x/y)
x <- c(5, 0.01, 12)

32 propagate

y <- c(1, 0.01, 5)
DF2 <- cbind(x, y)
RES2 <- propagate(expr = EXPR2, data = DF2, type = "stat",

do.sim = TRUE, verbose = TRUE,
nsim = 100000)

RES2

With the 'summary' function, we can get the
Welch-Satterthwaite DF's, coverage, expanded uncertainty,
Gradient and Hessian matrix etc.
summary(RES2)

Example using a recursive function:
no Taylor expansion possible, only Monte-Carlo.
a <- c(5, 0.1)
b <- c(100, 2)
DAT <- cbind(a, b)

f <- function(a, b) {
N <- 0
for (i in 1:100) {
N <- N + i * log(a) + b^(1/i)

}
return(N)

}

propagate(f, DAT, nsim = 100000)

Not run:
################# GUM 2008 (1) ########################
Example in Annex H.1 from the GUM 2008 manual
(see 'References'), an end gauge calibration
study. We use only first-order error propagation,
with total df = 16 and alpha = 0.01,
as detailed in GUM H.1.6.
EXPR3 <- expression(ls + d - ls * (da * the + as * dt))
ls <- c(50000623, 25)
d <- c(215, 9.7)
da <- c(0, 0.58E-6)
the <- c(-0.1, 0.41)
as <- c(11.5E-6, 1.2E-6)
dt <- c(0, 0.029)
DF3 <- cbind(ls, d, da, the, as, dt)
RES3 <- propagate(expr = EXPR3, data = DF3, second.order = FALSE,

df = 16, alpha = 0.01)
RES3
propagate: sd.1 = 31.71
GUM H.1.4/H.6c: u = 32

Expanded uncertainty, from summary function.
summary(RES3)
propagate: 92.62
GUM H.1.6: 93

propagate 33

Proof that covariance of Monte-Carlo
simulated dataset is "fairly"" the same
as from initial data.
RES3$covMat
cov(RES3$datSIM)
all.equal(RES3$covMat, cov(RES3$datSIM))

Now using second-order Taylor expansion.
RES4 <- propagate(expr = EXPR3, data = DF3)
RES4
propagate: sd.2 = 33.91115
GUM H.1.7: u = 34.
Also similar to the non-matrix-based approach
in Wang et al. (2005, page 408): u1 = 33.91115.
NOTE: After second-order correction ("sd.2"),
uncertainty is more similar to the uncertainty
obtained from Monte Carlo simulation!

#################### GUM 2008 (2) #################
Example in Annex H.2 from the GUM 2008 manual
(see 'References'), simultaneous resistance
and reactance measurement.
data(H.2)

This gives exactly the means, uncertainties and
correlations as given in Table H.2:
colMeans(H.2)
sqrt(colVarsC(H.2))/sqrt(5)
cor(H.2)

H.2.3 Approach 1 using mean values and
standard uncertainties:
EXPR6a <- expression((V/I) * cos(phi)) ## R
EXPR6b <- expression((V/I) * sin(phi)) ## X
EXPR6c <- expression(V/I) ## Z
MEAN6 <- colMeans(H.2)
SD6 <- sqrt(colVarsC(H.2))
DF6 <- rbind(MEAN6, SD6)
COV6ab <- cov(H.2) ## covariance matrix of V, I, phi
COV6c <- cov(H.2[, 1:2]) ## covariance matrix of V, I

RES6a <- propagate(expr = EXPR6a, data = DF6, cov = COV6ab)
RES6b <- propagate(expr = EXPR6b, data = DF6, cov = COV6ab)
RES6c <- propagate(expr = EXPR6c, data = DF6[, 1:2],

cov = COV6c)

This gives exactly the same values of mean and sd/sqrt(5)
as given in Table H.4.
RES6a$prop # 0.15892/sqrt(5) = 0.071
RES6b$prop # 0.66094/sqrt(5) = 0.296
RES6c$prop # 0.52846/sqrt(5) = 0.236

34 propagate

######### GUM 2008 Supplement 1 (1) #######################
Example from 9.2.2 of the GUM 2008 Supplement 1
(see 'References'), normally distributed input
quantities. Assign values as in 9.2.2.1.
EXPR7 <- expression(X1 + X2 + X3 + X4)
X1 <- c(0, 1)
X2 <- c(0, 1)
X3 <- c(0, 1)
X4 <- c(0, 1)
DF7 <- cbind(X1, X2, X3, X4)
RES7 <- propagate(expr = EXPR7, data = DF7, nsim = 1E5)
This will give exactly the same results as in
9.2.2.6, Table 2.
RES7

