Title: | Model Wrappers for Poisson Regression |
Version: | 1.0.1 |
Description: | Bindings for Poisson regression models for use with the 'parsnip' package. Models include simple generalized linear models, Bayesian models, and zero-inflated Poisson models (Zeileis, Kleiber, and Jackman (2008) <doi:10.18637/jss.v027.i08>). |
License: | MIT + file LICENSE |
URL: | https://github.com/tidymodels/poissonreg, https://poissonreg.tidymodels.org/ |
BugReports: | https://github.com/tidymodels/poissonreg/issues |
Depends: | parsnip (≥ 0.2.0), R (≥ 3.4) |
Imports: | dplyr, generics, glue, purrr, rlang, stats, tibble, tidyr |
Suggests: | covr, pscl, spelling, testthat (≥ 3.0.0) |
Config/Needs/website: | tidyverse/tidytemplate |
Config/testthat/edition: | 3 |
Encoding: | UTF-8 |
Language: | en-US |
LazyData: | true |
RoxygenNote: | 7.2.1 |
NeedsCompilation: | no |
Packaged: | 2022-08-22 16:06:49 UTC; hannah |
Author: | Max Kuhn |
Maintainer: | Hannah Frick <hannah@rstudio.com> |
Repository: | CRAN |
Date/Publication: | 2022-08-22 16:30:02 UTC |
parsnip methods for Poisson regression
Description
poissonreg offers a function to fit model to count data using Poisson generalized linear models or via different methods for zero-inflated Poisson (ZIP) models.
Details
The model function works with the tidymodels infrastructure so that the model can be resampled, tuned, tided, etc.
Example
Let’s fit a model to the data from Agresti (2007) Table 7.6:
library(poissonreg) library(tidymodels) tidymodels_prefer() log_lin_fit <- # Define the model poisson_reg() %>% # Choose an engine for fitting. The default is 'glm' so # this next line is not strictly needed: set_engine("glm") %>% # Fit the model to the data: fit(count ~ (.)^2, data = seniors) log_lin_fit
## parsnip model object ## ## ## Call: stats::glm(formula = count ~ (.)^2, family = stats::poisson, ## data = data) ## ## Coefficients: ## (Intercept) marijuanayes ## 5.6334 -5.3090 ## cigaretteyes alcoholyes ## -1.8867 0.4877 ## marijuanayes:cigaretteyes marijuanayes:alcoholyes ## 2.8479 2.9860 ## cigaretteyes:alcoholyes ## 2.0545 ## ## Degrees of Freedom: 7 Total (i.e. Null); 1 Residual ## Null Deviance: 2851 ## Residual Deviance: 0.374 AIC: 63.42
The different engines for the model that are provided by this package are:
show_engines("poisson_reg")
## # A tibble: 5 × 2 ## engine mode ## <chr> <chr> ## 1 glm regression ## 2 hurdle regression ## 3 zeroinfl regression ## 4 glmnet regression ## 5 stan regression
Author(s)
Maintainer: Hannah Frick hannah@rstudio.com (ORCID)
Authors:
Max Kuhn max@rstudio.com (ORCID)
Other contributors:
RStudio [copyright holder, funder]
See Also
Useful links:
Report bugs at https://github.com/tidymodels/poissonreg/issues
Model predictions across many sub-models
Description
For some models, predictions can be made on sub-models in the model object.
Usage
## S3 method for class ''_fishnet''
predict_raw(object, new_data, opts = list(), ...)
## S3 method for class ''_fishnet''
multi_predict(object, new_data, type = NULL, penalty = NULL, ...)
Arguments
object |
A |
new_data |
A rectangular data object, such as a data frame. |
opts |
A list of options.. |
... |
Optional arguments to pass to |
penalty |
A numeric vector of penalty values. |
Value
A tibble with the same number of rows as the data being predicted.
There is a list-column named .pred
that contains tibbles with
multiple rows per sub-model.
Objects exported from other packages
Description
These objects are imported from other packages. Follow the links below to see their documentation.
- generics
Alcohol, Cigarette, and Marijuana Use for High School Seniors
Description
Alcohol, Cigarette, and Marijuana Use for High School Seniors
Details
Data are from Table 7.3 of Agresti (2007). The first three columns make up data from a 3-way contingency table.
Value
seniors |
a tibble |
Source
Agresti, A (2007). An Introduction to Categorical Data Analysis.
Examples
data(seniors)
str(seniors)
Turn zero-inflated model results into a tidy tibble
Description
Turn zero-inflated model results into a tidy tibble
Usage
## S3 method for class 'zeroinfl'
tidy(x, type = "count", ...)
## S3 method for class 'hurdle'
tidy(x, type = "count", ...)
Arguments
x |
A |
type |
A character string for which model coefficients to return: "all", "count", or "zero". |
... |
Not currently used. |
Value
A tibble