Type: Package
Title: Predictive Data Analysis System
Version: 4.1.5
Description: Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines and Bayesian Methods.
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
Imports: DT (≥ 0.27), dplyr (≥ 1.1.0), shiny (≥ 1.7.4), golem (≥ 0.3.5), rlang (≥ 1.0.6), loadeR (≥ 1.0.1), config (≥ 0.3.1), glmnet (≥ 4.1-6), traineR (≥ 2.2.0), shinyjs (≥ 2.1.0), xgboost (≥ 1.7.3.1), shinyAce (≥ 0.4.2), echarts4r (≥ 0.4.4), htmltools (≥ 0.5.4), rpart.plot (≥ 3.1.1), colourpicker (≥ 1.1.1), shinydashboard (≥ 0.7.2), shinycustomloader (≥ 0.9.0), shinydashboardPlus (≥ 2.0.3)
Depends: R (≥ 4.1)
Encoding: UTF-8
URL: https://promidat.website/
BugReports: https://github.com/PROMiDAT/predictoR/issues
RoxygenNote: 7.3.2
Language: en-US
NeedsCompilation: no
Packaged: 2025-05-27 22:50:00 UTC; r583594
Author: Oldemar Rodriguez [aut, cre], Diego Jiménez [ctb, prg], Andrés Navarro [ctb, prg]
Maintainer: Oldemar Rodriguez <oldemar.rodriguez@ucr.ac.cr>
Repository: CRAN
Date/Publication: 2025-05-28 20:30:05 UTC

Predictive Data Analysis System

Description

Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as K-Nearest Neighbors, Decision Trees, ADA Boosting, Extreme Gradient Boosting, Random Forest, Neural Networks, Deep Learning, Support Vector Machines and Bayesian Methods.

Details

Package: predictoR
Type: Package
Version: 4.1.2
Date: 2024-11-01
License: GPL (>=2)

Author(s)

Oldemar Rodriguez Rojas
Maintainer: Oldemar Rodriguez Rojas <oldemar.rodriguez@ucr.ac.cr>

See Also

Useful links:


Returns a matrix of contrasts for the train.kknn.

Description

Returns a matrix of contrasts for the train.kknn.

Usage

contr.dummy(n, contrasts = TRUE)

Arguments

n

A vector containing levels of a factor, or the number of levels.

contrasts

A logical value indicating whether contrasts should be computed.

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

contr.dummy(5)


Returns a matrix of contrasts for the train.kknn.

Description

Returns a matrix of contrasts for the train.kknn.

Usage

contr.metric(n, contrasts = TRUE)

Arguments

n

A vector containing levels of a factor, or the number of levels.

contrasts

A logical value indicating whether contrasts should be computed.

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

contr.metric(5)


Returns a matrix of contrasts for the train.kknn.

Description

Returns a matrix of contrasts for the train.kknn.

Usage

contr.ordinal(n, contrasts = TRUE)

Arguments

n

A vector containing levels of a factor, or the number of levels.

contrasts

A logical value indicating whether contrasts should be computed.

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

contr.ordinal(5)


Convierte toda la tabla a código dummy.

Description

Convierte toda la tabla a código dummy.

Usage

data.frame.dummy(DF, exclude = NULL)

Arguments

DF

a data.frame.

exclude

variables of data.frame exclude of conversion.

Author(s)

Diego Jimenez <diego.jimenezs@promidat.com>

Examples

data.frame.dummy(iris)


Eval character vectors to JS code

Description

Eval character vectors to JS code

Usage

e_JS(...)

Arguments

...

character vectors to evaluate

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

e_JS('5 * 3')


Error Evolution

Description

Error Evolution

Usage

e_ada_evol_error(modelo, datos, label = "Iterations")

Arguments

modelo

a adabag model.

datos

a data.frame object.

label

a label plot.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.adabag(Species~., iris, mfinal = 20, coeflearn = 'Freund')
e_ada_evol_error(model, iris)


Var importance Random Forest

Description

Var importance Random Forest

Usage

e_boost_importance(modelo)

Arguments

modelo

a adabag model.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.adabag(Species~., iris, mfinal = 20, coeflearn = 'Freund')
e_boost_importance(model)


Coefficients and lambda

Description

Plot the coefficients and selected lambda of a glmnet model.

Usage

e_coeff_lambda(model, cat, sel.lambda = NULL, label = "Log Lambda")

Arguments

model

a glmnet model.

cat

a category of the variable to be predicted.

sel.lambda

the selected lambda.

label

a character specifying the title to use on selected lambda tooltip.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

x <- model.matrix(Species ~ ., iris)[, -1]
y <- iris$Species
modelo <- glmnet::cv.glmnet(x, y, standardize = TRUE, alpha = 1, family = "multinomial")
e_coeff_lambda(modelo, 'setosa', log(modelo$lambda[1]))


Gauge Plot

Description

Gauge Plot

Usage

e_global_gauge(
  value = 100,
  label = "Label",
  color1 = "#B5E391",
  color2 = "#90C468"
)

Arguments

value

a number specifying the value of the graph.

label

a character specifying the title to use on legend.

color1

a color for the gauge.

color2

a shadowColor for the gauge.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

e_global_gauge(87, "Global Precision")


Possible lambda

Description

Possible lambda

Usage

e_posib_lambda(
  cv.glm,
  labels = c("Valor Superior", "Valor Inferior", "lambda")
)

Arguments

cv.glm

a cv.glmnet model.

labels

a character vector of length 3 specifying the titles to use on legend.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

x         <- model.matrix(Species~., iris)[, -1]
y         <- iris[,'Species']
cv.glm    <- glmnet::cv.glmnet(x, y, standardize = TRUE, alpha = 1, family = 'multinomial')
e_posib_lambda(cv.glm)


Error Evolution

Description

Error Evolution

Usage

e_rf_error(model, label = "Trees")

Arguments

model

a random forest model.

label

a label plot.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.randomForest(Species~., iris, mtry = 2, ntree = 20)
label <- "Trees"
e_rf_error(model, label)



Var importance Random Forest

Description

Var importance Random Forest

Usage

e_rndf_importance(modelo, error = "MeanDecreaseAccuracy")

Arguments

modelo

a random forest model.

error

a character specifying the type of importance.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.randomForest(Species~., iris, mtry = 2, ntree = 20)
e_rndf_importance(model)


Var importance XGBoosting

Description

Var importance XGBoosting

Usage

e_xgb_importance(modelo, error = "Gain")

Arguments

modelo

a random forest model.

error

a character specifying the type of importance.

Value

echarts4r plot

Author(s)

Joseline Quiros <joseline.quiros@promidat.com>

Examples

model <- traineR::train.xgboost(Species ~ ., data = iris, nrounds = 20)
e_xgb_importance(model)


Run the Shiny Application

Description

Run the Shiny Application

Usage

run_app(...)

Arguments

...

A series of options to be used inside the app.


Voronoi Plot SVM

Description

Voronoi Plot SVM

Usage

voronoi_svm_plot(datos, varpred, vars, kernel = "linear")

Arguments

datos

a data.frame object.

varpred

variable to predict.

vars

predictor variables.

kernel

the kernel used in training and predicting.

Value

plot

Author(s)

Diego Jimenez <diego.jimenez@promidat.com>

Examples

voronoi_svm_plot(iris, "Species", c("Sepal.Length", "Sepal.Width"), "linear")