######### GUM 2008 Supplement 1 (2) #######################
Example from 9.3 of the GUM 2008 Supplement 1
(see 'References'), mass calibration.
Formula 24 in 9.3.1.3 and values as in 9.3.1.4, Table 5.
EXPR8 <- expression((Mrc + dMrc) * (1 + (Pa - Pa0) * ((1/Pw) - (1/Pr))) - Mnom)
Mrc <- rnorm(1E5, 100000, 0.050)
dMrc <- rnorm(1E5, 1.234, 0.020)
Pa <- runif(1E5, 1.10, 1.30) ## E(Pa) = 1.2, (b-a)/2 = 0.1
Pw <- runif(1E5, 7000, 9000) ## E(Pw) = 8000, (b-a)/2 = 1000
Pr <- runif(1E5, 7950, 8050) ## E(Pr) = 8000, (b-a)/2 = 50
Pa0 <- 1.2
Mnom <- 100000
DF8 <- cbind(Mrc, dMrc, Pa, Pw, Pr, Pa0, Mnom)
RES8 <- propagate(expr = EXPR8, data = DF8, nsim = 1E5)
This will give exactly the same results as in
9.3.2.3, Table 6
RES8
RES8

######### GUM 2008 Supplement 1 (3) #######################
Example from 9.4 of the GUM 2008 Supplement 1
(see 'References'), comparioson loss in microwave
power meter calibration, zero covariance.
Formula 28 in 9.4.1.5 and values as in 9.4.1.7.
EXPR9 <- expression(X1^2 - X2^2)
X1 <- c(0.050, 0.005)
X2 <- c(0, 0.005)
DF9 <- cbind(X1, X2)
RES9a <- propagate(expr = EXPR9, data = DF9, nsim = 1E5)
This will give exactly the same results as in
9.4.2.2.7, Table 8, x1 = 0.050.
RES9a

Using covariance matrix with r(x1, x2) = 0.9
We convert to covariances using cor2cov.
COR9 <- matrix(c(1, 0.9, 0.9, 1), nrow = 2)
COV9 <- cor2cov(COR9, c(0.005^2, 0.005^2))
colnames(COV9) <- c("X1", "X2")

rDistr 35

rownames(COV9) <- c("X1", "X2")
RES9b <- propagate(expr = EXPR9, data = DF9, cov = COV9)
This will give exactly the same results as in
9.4.3.2.1, Table 9, x1 = 0.050.
RES9b

######### GUM 2008 Supplement 1 (4) #######################
Example from 9.5 of the GUM 2008 Supplement 1
(see 'References'), gauge block calibration.
Assignment of PDF's as in Table 10 of 9.5.2.1.
EXPR10 <- expression(Ls + D + d1 + d2 - Ls *(da *(t0 + Delta) + as * dt) - Lnom)
Lnom <- 50000000
Ls <- propagate:::rst(1000000, mean = 50000623, sd = 25, df = 18)
D <- propagate:::rst(1000000, mean = 215, sd = 6, df = 25)
d1 <- propagate:::rst(1000000, mean = 0, sd = 4, df = 5)
d2 <- propagate:::rst(1000000, mean = 0, sd = 7, df = 8)
as <- runif(1000000, 9.5E-6, 13.5E-6)
t0 <- rnorm(1000000, -0.1, 0.2)
Delta <- propagate:::rarcsin(1000000, -0.5, 0.5)
da <- propagate:::rctrap(1000000, -1E-6, 1E-6, 0.1E-6)
dt <- propagate:::rctrap(1000000, -0.050, 0.050, 0.025)
DF10 <- cbind(Ls, D, d1, d2, as, t0, Delta, da, dt, Lnom)
RES10 <- propagate(expr = EXPR10, data = DF10, cov = FALSE, alpha = 0.01)
RES10
This gives the same results as in 9.5.4.2, Table 11.
However: results are exacter than in the GUM 2008
manual, especially when comparing sd(Monte Carlo) with sd.2!
GUM 2008 gives 32 and 36, respectively.
RES10

########## Comparison to Pythons 'soerp' ###################
Exactly the same results as under
https://pypi.python.org/pypi/soerp !
EXPR11 <- expression(C * sqrt((520 * H * P)/(M *(t + 460))))
H <- c(64, 0.5)
M <- c(16, 0.1)
P <- c(361, 2)
t <- c(165, 0.5)
C <- c(38.4, 0)
DAT11 <- makeDat(EXPR11)
RES11 <- propagate(expr = EXPR11, data = DAT11)
RES11

End(Not run)

rDistr Creating random samples from a variety of useful distributions

36 rDistr

Description

These are random sample generators for 22 different continuous distributions which are not readily
available as Distributions in R. Some of them are implemented in other specialized packages
(i.e. rsn in package ’sn’ or rtrapezoid in package ’trapezoid’), but here they are collated in a way
that makes them easily accessible for Monte Carlo-based uncertainty propagation.

