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ABCxy Symmetrical Transformation

Description

A1 and A2 are symmetrical on the two sides of Ax+By+C=0. The input of the function is A1, and
the result is A2. The function also works when the line is horizontal or vertical. Note: the two
shapes are symmetrical only when ggplot2::coord_fixed() is used.

Usage

ABCxy(
x,
A,
B,
C,
p1 = NULL,
p2 = NULL,
f = NULL,
group = TRUE,
todf = TRUE,
checks = TRUE

)

Arguments

x the input. It can be a data frame, matrix, tibble object, or a list of these kinds of
objects. Each object must have exactly 2 columns and must be numeric without
NA. If it has more than 2 columns, only the first 2 columns will be used.

A for Ax+By+C=0.

B for Ax+By+C=0.

C for Ax+By+C=0.

p1 if A, B, C are not given, you can also give two points p1 and p2 on the supposed
Ax+By+C=0 line. Note: if A, B, C, p1, p2 are all given, the given A, B, C will
be ignored. It must be a vector of length 2. The first element is x and the second
is y.

p2 see p1.

f argument passed to split to divide a data frame into a list of data frames. It
should be a vector whose length is equal to the number of rows of x (if x is a
data frame).

group default is TRUE. It indicates whether to add a 3rd column named "g" to label the
group number of each group of points. It is useful when using aes(...group=g)
with ’ggplot2’.

todf default is TRUE. It indicates whether to combine the output (a list) into a data
frame.



4 add_slash_n

checks default is TRUE. It indicates whether to check input validity. Do not turn it off
unless you are sure that the input is OK.

Value

if todf = TRUE, the output will be a data frame with coordinates of possibly several polygons, oth-
erwise, it will be a list of data frames. Data frames have 2 columns named "x" and "y", and if group
= TRUE, a third column named "g" is added indicating group numbers.

Examples

library(ggplot2)
dat1=data.frame(x=c(0, 2, 2, 0), y=c(0, 0, 1, 1))
dat2=ABCxy(dat1, -1, -1, 3)
ggplot()+
coord_fixed()+
geom_polygon(data=dat1, aes(x=x, y=y), fill="red")+
geom_polygon(data=dat2, aes(x=x, y=y), fill="blue")+
geom_abline(intercept=3, slope=-1)
dat3=ABCxy(dat1, p1=c(0, 1), p2=c(-0.5, 0), todf=TRUE)
ggplot()+
coord_fixed()+
geom_polygon(data=dat1, aes(x=x, y=y), fill="red")+
geom_polygon(data=dat3, aes(x=x, y=y), fill="blue")+
geom_abline(intercept=1, slope=2)

add_slash_n Adding Slash_n inside Strings

Description

This function simply adds change-line signs inside strings, so that they can be put vertically as the
texts of x-axis.

Usage

add_slash_n(x, delete_space = TRUE, vertical_line = TRUE)

Arguments

x a character vector

delete_space whether to delete spaces. Default is TRUE.

vertical_line whether to change - into |. Default is TRUE.

Examples

lab=add_slash_n(c("a b-c", "d - ef ", "n"))
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annotation_shading_polygon

Layer for Drawing a Single Irregular Polygon with Shading Colors

Description

ggplot2::annotation_raster can only draw shading rectangles. However, this function can
draw polygons of any shape with shading colors. See the shape argument and the raster argument.

