Package 'predictNMB'

July 23, 2025

Type Package

Title Evaluate Clinical Prediction Models by Net Monetary Benefit

Version 0.2.1

Description Estimates when and where a model-guided treatment strategy may outperform a treat-all or treat-none approach by Monte Carlo simulation and evaluation of the Net Monetary Benefit. Details can be viewed in Parsons et al. (2023) <doi:10.21105/joss.05328>.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.3

Imports assertthat, cutpointr, dplyr, ggplot2, magrittr, pmsampsize, rlang, scales, stats, tibble, tidyr

Suggests spelling, covr, flextable, knitr, parallel, pbapply, rmarkdown, testthat (>= 3.0.0), vdiffr, withr

Config/testthat/edition 3

VignetteBuilder knitr

URL https://docs.ropensci.org/predictNMB/

BugReports https://github.com/ropensci/predictNMB/issues

Depends R (>= 3.5.0)

Language en-US

NeedsCompilation no

Author Rex Parsons [aut, cre] (ORCID: <https://orcid.org/0000-0002-6053-8174>), Robin Blythe [aut] (ORCID: <https://orcid.org/0000-0002-3643-4332>), Adrian Barnett [aut] (ORCID: <https://orcid.org/0000-0001-6339-0374>), Emi Tanaka [rev] (Emi Tanaka reviewed predictNMB for rOpenSci, see <https://github.com/ropensci/software-review/issues/566>.), Tinula Kariyawasam [rev] (Tinula Kariyawasam reviewed predictNMB for rOpenSci, see <https://github.com/ropensci/software-review/issues/566>.), Susanna Cramb [ctb] (ORCID: <https://orcid.org/0000-0001-9041-9531>), Steven McPhail [ctb] (ORCID: <https://orcid.org/0000-0002-1463-662X>) Maintainer Rex Parsons <rex.parsons94@gmail.com> Repository CRAN Date/Publication 2023-06-03 07:40:02 UTC

Contents

autoplot.predictNMBscreen	2
autoplot.predictNMBsim	4
ce_plot	6
ce_plot.predictNMBsim	8
do_nmb_sim	9
evaluate_cutpoint_cost	11
evaluate_cutpoint_nmb	12
evaluate_cutpoint_qalys	13
get_inbuilt_cutpoint	13
get_inbuilt_cutpoint_methods	14
get_nmb_sampler	15
get_sample	16
get_thresholds	17
print.predictNMBscreen	18
print.predictNMBsim	19
screen_simulation_inputs	20
summary.predictNMBscreen	21
summary.predictNMBsim	23
theme_sim	24
	26

Index

autoplot.predictNMBscreen

Create plots of from screened predictNMB simulations.

Description

Create plots of from screened predictNMB simulations.

Usage

```
## S3 method for class 'predictNMBscreen'
autoplot(
    object,
    x_axis_var = NULL,
    constants = list(),
    what = c("nmb", "inb", "cutpoints", "qalys", "costs"),
    inb_ref_col = NA,
    plot_range = TRUE,
```

```
plot_conf_level = TRUE,
plot_line = TRUE,
plot_alpha = 0.5,
dodge_width = 0,
conf.level = 0.95,
methods_order = NULL,
rename_vector,
...
```

```
)
```

Arguments

object	A predictNMBscreen object.		
x_axis_var	The desired screened factor to be displayed along the x axis. For example, if the simulation screen was used with many values for event rate, this could be "event_rate". Defaults to the first detected, varied input.		
constants	Named vector. If multiple inputs were screened in this object, this argument can be used to modify the selected values for all those except the input that's varying along the x-axis. See the summarising methods vignette.		
what	What to summarise: one of "nmb", "inb", "cutpoints", "qalys" or "costs". Defaults to "nmb".		
inb_ref_col	Which cutpoint method to use as the reference strategy when calculating the incremental net monetary benefit. See do_nmb_sim for more information.		
plot_range	logical. Whether or not to plot the range of the distribution as a thin line. Defaults to TRUE.		
<pre>plot_conf_level</pre>	plot_conf_level		
	logical. Whether or not to plot the confidence region of the distribution as a thicker line. Defaults to TRUE.		
plot_line	logical. Whether or not to connect the medians of the distributions for each method along the x-axis. Defaults to TRUE.		
plot_alpha	Alpha value (transparency) of all plot elements. Defaults to 0.5.		
dodge_width	The dodge width of plot elements. Can be used to avoid excessive overlap be- tween methods. Defaults to 0.		
conf.level	The confidence level of the interval. Defaults to 0.95 (coloured area of distribution represents 95% CIs).		
methods_order	The order (left to right) to display the cutpoint methods.		
rename_vector	A named vector for renaming the methods in the summary. The values of the vector are the default names and the names given are the desired names in the output.		
	Additional (unused) arguments.		