Details

Random samples can be drawn from the following distributions:
1) Skewed-normal distribution: propagate:::rsn(n, location = 0, scale = 1, shape = 0)
2) Generalized normal distribution: propagate:::rgnorm(n, alpha = 1, xi = 1, kappa = -0.1)
3) Scaled and shifted t-distribution: propagate:::rst(n, mean = 0, sd = 1, df = 2)
4) Gumbel distribution: propagate:::rgumbel(n, location = 0, scale = 1)
5) Johnson SU distribution: propagate:::rJSU(n, xi = 0, lambda = 1, gamma = 1, delta = 1)
6) Johnson SB distribution: propagate:::rJSB(n, xi = 0, lambda = 1, gamma = 1, delta = 1)
7) 3P Weibull distribution: propagate:::rweibull2(n, location = 0, shape = 1, scale = 1)
8) 4P Beta distribution: propagate:::rbeta2(n, alpha1 = 1, alpha2 = 1, a = 0, b = 0)
9) Triangular distribution: propagate:::rtriang(n, a = 0, b = 1, c = 0.5)
10) Trapezoidal distribution: propagate:::rtrap(n, a = 0, b = 1, c = 2, d = 3)
11) Laplacian distribution: propagate:::rlaplace(n, mean = 0, sigma = 1)
12) Arcsine distribution: propagate:::rarcsin(n, a = 2, b = 1)
13) von Mises distribution: propagate:::rmises(n, mu = 1, kappa = 3)
14) Curvilinear Trapezoidal distribution: propagate:::rctrap(n, a = 0, b = 1, d = 0.1)
15) Generalized trapezoidal distribution:
propagate:::rgtrap(n, min = 0, mode1 = 1/3, mode2 = 2/3, max = 1, n1 = 2, n3 = 2, alpha = 1)
16) Inverse Gaussian distribution: propagate:::rinvgauss(n, mean = 1, dispersion = 1) 17)
Generalized Extreme Value distribution: propagate:::rgevd(n, loc = 0, scale = 1, shape = 0)
with n = number of samples.
18) Inverse Gamma distribution: propagate:::rinvgamma(n, shape = 1, scale = 5)
19) Rayleigh distribution: propagate:::rrayleigh(n, mu = 1, sigma = 1)
20) Burr distribution: propagate:::rburr(n, k = 1)
21) Chi distribution: propagate:::rchi(n, nu = 5)
22) Inverse Chi-Square distribution: propagate:::rinvchisq(n, nu = 5)
23) Cosine distribution: propagate:::rcosine(n, mu = 5, sigma = 1)

1) - 12), 17) - 22) use the inverse cumulative distribution function as mapping functions for runif
(Inverse Transform Method):
(1) U ∼ U(0, 1)
(2) Y = F−1(U, β)

16) uses binomial selection from a χ2-distribution.

13) - 15), 23) employ "Rejection Sampling" using a uniform envelope distribution (Acceptance
Rejection Method):
(1) Find Fmax = max(F ([xmin, xmax], β)
(2) Umax = 1/(xmax − xmin)
(3) A = Fmax/Umax

(4) U ∼ U(0, 1)
(5) X ∼ U(xmin, xmax)

rDistr 37

(6) Y ⇐⇒ U ≤ A · U(X,xmin, xmax)/F (X,β)

These four distributions are coded in a vectorized approach and are hence not much slower than
implementations in C/C++ (0.2 - 0.5 sec for 100000 samples; 3 GHz Quadcore processor, 4 GByte
RAM). The code for the random generators is in file "distr-samplers.R".

Value

A vector with n samples from the corresponding distribution.

Author(s)

Andrej-Nikolai Spiess

References

Rejection Sampling in R:
Rejection Sampling.
https://www.r-bloggers.com/2011/06/rejection-sampling/.

An example of rejection sampling.
http://www.mas.ncl.ac.uk/~ndjw1/teaching/sim/reject/circ.html.

Rejection Sampling in general:
Non-uniform random variate generation.
Devroye L.
Springer-Verlag, New York (1986).

Distributions:
Continuous univariate distributions, Volume 1.
Johnson NL, Kotz S and Balakrishnan N.
Wiley Series in Probability and Statistics, 2.ed (2004).