Usage

annotation_shading_polygon(
shape = data.frame(c(-1, 1, 0), c(0, 0, 1.732)),
xmin = NULL,
xmax = NULL,
ymin = NULL,
ymax = NULL,
raster = NULL,
interpolate = TRUE,
result_interpolate = TRUE,
shape_trim = NULL,
raster_trim = NULL,
result_trim = NULL,
result = c("layer", "magick"),
width = 800,
height = NULL,
res = 72

)

Arguments

shape the polygon can be a data frame (or matrix object, or tbl_df object) with x and
y coordinates (that is, with two columns), a plot created by ggplot or an image
read into R by magick::image_read. If it is a plot created by ggplot, its axes
can be of numeric, discrete or date/datetime type; however, when the type is
date/datetime, the plot should not use ggplot2::coord_fixed.

xmin the left side of the position to put the polygon. When shape is something like a
data frame, you do not need to set xmin, xmax, ymin and ymax, for the function
will generate these values according to the coordinates in the polygon.

xmax the right side.

ymin the bottom side.

ymax the top side.

raster the shading colors. It can be a raster object, a matrix of colors, a ggplot plot or
an image read into R by magick::image_read.
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interpolate the interpolate argument used by ggplot2::annotation_raster when the
raster argument is a matrix or raster.

result_interpolate

whether to interpolate in the final result which is essentially an output of ggplot2::annotation_raster.
Default is TRUE.

shape_trim this argument decides whether to trim edges of shape. It should be a number
between 0 and 100. Default is NULL. If it is NULL, no trimming will be done.

raster_trim whether to trim raster. Most of the time we do want to trim the raster. However,
the magick::image_trim function sometimes trims wrongly. So you may want
to turn it off. Default is NULL.

result_trim how to trim the final result. If you find your figure loses some parts, you can try
to turn this off. Default is NULL.

result when it is "layer", the function is a ggplot layer. When it is "magick", the func-
tion only create an image.

width the width which will be passed to magick::image_graph. Most of the time you
do not need to modify this. Default is 800. HOWEVER, if the final polygon has
fuzzy edges, try to enlarge width to make them look better.

height the height which will be passed to magick::image_graph. DO SEE Details
below to see how to use this parameter.

res resolution in pixels which will be passed to magick::image_graph. Default is
72.

Details

height can be used in the following ways:

• (1) an integer which will be directly passed to image::graph.

• (2) a character-like integer, e.g., height = "0.5". Suppose width = 400, the height that will
be used is 400*0.5 = 200. This effectively prevents the image from becoming too large.

• (3) height = "coord_fixed". the ratio between height and width will be (top-bottom)/(right-
left). And top, bottom, right and left are extreme values of shape when the latter is of class
data.frame/matrix/gg.

• (4) height = "image". the width and height will be the width and height of raster when raster
is a magick object.

• (5) height = NULL, the default. Now height is computed automatically. A ratio is computed
first, ratio = (top-bottom)/(right-left). if the ratio is larger than 5 or smaller than 0.2, then
height will be width*5 or width*0.2; else, the height will be treated in the same way as in (3)
above. If shape is of class gg and it has uses coord_flip(), the height will be automatically
adjusted. All these works are needed to prevent the image from becoming too large.

Examples

# Example 1
poly=ellipsexy(-1, 0, a=1, b=1)
m=matrix(rainbow(7))
ggplot()+
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coord_fixed()+
annotation_shading_polygon(
poly, raster=m
)+
annotation_shading_polygon(
poly, raster=m,
xmin=1, xmax=5,
ymin=-1, ymax=1,
)
#
# Example 2, only an image
tt=annotation_shading_polygon(
poly, result="magick",
width=280, height=280
)
#
# Example 3, both shape and raster are
# ggplot plots.
p1=ggplot()+geom_tile(aes(x=1: 5, y=1: 5))
p2=ggplot()+geom_polygon(aes(x=c(0, 1, 1, 0),
y=c(0, 0, 1, 1)), fill="red")+theme_void()
ggplot()+coord_fixed()+
annotation_shading_polygon(
shape=p1,
xmin=1, xmax=10,
ymin=1, ymax=5,
raster=p2
)

annotation_transparent_text

Layer for Transparent Text

Description

Suppose there is a colored rectangle with some texts and you want the texts to be transparent so
that the colors of the background can be seen. Now you can use this function. The function can be
used as a ggplot layer or a generator of image. NOTE: when the function is used as a layer, it uses
ggplot2::annotation_raster to do the drawing, so you must set limits for the x axis and the y
axis. See examples.