Details

This plot method works with predictNMBscreen objects that are created using screen_simulation_inputs(). Can be used to visualise distributions from many different simulations and assign a varying input to the x-axis of the plot.

Value

Returns a ggplot object.

Examples

```
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_screen_obj <- screen_simulation_inputs(</pre>
 n_sims = 50, n_valid = 10000, sim_auc = seq(0.7, 0.9, 0.1),
  event_rate = c(0.1, 0.2, 0.3),
  fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb,
  cutpoint_methods = c("all", "none", "youden", "value_optimising")
)
autoplot(sim_screen_obj)
autoplot(
  sim_screen_obj,
  x_axis_var = "event_rate",
  constants = c(sim_auc = 0.8),
  dodge_width = 0.02,
  rename_vector = c(
    "Value-Optimising" = "value_optimising",
    "Treat-None" = "none",
    "Treat-All" = "all",
    "Youden Index" = "youden"
  )
)
```

autoplot.predictNMBsim

Create plots of from predictNMB simulations.

Description

Create plots of from predictNMB simulations.

Usage

```
## S3 method for class 'predictNMBsim'
autoplot(
   object,
   what = c("nmb", "inb", "cutpoints", "qalys", "costs"),
   inb_ref_col = NA,
   conf.level = 0.95,
   methods_order = NULL,
   n_bins = 40,
   label_wrap_width = 12,
```

```
fill_cols = c("grey50", "#ADD8E6"),
median_line_size = 2,
median_line_alpha = 0.5,
median_line_col = "black",
rename_vector,
...
)
```

Arguments

object	A predictNMBsim object.	
what	What to summarise: one of "nmb", "inb", "cutpoints", "qalys" or "costs". Defaults to "nmb".	
inb_ref_col	Which cutpoint method to use as the reference strategy when calculating the incremental net monetary benefit. See do_nmb_sim for more information.	
conf.level	The confidence level of the interval. Defaults to 0.95 (coloured area of distribution represents 95% CIs).	
methods_order	The order (left to right) to display the cutpoint methods.	
n_bins	The number of bins used when constructing histograms. Defaults to 40.	
label_wrap_widt	h	
	The number of characters in facet labels at which the label is wrapped. Default is 12.	
fill_cols	Vector containing the colours used for fill aesthetic of histograms. The first colour represents the area outside of the confidence region, second colour shows the confidence region. Defaults to c("grey50", "#ADD8E6").	
median_line_size		
	Size of line used to represent the median of distribution. Defaults to 2.	
<pre>median_line_alp</pre>		
	Alpha (transparency) for line used to represent the median of distribution. De- faults to 0.5.	
median_line_col		
	Colour of line used to represent the median of distribution. Defaults to "black".	
rename_vector	A named vector for renaming the methods in the summary. The values of the vector are the default names and the names given are the desired names in the output.	
	Additional (unused) arguments.	

Details

This plot method works with predictNMBsim objects that are created using do_nmb_sim(). Can be used to visualise distributions from simulations for different cutpoint methods.

Value

Returns a ggplot object.

Examples

```
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_obj <- do_nmb_sim(
  sample_size = 200, n_sims = 50, n_valid = 10000, sim_auc = 0.7,
  event_rate = 0.1, fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb,
  cutpoint_methods = c("all", "none", "youden", "value_optimising")
)
autoplot(
  sim_obj,
  rename_vector = c(
    "Value- Optimising" = "value_optimising",
    "Treat- None" = "none",
    "Treat- All" = "all",
    "Youden Index" = "youden"
)
) + theme_sim()
```

```
ce_plot
```

Create a cost-effectiveness plot.

Description

Create a cost-effectiveness plot.

Usage

```
ce_plot(
   object,
   ref_col,
   wtp,
   show_wtp = TRUE,
   methods_order = NULL,
   rename_vector,
   shape = 21,
   wtp_linetype = "dashed",
   add_prop_ce = FALSE,
   ...
```

```
)
```

Arguments

object	A predictNMBsim object.
ref_col	Which cutpoint method to use as the reference strategy when calculating the in- cremental net monetary benefit. Often sensible to use a "all" or "none" approach for this.