See Also

See also propagate, in which GUM 2008 Supplement 1 examples use these distributions.

Examples

Not run:
First we create random samples from the
von Mises distribution.
X <- propagate:::rmises(1000000, mu = 1, kappa = 2)

then we fit all available distributions
with 'fitDistr'.
fitDistr(X, nbin = 200)
=> von Mises wins! (lowest BIC)

End(Not run)

https://www.r-bloggers.com/2011/06/rejection-sampling/
http://www.mas.ncl.ac.uk/~ndjw1/teaching/sim/reject/circ.html

38 statVec

statVec Transform an input vector into one with defined mean and standard
deviation

Description

Transforms an input vector into one with defined µ and σ by using a scaled-and-shifted Z-transformation.

Usage

statVec(x, mean, sd)

Arguments

x the input vector to be transformed.

mean the desired mean of the created vector.

sd the desired standard deviation of the created vector.

Details

Calculates vector V using a Z-transformation of the input vector X and subsequent scaling by sd
and shifting by mean:

V =
X − µX

σX
· sd + mean

Value

A vector with defined µ and σ.

Author(s)

Andrej-Nikolai Spiess

Examples

Create a 10-sized vector with mean = 10 and s.d. = 1.
x <- rnorm(10, 5, 2)
mean(x) ## => mean is not 5!
sd(x) ## => s.d. is not 2!

z <- statVec(x, 5, 2)
mean(z) ## => mean is 5!
sd(z) ## => s.d. is 2!

stochContr 39

stochContr Stochastic contribution analysis of Monte Carlo simulation-derived
propagated uncertainty

Description

Conducts a "stochastic contribution analysis" by calculating the change in propagated uncertainty
when each of the simulated variables is kept constant at its mean, i.e. the uncertainty is removed.

Usage

stochContr(prop, plot = TRUE)

Arguments

prop a propagate object.

plot logical. If TRUE, a boxplot with the original and mean-value propagated distri-
bution.

Details

This function takes the Monte Carlo simulated data Xn from a propagate object (...$datSIM),
sequentially substitutes each variable βi by its mean β̄i and then re-evaluates the output distribution
Yn = f(β,Xn). Optional boxplots are displayed that compare the original Yn(orig) to those
obtained from removing σ from each βi. Finally, the relative contribution Ci for all βi is calculated
by Ci = σ(Yn(orig))− σ(Yn), and divided by its sum so that

∑n
i=1 Ci = 1.

Value

The relative contribution Ci for all variables.

Author(s)

Andrej-Nikolai Spiess

Examples

a <- c(15, 1)
b <- c(100, 5)
c <- c(0.5, 0.02)
DAT <- cbind(a, b, c)
EXPR <- expression(a * b^sin(c))
RES <- propagate(EXPR, DAT, nsim = 100000)
stochContr(RES)

40 summary.propagate

summary.propagate Summary function for ’propagate’ objects

Description

Provides a printed summary of the results obtained by propagate, such as statistics of the first/second-
order uncertainty propagation, Monte Carlo simulation, the covariance matrix, symbolic as well
as evaluated versions of the Gradient ("sensitivity") and Hessian matrices, relative contributions,
the coverage factor and the Welch-Satterthwaite degrees of freedom. If do.sim = TRUE was set
in propagate, skewness/kurtosis and Shapiro-Wilks/Kolmogorov-Smirnov tests for normality are
calculated on the Monte-Carlo evaluations.

Usage

S3 method for class 'propagate'
summary(object, ...)

Arguments

object an object returned from propagate.

... other parameters for future methods.

Details

Calculates the "sensitivity"" Si of each variable xi to the propagated uncertainty, as defined in the
Expression of the Uncertainty of Measurement in Calibration, Eqn 4.2, page 9 (see ’References’):

Si = eval

(
∂f

∂xi

)
The "contribution" matrix is then C = SSTΣ, where Σ is the covariance matrix. In the implemen-
tation here, the "relative contribution" matrix Crel is rescaled to sum up to 1.

Value

A printed output with the items listed in ’Description’.

Author(s)

Andrej-Nikolai Spiess

References

Expression of the Uncertainty of Measurement in Calibration.
European Cooperation for Accreditation (EA-4/02), 1999.