Usage

annotation_transparent_text(
label,
xmin,
xmax,
ymin,
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ymax,
bg = "black",
alpha = 0.5,
operator = "out",
interpolate = TRUE,
result_interpolate = TRUE,
expand = c(0.05, 0.05),
family = "SimHei",
fontface = 1,
reflow = FALSE,
place = "center",
label_trim = NULL,
bg_trim = NULL,
result = c("layer", "magick"),
width = 800,
height = NULL,
res = 72,
...

)

Arguments

label the text.

xmin the left side of the rectangle.

xmax the right side of the rectangle.

ymin the bottom side of the rectangle.

ymax the top side of the rectangle.

bg the colors of the rectangle. It can be a character vector of colors, a matrix of col-
ors, an object of raster class or even a image read into R through magick::image_read.
Default is color black.

alpha it is only used when bg is a character vector. Default is 0.5.

operator the argument used by magick::image_composite. It should be "out" (default)
or "in". The former makes the texts transparent, the latter creates shading texts.

interpolate when bg is a matrix, a image or a raster, this parameter is used and will be
passed to ggplot2::annotation_raster to draw a colored rectangle. Default
is TRUE.

result_interpolate

whether to use interpolate in the final result. Default is TRUE.

expand sometimes it is needed to slightly expand the x position and y position to put the
text so that they can be shown nicely. It should be two values used by x and y
respectively. Default is 0.05 and 0.05.

family family of text. Default is SimHei which ensures that Chinese texts can be shown.
However, you can change it to others, e. g., sans, serif, mono.

fontface fontface.

reflow whether to change lines automatically. It will be passed to ggfittext::geom_fit_text.
Default is FALSE.
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place position adjustment used by ggfittext:;geom_fit_text. The value is one
of "center", "middle" (= "center"), "topleft", "top", "topright", "right", "bottom-
right", "bottom", "bottomleft", "left".

label_trim whether to trim label. The default is NULL which means no trimming. But if
you want to remove all edges around label, you should give label_trim a value
which will be passed to magick::image_trim. However, most of the time you
do not need this parameter.

bg_trim whether to trim bg. Most of the time we do want to trim it. However, the
magick::image_trim function sometimes trims wrongly. So you can turn it
off. NOTE: the default value of bg_trim is NULL, which means DO NOT
TRIM.

result when it is "layer", the function can be used as a ggplot layer. When it is "mag-
ick", the result is only an image which is created by the magick package.

width the width of the text rectangle. It will be passed to magick::image_graph.
Most of the time you do not need to modify this. Default is 800.

height the height of the text rectangle. It will be passed to magick::image_graph.
Default is NULL, which means it will be computed automatically. DO SEE
Details below to learn how to handle this parameter.

res resolution in pixels which will be passed to magick::image_graph. Default is
72.

... arguments which will be passed to ggfittex::geom_fit_text. Most often
used are angle (0 to 360), lineheight.

Details

height can be used in the following ways:

• (1) an integer which will be directly passed to magick::image_graph.

• (2) a character-like integer, e.g., height = "0.5". Suppose width = 400, the height that will
be used is 400*0.5 = 200. This effectively prevents the image from becoming too large.

• (3) height = "coord_fixed". the ratio between height and width will be (ymax-ymin)/(xmax-
xmin).

• (4) height = "image". the width and height will be the width and height of bg when the latter
is a magick object.

• (5) height = NULL, the default. Now height is computed automatically. If bg is a magick
object, the width and height of the image will be used. If bg is not a magick object, a ratio is
computed first, ratio = (ymax-ymin)/(xmax-xmin). if the ratio is larger than 5 or smaller than
0.2, then height will be width*5 or width*0.2; else, the height will be treated in the same way
as in (3) above. All these works are needed to prevent the image from becoming too large.