6

ce_plot

wtp	A numeric. The willingness to pay (WTP) value used to create a WTP thresh- old line on the plot (if show_wtp = TRUE). Defaults to the WTP stored in the predictNMBsim object.
show_wtp	A logical. Whether or not to show the willingness to pay threshold.
methods_order	The order (within the legend) to display the cutpoint methods.
rename_vector	A named vector for renaming the methods in the summary. The values of the vector are the default names and the names given are the desired names in the output.
shape	The shape used for ggplot2::geom_point(). Defaults to 21 (hollow circles). If shape = "method" or shape = "cost-effective" (only applicable when show_wtp = TRUE), then the shape will be mapped to that aesthetic.
<pre>wtp_linetype</pre>	The linetype used for ggplot2::geom_abline() when making the WTP. Defaults to "dashed".
add_prop_ce	Whether to append the proportion of simulations for that method which were cost-effective (beneath the WTP threshold) to their labels in the legend. Only applicable when show_wtp = TRUE.
	Additional (unused) arguments.

Details

This plot method works with predictNMBsim objects that are created using do_nmb_sim(). Can be used to visualise the simulations on a cost-effectiveness plot (costs vs effectiveness)

Value

Returns a ggplot object.

Examples

```
get_nmb_evaluation <- get_nmb_sampler(
    qalys_lost = function() rnorm(1, 0.33, 0.03),
    wtp = 28000,
    high_risk_group_treatment_effect = function() exp(rnorm(n = 1, mean = log(0.58), sd = 0.43)),
    high_risk_group_treatment_cost = function() rnorm(n = 1, mean = 161, sd = 49)
)
sim_obj <- do_nmb_sim(
    sample_size = 200, n_sims = 50, n_valid = 10000, sim_auc = 0.7,
    event_rate = 0.1, fx_nmb_training = get_nmb_evaluation, fx_nmb_evaluation = get_nmb_evaluation
)
ce_plot(sim_obj, ref_col = "all")
```

ce_plot.predictNMBsim Create a cost-effectiveness plot.

Description

Create a cost-effectiveness plot.

Usage

```
## S3 method for class 'predictNMBsim'
ce_plot(
    object,
    ref_col,
    wtp,
    show_wtp = TRUE,
    methods_order = NULL,
    rename_vector,
    shape = 21,
    wtp_linetype = "dashed",
    add_prop_ce = FALSE,
    ...
```

)

object	A predictNMBsim object.
ref_col	Which cutpoint method to use as the reference strategy when calculating the in- cremental net monetary benefit. Often sensible to use a "all" or "none" approach for this.
wtp	A numeric. The willingness to pay (WTP) value used to create a WTP thresh- old line on the plot (if show_wtp = TRUE). Defaults to the WTP stored in the predictNMBsim object.
show_wtp	A logical. Whether or not to show the WTP threshold.
methods_order	The order (within the legend) to display the cutpoint methods.
rename_vector	A named vector for renaming the methods in the summary. The values of the vector are the default names and the names given are the desired names in the output.
shape	The shape used for ggplot2::geom_point(). Defaults to 21 (hollow circles). If shape = "method" or shape = "cost-effective" (only applicable when show_wtp = TRUE), then the shape will be mapped to that aesthetic.
<pre>wtp_linetype</pre>	The linetype used for ggplot2::geom_abline() when making the WTP. Defaults to "dashed".
add_prop_ce	Whether to append the proportion of simulations for that method which were cost-effective (beneath the WTP threshold) to their labels in the legend. Only applicable when show_wtp = TRUE.
	Additional (unused) arguments.

do_nmb_sim

Details

This plot method works with predictNMBsim objects that are created using do_nmb_sim(). Can be used to visualise the simulations on a cost-effectiveness plot (costs vs effectiveness)

Value

Returns a ggplot object.

Examples

```
get_nmb_evaluation <- get_nmb_sampler(
    qalys_lost = function() rnorm(1, 0.33, 0.03),
    wtp = 28000,
    high_risk_group_treatment_effect = function() exp(rnorm(n = 1, mean = log(0.58), sd = 0.43)),
    high_risk_group_treatment_cost = function() rnorm(n = 1, mean = 161, sd = 49)
)
sim_obj <- do_nmb_sim(
    sample_size = 200, n_sims = 50, n_valid = 10000, sim_auc = 0.7,
    event_rate = 0.1, fx_nmb_training = get_nmb_evaluation, fx_nmb_evaluation = get_nmb_evaluation
)
ce_plot(sim_obj, ref_col = "all")
```

do_nmb_sim	Do the predictNMB simulation,	evaluating the net monetary benefit
	(NMB) of the simulated model.	

