ppls: Penalized Partial Least Squares

Linear and nonlinear regression methods based on Partial Least Squares and Penalization Techniques. Model parameters are selected via cross-validation, and confidence intervals ans tests for the regression coefficients can be conducted via jackknifing. The method is described and applied to simulated and experimental data in Kraemer et al. (2008) <doi:10.1016/j.chemolab.2008.06.009>.

Version: 2.0.0
Depends: R (≥ 3.5.0)
Imports: splines, MASS
Published: 2025-07-22
DOI: 10.32614/CRAN.package.ppls
Author: Nicole Kraemer [aut], Anne-Laure Boulesteix [aut], Vincent Guillemot [cre, aut]
Maintainer: Vincent Guillemot <vincent.guillemot at pasteur.fr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Citation: ppls citation info
Materials: README, NEWS
CRAN checks: ppls results

Documentation:

Reference manual: ppls.html , ppls.pdf

Downloads:

Package source: ppls_2.0.0.tar.gz
Windows binaries: r-devel: not available, r-release: ppls_2.0.0.zip, r-oldrel: ppls_2.0.0.zip
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): ppls_2.0.0.tgz, r-oldrel (x86_64): ppls_2.0.0.tgz
Old sources: ppls archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=ppls to link to this page.