Examples

# Example 1
m=matrix(rainbow(7), nrow=1)
ggplot()+coord_fixed()+
xlim(0, 7)+ylim(-2, 4)+theme_void()+
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annotation_raster(
raster=m,
xmin=0, ymin=-3,
xmax=7, ymax=5,
interpolate=TRUE
)+
annotation_transparent_text(
label="R\nDATA\nVISUALIZATION",
xmin=0, xmax=7,
ymin=-1, ymax=3,
family="sans", fontface=2, alpha=0.8,
place="left", expand=c(0.08, 0.02)
)
#
# Example 2, this time the result is only an image.
tt=annotation_transparent_text(
label="abcdefg",
xmin=1, xmax=8,
ymin=1, ymax=4,
alpha=0.6,
result="magick"
)
#
# Example 3, the rectangle is a matrix.
m=colorRampPalette(c("yellow", "purple"))(10)
ggplot()+coord_fixed(expand=FALSE)+
theme(panel.background=element_rect(fill="red"))+
annotation_transparent_text(
label="hehehaha",
xmin=1, xmax=8,
ymin=1, ymax=4,
bg=m, alpha=1
)
#
# Example 4, height is too large.
# Now you should explicitly set
# width and height, otherwise, the
# characters will become too flat.
x=c(0, 5, 10)
y=c(0, 500, 1000)
ggplot()+ylim(0, 4000)+
geom_point(aes(x, y))+
annotation_transparent_text(label="ha ha\nhe he",
xmin=0, xmax=10, ymin=1000, ymax=4000, bg="black",
width=300, height=150
) # do not set height=NULL here

ANYxy Generating Groups of Coordinates for Any Polygon
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Description

Given your function to create a multiple of points (for example, points to form a polygon), this func-
tion generates x and y coordinates for groups of points of the same type with different parameters.
The output of this function can be shown by ellipsexy and rectxy in this package.

Usage

ANYxy(myfun = NULL, ..., MoreArgs = NULL, group = TRUE, todf = TRUE)

Arguments

myfun your function to generate a single polygon. Note: the value of each argument
of your function must be a single-value vector. And the result of your func-
tion should be a data frame!. See examples.

... named parameters used by your function. These parameters will be passed to
mapply.

MoreArgs this will be passed to the MoreArgs argument of mapply.

group default is TRUE which means a column named "g" will be added to each data
frame. This facilitates further drawing using aes(..., group = g).

todf default is TRUE which means to combine the result into a data frame. Other-
wise, the result is a list.

Examples

library(ggplot2)
# First, you need a function to generate
# x and y coordinates for a single group
# of points.
x_square=function(start, end, A, B){
x=seq(start, end, 0.1)
data.frame(x=x, y=A*(x^2)+B)
}
# All the arguments of your function
# (here, start, end, A, B) should only accept
# vectors of length 1. And, the result of
# your function should be a data frame
# of x and y coordinates
# (here, coordinates of curves).
dat=ANYxy(myfun=x_square,
start=-1, end=1, A=c(1, 2), MoreArgs=list(B=1),
group=TRUE, todf=TRUE)
ggplot(dat)+geom_line(aes(x, y, group=g, color=factor(g)))
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count_each_column Counting Each Column and Summarizing in a Matrix

Description

This function counts the frequencies of each element of each column of a data frame or matrix. The
frequencies of missing values and the 0 frequencies of non-existent values are also included in the
final result.

Usage

count_each_column(x, answer = NULL, checks = TRUE)

Arguments

x a data frame or matrix with at least 1 row and 1 column. NOTE: all column
should belong to the same class (numeric, character). However, if checks =
TRUE, character and factor variables can co-exist and logical values are also OK.
If a column has nothing but NA, it should be remove; otherwise, an error will be
raised.

answer the values whose frequencies you want to know, e. g., "agree" and "disagree"
in your survey data. Default is NULL which means all possible answers in the
whole data will be used.

checks whether to check the validity of the input data. Default is TRUE. Do not turn it
off unless you are sure that your data has no logical variables or factor variables
and each column has at least 1 non-missing value.