Description

Do the predictNMB simulation, evaluating the net monetary benefit (NMB) of the simulated model.

Usage

```
do_nmb_sim(
   sample_size,
   n_sims,
   n_valid,
   sim_auc,
   event_rate,
   cutpoint_methods = get_inbuilt_cutpoint_methods(),
   fx_nmb_training,
   fx_nmb_evaluation,
   meet_min_events = TRUE,
   min_events = NA,
   show_progress = FALSE,
   cl = NULL
)
```

sample_size	Sample size of training set. If missing, a sample size calculation will be per- formed and the calculated size will be used.
n_sims	Number of simulations to run.
n_valid	Sample size for evaluation set.
sim_auc	Simulated model discrimination (AUC).
event_rate	Simulated event rate of the binary outcome being predicted. Also known as prevalence.
cutpoint_method	s
	A value or vector of cutpoint methods to include. Defaults to use the inbuilt methods:
	• "all" = treat all patients (cutpoint = 0)
	• "none" = treat no patients (cutpoint = 1)
	• "value_optimising" = select the cutpoint that maximises NMB
	• "youden" = select cutpoint based on the Youden index, also known as the J-index (sensitivity + specificity - 1)
	 "cost_minimising" = select the cutpoint that minimises expected value of costs
	 "prod_sens_spec" = product of sensitivity and specificity (sensitivity * specificity)
	• "roc01" = selects the closest threshold to the $(0,1)$ point on the ROC curve
	User-defined cutpoint methods can be used by passing the name of a function that takes the following arguments:
	• predicted (predicted probabilities)
	 actual (the actual, binary outcome)
	 nmb (a named vector containing NMB values assigned to each predicted class (i.e. c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)))
	See ?get_thresholds for an example of a user-defined cutpoint function.
fx_nmb_training	
	Function or NMBsampler that returns a named vector of NMB assigned to classifications used for obtaining cutpoint on training set.
<pre>fx_nmb_evaluati</pre>	on
	Function or NMBsampler that returns a named vector of NMB assigned to classifications used for obtaining cutpoint on evaluation set.
<pre>meet_min_events</pre>	
	Whether or not to incrementally add samples until the expected number of events (sample_size * event_rate) is met. (Applies to sampling of training data only.)
min_events	The minimum number of events to include in the training sample. If less than this number are included in sample of size sample_size, additional samples are added until the min_events is met. The default (NA) will use the expected value given the event_rate and the sample_size.
show_progress	Logical. Whether to display a progress bar. Requires the pbapply package.
cl	A cluster made using parallel::makeCluster(). If a cluster is provided, the simulation will be done in parallel.

Details

This function runs a simulation for a given set of inputs that represent a healthcare setting using model-guided interventions.

The arguments $fx_nmb_training$ and $fx_nmb_evaluation$ should be functions that capture the treatment being used, its costs and effectiveness, and the costs of the outcome being treated/prevented.

Both of these are functions that return a named vector of NMB values when called and are used for obtaining and evaluating cutpoints, respectively. For example, the following function returns the appropriately named vector.

```
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)</pre>
```

There is a helper function, get_nmb_sampler(), to help you create these.

Value

Returns a predictNMBsim object.

Examples

```
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
do_nmb_sim(
    sample_size = 200, n_sims = 50, n_valid = 10000, sim_auc = 0.7,
    event_rate = 0.1, fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb
)</pre>
```

evaluate_cutpoint_cost

Evaluates a cutpoint by returning the mean treatment cost per sample.

Description

Evaluates a cutpoint by returning the mean treatment cost per sample.

Usage

```
evaluate_cutpoint_cost(predicted, actual, pt, nmb)
```

predicted	A vector of predicted probabilities.
actual	A vector of actual outcomes.
pt	The probability threshold to be evaluated.
nmb	A named vector containing NMB assigned to each classification and the treat- ment costs.

Value

Returns a numeric value representing the mean cost for that cutpoint and data.