WelchSatter 41

Examples

EXPR1 <- expression(x^2 * sin(y))
x <- c(5, 0.01)
y <- c(1, 0.01)
DF1 <- cbind(x, y)
RES1 <- propagate(expr = EXPR1, data = DF1, type = "stat",

do.sim = TRUE, verbose = TRUE, nsim = 100000)
summary(RES1)

WelchSatter Welch-Satterthwaite approximation to the ’effective degrees of free-
dom’

Description

Calculates the Welch-Satterthwaite approximation to the ’effective degrees of freedom’ by using
the samples’ uncertainties and degrees of freedoms, as described in Welch (1947) and Satterthwaite
(1946). External sensitivity coefficients can be supplied optionally.

Usage

WelchSatter(ui, ci = NULL, df = NULL, dftot = NULL, uc = NULL, alpha = 0.05)

Arguments

ui the uncertainties ui for each variable xi.

ci the sensitivity coefficients ci = ∂y/∂xi.

df the degrees of freedom for the samples, νi.

dftot an optional known total degrees of freedom for the system, νtot. Overrides the
internal calculation of νws.

uc the combined uncertainty, u(y).

alpha the significance level for the t-statistic. See ’Details’.

Details

νeff ≈ u(y)4∑n
i=1

(ciui)4

νi

, k = t(1− (α/2), νeff), uexp = ku(y)

Value

A list with the following items:

ws.df the ’effective degrees of freedom’.

k the coverage factor for calculating the expanded uncertainty.

u.exp the expanded uncertainty uexp.

42 WelchSatter

Author(s)

Andrej-Nikolai Spiess

References

An Approximate Distribution of Estimates of Variance Components.
Satterthwaite FE.
Biometrics Bulletin (1946), 2: 110-114.

The generalization of "Student’s" problem when several different population variances are involved.
Welch BL.
Biometrika (1947), 34: 28-35.

Examples

Taken from GUM H.1.6, 4).
WelchSatter(ui = c(25, 9.7, 2.9, 16.6), df = c(18, 25.6, 50, 2), uc = 32, alpha = 0.01)

Index

∗ algebra
bigcor, 2
cor2cov, 4
fitDistr, 7
interval, 11
makeDat, 14
makeDerivs, 15
mixCov, 18
moments, 20
numDerivs, 21
predictNLS, 23
propagate, 27
rDistr, 35
statVec, 38
stochContr, 39
WelchSatter, 41

∗ array
makeDerivs, 15
mixCov, 18
moments, 20
numDerivs, 21
predictNLS, 23
propagate, 27

∗ datasets
datasets, 5

∗ matrix
bigcor, 2
cor2cov, 4
interval, 11
statVec, 38
stochContr, 39
WelchSatter, 41

∗ models
plot.propagate, 22
summary.propagate, 40

∗ multivariate
bigcor, 2
cor2cov, 4
interval, 11

makeDerivs, 15
mixCov, 18
moments, 20
numDerivs, 21
predictNLS, 23
propagate, 27
statVec, 38
stochContr, 39
WelchSatter, 41

∗ nonlinear
plot.propagate, 22
summary.propagate, 40

∗ univariate
fitDistr, 7
makeDat, 14
rDistr, 35

∗ univar
matrixStats, 17

apply, 29

BIC, 7, 9
bigcor, 2

cbind, 14
colVarsC (matrixStats), 17
cor, 2, 3
cor2cov, 4
cov, 2
cov2cor, 4

datasets, 5
Distributions, 36
distributions, 27

environment, 21
eval, 29
evalDerivs (makeDerivs), 15

fitDistr, 7

43

44 INDEX

H.2 (datasets), 5
H.3 (datasets), 5
H.4 (datasets), 5
hist, 22

interval, 11

kurtosis (moments), 20

makeDat, 14
makeDerivs, 15
makeGrad, 29
makeGrad (makeDerivs), 15
makeHess, 29
makeHess (makeDerivs), 15
matrix, 3
matrixStats, 17
mixCov, 18
moments, 20

nls, 23
numDerivs, 21
numGrad, 29
numGrad (numDerivs), 21
numHess, 29
numHess (numDerivs), 21

plot.propagate, 22
predict.nls, 23
predictNLS, 23
propagate, 7, 14, 15, 18, 22–24, 27, 37, 39, 40

rDistr, 27, 35
rowVarsC (matrixStats), 17
runif, 36

skewness (moments), 20
statVec, 38
stochContr, 39
summary.propagate, 29, 40

var, 17

WelchSatter, 27, 29, 41

	bigcor
	cor2cov
	datasets
	fitDistr
	interval
	makeDat
	makeDerivs
	matrixStats
	mixCov
	moments
	numDerivs
	plot.propagate
	predictNLS
	propagate
	rDistr
	statVec
	stochContr
	summary.propagate
	WelchSatter
	Index