Examples

# values that do not appear in
# the data can also be counted.
# a factor will be transformed into
# a character variable automatically.
x1=c("a", "b", "a", "b", NA)
x2=factor(x1)
x3=c("1", "3", "2", "1", "a")
dat=data.frame(x1, x2, x3, stringsAsFactors=FALSE)
res=count_each_column(dat, answer=c("c", "d", NA, "a"))
# logical value is OK.
x1=c(TRUE, TRUE, TRUE)
x2=c(TRUE, NA, NA)
dat=data.frame(x1, x2)
res=count_each_column(dat)
res=count_each_column(dat, c(TRUE, FALSE))
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ellipsexy Generating Coordinates of Multiple Ellipses or Circles

Description

If radius a is equal to radius b, then the shape will be a circle. Note: the shapes are correct only
when ggplot2::coord_fixed() is used.

Usage

ellipsexy(
x = 0,
y = 0,
a = 2,
b = 1,
start = 0,
end = 6.283185,
angle = 0,
n = 40,
xytype = "middle",
fan = FALSE,
group = TRUE,
todf = TRUE,
checks = TRUE

)

Arguments

x the x coordinates of relative points. Its length can be larger than 1. See xytype.

y the y coordinates of relative points. Its length can be larger than 1. See xytype.

a the radius that is parallel to x-axis before rotation. Its length can be larger than
1.

b the radius that is parallel to y-axis before rotation. Its length can be larger than
1.

start default is 0. The angle of the starting point of the arc. Its length can be larger
than 1. Note: "radian = degree * pi / 180".

end default is 6.283185. The angle of the ending point of the arc. Its length can be
larger than 1.

angle default is 0. The rotation angle in radian. Its length can be larger than 1. Note:
"radian = degree * pi / 180". The rotation direction is anti-clockwise.

n default is 40. The number of points used to draw an arc. The larger, the
smoother. It must at least be 4. However, when checks is FALSE, this check is
ignored. NOTE: to draw a triangle, you must use ellipsexy(n=4, fan=FALSE),
as the first and 4th points are so close. Similarly, to draw a rectangle, use
ellipsexy(n=5, fan=FALSE).
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xytype should be one of "middle/center" (default), "bottomleft", "middleleft/left/centerleft".
It indicates the type of argument of the middle point of an ellipse. If it is "mid-
dleleft", x and y are the middle-left coordinates before rotation. If it is "bottom-
left", x and y are the coordinates of the bottom-left corner of the rectangle that
walls the ellipse.

fan default is FALSE. If it is TRUE, the coordinates of the middle of an ellipse
is added to the output data frame. Meanwhile, if, say, you set n = 50, then n
becomes 49 automatically because the last position is reserved for the middle.
This helps draw a fan.

group default is TRUE. It indicates whether to add a 3rd column named "g" to label the
group number of each group of points. It is useful when using aes(...group=g)
with ’ggplot2’.

todf default is TRUE. It indicates whether to combine the output (a list) into a data
frame.

checks default is TRUE. It indicates whether to check input validity. Do not turn it off
unless you are sure that the input is OK.

Value

if todf = TRUE, the output will be a data frame with coordinates of possibly several polygons, oth-
erwise, it will be a list of data frames. Data frames have 2 columns named "x" and "y", and if group
= TRUE, a third column named "g" is added indicating group numbers.

Examples

library(ggplot2)
dat1=ellipsexy(x=1, y=1,
a=seq(1, 4, length.out=8), angle=seq(0, pi, length.out=8),
xytype="middleleft", n=30, todf=TRUE)
ggplot()+coord_fixed()+
geom_polygon(show.legend=FALSE,
data=dat1, aes(x=x, y=y, group=g, fill=factor(g)), alpha=0.3)

enlarge_raster Enlarge a Color Matrix

Description

This is a convenient wrapper of colorRampPalette to enlarge a color matrix or raster.