Examples

```
evaluate_cutpoint_cost(
    predicted = runif(1000),
    actual = sample(c(0, 1), size = 1000, replace = TRUE),
    pt = 0.1,
    nmb = c(
        "qalys_lost" = 5,
        "low_risk_group_treatment_cost" = 0,
        "high_risk_group_treatment_cost" = 1,
        "low_risk_group_treatment_effect" = 0,
        "high_risk_group_treatment_effect" = 0,
        "high_risk_group_treatment_effect" = 0.3,
        "outcome_cost" = 10
)
```

evaluate_cutpoint_nmb *Evaluates a cutpoint by returning the mean NMB per sample.*

Description

Evaluates a cutpoint by returning the mean NMB per sample.

Usage

```
evaluate_cutpoint_nmb(predicted, actual, pt, nmb)
```

Arguments

predicted	A vector of predicted probabilities.
actual	A vector of actual outcomes.
pt	The probability threshold to be evaluated.
nmb	A named vector containing NMB assigned to each classification.

Value

Returns a numeric value representing the NMB for that cutpoint and data.

Examples

```
evaluate_cutpoint_nmb(
    predicted = runif(1000),
    actual = sample(c(0, 1), size = 1000, replace = TRUE),
    pt = 0.1,
    nmb = c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
)
```

12

evaluate_cutpoint_qalys

Evaluates a cutpoint by returning the mean QALYs lost per sample.

Description

Evaluates a cutpoint by returning the mean QALYs lost per sample.

Usage

```
evaluate_cutpoint_qalys(predicted, actual, pt, nmb)
```

Arguments

predicted	A vector of predicted probabilities.
actual	A vector of actual outcomes.
pt	The probability threshold to be evaluated.
nmb	A named vector containing NMB assigned to each classification and the treat- ment effects and QALYS lost due to the event of interest.

Value

Returns a numeric value representing the mean QALYs for that cutpoint and data.

Examples

```
evaluate_cutpoint_qalys(
   predicted = runif(1000),
   actual = sample(c(0, 1), size = 1000, replace = TRUE),
   pt = 0.1,
   nmb = c(
        "qalys_lost" = 5,
        "low_risk_group_treatment_effect" = 0,
        "high_risk_group_treatment_effect" = 0.5
   )
)
```

get_inbuilt_cutpoint Get a cutpoint using the methods inbuilt to predictNMB

Description

Get a cutpoint using the methods inbuilt to predictNMB

Usage

```
get_inbuilt_cutpoint(predicted, actual, nmb, method)
```

Arguments

predicted	A vector of predicted probabilities
actual	A vector of actual outcomes
nmb	A named vector containing NMB assigned to each classification
method	A cutpoint selection method to be used methods that can be used as the method argument

Value

Returns a selected cutpoint (numeric).

Examples

```
## get the list of available methods:
get_inbuilt_cutpoint_methods()
## get the cutpoint that maximises the Youden index for a given set of
## probabilities and outcomes
get_inbuilt_cutpoint(
    predicted = runif(1000),
    actual = sample(c(0, 1), size = 1000, replace = TRUE),
    method = "youden"
)
```

get_inbuilt_cutpoint_methods

Get a vector of all the inbuilt cutpoint methods

Description

Get a vector of all the inbuilt cutpoint methods

Usage

get_inbuilt_cutpoint_methods()

Value

Returns a vector cutpoint methods that can be used in do_nmb_sim().

Examples

get_inbuilt_cutpoint_methods()

14

 $\verb"get_nmb_sampler"$

Make a NMB sampler for use in do_nmb_sim() or screen_simulation_inputs()

Description

Make a NMB sampler for use in do_nmb_sim() or screen_simulation_inputs()

Usage

```
get_nmb_sampler(
  outcome_cost,
  wtp,
  qalys_lost,
  high_risk_group_treatment_effect,
  high_risk_group_treatment_cost,
  low_risk_group_treatment_effect = 0,
  low_risk_group_treatment_cost = 0,
  use_expected_values = FALSE,
  nboot = 10000
)
```

outcome_cost	The cost of the outcome. Must be provided if wtp and qalys_lost are not. Or can be used in addition to these arguments to represent additional cost to the health burden.	
wtp	Willingness-to-pay.	
qalys_lost	Quality-adjusted life years (QALYs) lost due to healthcare event being pre- dicted.	
high_risk_group_treatment_effect		
	The effect of the treatment provided to patients given high risk prediction. Can be a number of a function. Provide a function to incorporate uncertainty.	
high_risk_group_treatment_cost		
	The cost of the treatment provided to patients given high risk prediction. Can be a number of a function. Provide a function to incorporate uncertainty.	
low_risk_group_treatment_effect		
	The effect of the treatment provided to patients given low risk prediction. Can be a number of a function. Provide a function to incorporate uncertainty. Defaults to 0 (no treatment).	
low_risk_group_treatment_cost		
	The cost of the treatment provided to patients given low risk prediction. Can be a number of a function. Provide a function to incorporate uncertainty. Defaults to 0 (no treatment).	

use_expected_va	alues
	Logical. If TRUE, gets the mean of many samples from the produced function and returns these every time. This is a sensible choice when using the resulting function for selecting the cutpoint. See fx_nmb_training. Defaults to FALSE.
nboot	The number of samples to use when creating a function that returns the expected values. Defaults to 10000.

Value

Returns a NMBsampler object.

Examples

```
get_nmb_training <- get_nmb_sampler(</pre>
  outcome_cost = 100,
  high_risk_group_treatment_effect = function() rbeta(1, 1, 2),
  high_risk_group_treatment_cost = 10,
  use_expected_values = TRUE
)
get_nmb_evaluation <- get_nmb_sampler(</pre>
  outcome_cost = 100,
  high_risk_group_treatment_effect = function() rbeta(1, 1, 2),
  high_risk_group_treatment_cost = 10
)
get_nmb_training()
get_nmb_training()
get_nmb_training()
get_nmb_evaluation()
get_nmb_evaluation()
get_nmb_evaluation()
```

get_sample	Samples data for a prediction model with a specified AUC and preva-
	lence.

Description

Samples data for a prediction model with a specified AUC and prevalence.

Usage

```
get_sample(auc, n_samples, prevalence, min_events = 0)
```

auc	The Area Under the (receiver operating characteristic) Curve.
n_samples	Number of samples to draw.
prevalence	Prevalence or event rate of the binary outcome as a proportion $(0.1 = 10\%)$.
<pre>min_events</pre>	Minimum number of events required in the sample.

get_thresholds

Value

Returns a data.frame.

Examples

```
get_sample(0.7, 1000, 0.1)
```

get_thresholds	Gets probability thresholds given predicted probabilities, outcomes
	and NMB.

Description

Gets probability thresholds given predicted probabilities, outcomes and NMB.

Usage

```
get_thresholds(predicted, actual, nmb, cutpoint_methods = NULL)
```

Arguments

predicted	A vector of predicted probabilities.	
actual	A vector of actual outcomes.	
nmb	A named vector containing NMB assigned to true positives, true negatives, false positives and false negatives	
cutpoint_methods		
	Which cutpoint method(s) to return. The default (NULL) uses all the inbuilt methods.	

Value

Returns a list.

Examples

```
# get thresholds using default (all inbuilt) cutpoint methods
get_thresholds(
    predicted = runif(1000),
    actual = sample(c(0, 1), size = 1000, replace = TRUE),
    nmb = c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
)
```

get cutpoints using user-defined functions # These functions must take the \code{predicted} and \code{actual} # as arguments. They can also take \code{nmb} (named vector containing NMB # with values for TP, FP, TN, FN). fx_roc01 <- function(predicted, actual, ...) {</pre>

```
cutpointr::cutpointr(
    x = predicted, class = actual, method = cutpointr::minimize_metric,
   metric = cutpointr::roc01,
    silent = TRUE
  )[["optimal_cutpoint"]]
}
fx_sum_sens_spec <- function(predicted, actual, ...) {</pre>
  cutpointr::cutpointr(
   x = predicted, class = actual, method = cutpointr::maximize_metric,
   metric = cutpointr::sum_sens_spec,
    silent = TRUE
  )[["optimal_cutpoint"]]
}
get_thresholds(
  predicted = runif(1000),
  actual = sample(c(0, 1), size = 1000, replace = TRUE),
  cutpoint_methods = c("fx_roc01", "fx_sum_sens_spec"),
  nmb = c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
)
# get a combination of cutpoints from both user-defined functions and
# inbuilt methods
get_thresholds(
  predicted = runif(1000),
  actual = sample(c(0, 1), size = 1000, replace = TRUE),
  cutpoint_methods = c(
    "fx_roc01",
    "fx_sum_sens_spec",
    "youden",
    "all",
    "none"
  ),
 nmb = c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
)
```

print.predictNMBscreen

```
Print a summary of a predictNMBscreen object
```

Description

Print a summary of a predictNMBscreen object

Usage

```
## S3 method for class 'predictNMBscreen'
print(x, ...)
```

Arguments

х	A predictNMBscreen object.
	Optional, ignored arguments.

Value

print(x) returns x invisibly.

Examples

```
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_screen_obj <- screen_simulation_inputs(
    n_sims = 50, n_valid = 10000, sim_auc = seq(0.7, 0.9, 0.1),
    event_rate = 0.1,
    fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb
)
print(sim_screen_obj)</pre>
```

print.predictNMBsim Print a summary of a predictNMBsim object

Description

Print a summary of a predictNMBsim object

Usage

S3 method for class 'predictNMBsim'
print(x, ...)

Arguments

х	A predictNMBsim object.
	Optional, ignored arguments.

Value

print(x) returns x invisibly.

Examples

```
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_obj <- do_nmb_sim(
    sample_size = 200, n_sims = 50, n_valid = 10000, sim_auc = 0.7,
    event_rate = 0.1, fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb
)
print(sim_obj)</pre>
```

```
screen_simulation_inputs
```

Screen many simulation inputs: a parent function to do_nmb_sim()

Description

Runs do_nmb_sim() with a range of inputs.

Usage

```
screen_simulation_inputs(
   sample_size,
   n_sims,
   n_valid,
   sim_auc,
   event_rate,
   cutpoint_methods = get_inbuilt_cutpoint_methods(),
   fx_nmb_training,
   fx_nmb_evaluation,
   pair_nmb_train_and_evaluation_functions = FALSE,
   meet_min_events = TRUE,
   min_events = NA,
   show_progress = FALSE,
   cl = NULL
)
```

sample_size	A value (or vector of values): Sample size of training set. If missing, a sample size calculation will be performed and the calculated size will be used.	
n_sims	A value (or vector of values): Number of simulations to run.	
n_valid	A value (or vector of values): Sample size for evaluation set.	
sim_auc	A value (or vector of values): Simulated model discrimination (AUC).	
event_rate	A value (or vector of values): simulated event rate of the binary outcome being predicted.	
cutpoint_methods		
	cutpoint methods to include. Defaults to use the inbuilt methods. This doesn't change across calls to do_nmb_sim().	
fx_nmb_training		
	A function or NMBsampler (or list of) that returns named vector of NMB assigned to classifications use for obtaining cutpoint on training set.	
fx_nmb_evaluation		
	A function or NMBsampler (or list of) that returns named vector of NMB assigned to classifications use for obtaining cutpoint on evaluation set.	

pair_nmb_train_and_evaluation_functions

logical. Whether or not to pair the lists of functions passed for $fx_nmb_training$ and $fx_nmb_evaluation$. If two treatment strategies are being used, it may make more sense to pair these because selecting a value-optimising or cost-minimising threshold using one strategy but evaluating another is likely unwanted.

meet_min_events

Whether or not to incrementally add samples until the expected number of events (sample_size * event_rate) is met. (Applies to sampling of training data only.)

min_events A value: the minimum number of events to include in the training sample. If less than this number are included in sample of size sample_size, additional samples are added until the min_events is met. The default (NA) will use the expected value given the event_rate and the sample_size.

show_progress Logical. Whether to display a progress bar.

cl A cluster made using parallel::makeCluster(). If a cluster is provided, the simulation will be done in parallel.

Value

Returns a predictNMBscreen object.

Examples

```
# Screen for optimal cutpoints given increasing values of
# model discrimination (sim_auc)
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_screen_obj <- screen_simulation_inputs(
    n_sims = 50, n_valid = 10000, sim_auc = seq(0.7, 0.9, 0.1),
    event_rate = 0.1, fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb
)
```

summary.predictNMBscreen

Create table summaries of predictNMBscreen objects.

Description

Create table summaries of predictNMBscreen objects.

Usage

```
## S3 method for class 'predictNMBscreen'
summary(
    object,
```

```
what = c("nmb", "inb", "cutpoints"),
inb_ref_col = NULL,
agg_functions = list(median = function(x) {
    round(stats::median(x), digits = 2)
    }, `95% CI` = function(x) {
      paste0(round(stats::quantile(x, probs = c(0.025,
      0.975)), digits = 1), collapse = " to ")
}),
rename_vector,
show_full_inputs = FALSE,
...
```

Arguments

object	A predictNMBscreen object.	
what	What to summarise: one of "nmb", "inb" or "cutpoints". Defaults to "nmb".	
inb_ref_col	Which cutpoint method to use as the reference strategy when calculating the incremental net monetary benefit. See do_nmb_sim for more information.	
agg_functions	A named list of functions to use to aggregate the selected values. Defaults to the median and 95% interval.	
rename_vector	A named vector for renaming the methods in the summary. The values of the vector are the default names and the names given are the desired names in the output.	
show_full_inputs		
	A logical. Whether or not to include the inputs used for simulation alongside aggregations.	
	Additional, ignored arguments.	

Details

Table summaries will be based on the what argument. Using "nmb" returns the simulated values for NMB, with no reference group; "inb" returns the difference between simulated values for NMB and a set strategy defined by inb_ref_col; "cutpoints" returns the cutpoints selected (0, 1).

Value

Returns a tibble.

Examples

perform screen with increasing values of model discimination (sim_auc)

```
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_screen_obj <- screen_simulation_inputs(
    n_sims = 50, n_valid = 10000, sim_auc = seq(0.7, 0.9, 0.1),
    event_rate = 0.1, fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb,</pre>
```

```
cutpoint_methods = c("all", "none", "youden", "value_optimising")
)
summary(
  sim_screen_obj,
  rename_vector = c(
    "Value_Optimising" = "value_optimising",
    "Treat_None" = "none",
    "Treat_All" = "all",
    "Youden_Index" = "youden"
)
)
```

summary.predictNMBsim Create table summaries of predictNMBsim objects.

Description

Create table summaries of predictNMBsim objects.

Usage

```
## S3 method for class 'predictNMBsim'
summary(
   object,
   what = c("nmb", "inb", "cutpoints"),
   inb_ref_col = NULL,
   agg_functions = list(median = function(x) {
      round(stats::median(x), digits = 2)
      }, `95% CI` = function(x) {
      paste0(round(stats::quantile(x, probs = c(0.025,
      0.975)), digits = 1), collapse = " to ")
  }),
  rename_vector,
  ...
)
```

object	A predictNMBsim object.
what	What to summarise: one of "nmb", "inb" or "cutpoints". Defaults to "nmb".
inb_ref_col	Which cutpoint method to use as the reference strategy when calculating the incremental net monetary benefit. See do_nmb_sim for more information.
agg_functions	A named list of functions to use to aggregate the selected values. Defaults to the median and 95% interval.

rename_vector	A named vector for renaming the methods in the summary. The values of the vector are the default names and the names given are the desired names in the output.
	Additional, ignored arguments.

Details

Table summaries will be based on the what argument. Using "nmb" returns the simulated values for NMB, with no reference group; "inb" returns the difference between simulated values for NMB and a set strategy defined by inb_ref_col; "cutpoints" returns the cutpoints selected (0, 1).

Value

Returns a tibble.

Examples

perform simulation with do_nmb_sim()

```
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_obj <- do_nmb_sim(
  sample_size = 200, n_sims = 50, n_valid = 10000, sim_auc = 0.7,
  event_rate = 0.1, fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb,
  cutpoint_methods = c("all", "none", "youden", "value_optimising")
)
summary(
  sim_obj,
  rename_vector = c(
    "Value_Optimising" = "value_optimising",
    "Treat_None" = "none",
    "Treat_All" = "all",
    "Youden_Index" = "youden"
)
```

theme_sim	Returns a ggplot2 theme that reduces clutter in an autoplot() of a
	predictNMBsim <i>object</i> .

Description

Returns a ggplot2 theme that reduces clutter in an autoplot() of a predictNMBsim object.

Usage

theme_sim()

theme_sim

Value

Returns a ggplot2 theme.

Examples

```
get_nmb <- function() c("TP" = -3, "TN" = 0, "FP" = -1, "FN" = -4)
sim_obj <- do_nmb_sim(
    sample_size = 200, n_sims = 50, n_valid = 10000, sim_auc = 0.7,
    event_rate = 0.1, fx_nmb_training = get_nmb, fx_nmb_evaluation = get_nmb
)</pre>
```

autoplot(sim_obj) + theme_sim()

Index

autoplot.predictNMBscreen, 2
autoplot.predictNMBsim, 4

ce_plot, 6
ce_plot.predictNMBsim, 8

do_nmb_sim, 9

evaluate_cutpoint_cost, 11
evaluate_cutpoint_nmb, 12
evaluate_cutpoint_qalys, 13

get_inbuilt_cutpoint, 13
get_inbuilt_cutpoint_methods, 14
get_nmb_sampler, 15
get_sample, 16
get_thresholds, 17

print.predictNMBscreen, 18
print.predictNMBsim, 19

screen_simulation_inputs, 20
summary.predictNMBscreen, 21
summary.predictNMBsim, 23

theme_sim, 24