Usage

enlarge_raster(x, n = c(10, 10), row_first = TRUE, space = "rgb")
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Arguments

x a color matrix or raster. It should have at least 1 row and 1 column with no NAs.

n a vector with 2 numbers. If it has 1 number, the number will be repeated twice.
The two numbers indicate how many colors you will get in the result per row
and per column. Default is c(10, 10).

row_first enlarge rows first or enlarge columns first? Default is TRUE. The results are
almost the same, so you do not need to change this.

space the space parameter used by colorRampPalette. It can be "rgb" (default) or
"Lab".

Examples

library(ggplot2)
# the original matrix
m=matrix(c(
"red", "yellow", "green",
"blue", "purple", "cyan",
"black", "orange", "grey"), byrow=TRUE, nrow=3)
# enlarge the matrix
mm=enlarge_raster(m, c(15, 15), space="Lab")
ggplot()+xlim(0, 10)+ylim(0, 5)+coord_fixed()+
annotation_raster(mm,
xmin=0, xmax=10, ymin=0, ymax=5, interpolate=TRUE)

geom_circle_cm Geom Layer for Circle with Absolute Size

Description

This layer uses centimeter as unit to draw circles so that the size and shape will not be influenced
by the change of the coordinate systems (even when a polar system is used). Note: this function
does not have linetype and n arguments.

Usage

geom_circle_cm(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
linetype = NULL,
...

)
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Arguments

mapping aes mapping.

data data.

stat stat.

position position.

na.rm logical, whether to remove NA values.

show.legend whether to show legend.

inherit.aes logical, whether to inherit aes from ggplot().

linetype should always be NULL. because it will not be used.

... additional parameters.

Details

Accepted properties are:

• (1) rcm radius in centimeter.

• (2) color color of the outline.

• (3) fill color inside the shape.

• (4) alpha alpha of color and fill.

• (5) size line width of the outline.

• (6) x x coordinates of the middle points.

• (7) y y coordinates of the middle points.

Examples

library(ggplot2)
dat=data.frame(x=1: 10, y=rep(5, 10), R=rep(c(0.5, 1), 5))
ggplot(dat)+xlim(0, 11)+ylim(1, 9)+
geom_circle_cm(aes(x=x, y=y, fill=factor(R)), rcm=dat$R, alpha=0.5)

geom_ellipse_cm Geom Layer for Ellipse with Absolute Size

Description

This layer uses centimeter as unit to draw ellipse so that its size and shape will not be influenced by
the coordinate systems (even when a polar system is used).
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Usage

geom_ellipse_cm(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping aes mapping.

data data.

stat stat.

position position.

na.rm logical, whether to remove NA values.

show.legend whether to show legend.

inherit.aes logical, whether to inherit aes from ggplot().

... additional parameters.

Details

Accepted properties are:

• (1) rcm radius in centimeter.

• (2) ab it means to what extent radius a of an ellipse is larger than radius b. However, its
true meaning is the aspect ratio which is used by gridExtra::ellipseGrob and indicates the
extent to which y dimension is flattened. So, say, when ab = 2, radius a is larger than b, but it
is not exactly 2 times larger.

• (3) color color of the the outline.

• (4) fill color inside the shape.

• (5) alpha alpha of color and fill.

• (6) size line width of the outline.

• (7) linetype line type.

• (8) angle angle of rotation from 0 degree and in anti-clockwise direction.

• (9) n the number of points to draw the shape. Note: it must be written inside the aes(...)
function.

• (10) x x coordinates of middle points.

• (11) y y coordinates of middle points.
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Examples

library(ggplot2)
dat=data.frame(x=c(1, 3, 5, 7, 9), y=rep(5, 5))
ggplot(dat)+xlim(0, 11)+ylim(1, 9)+
geom_ellipse_cm(aes(x=x, y=y), fill="red", ab=seq(1, 4, length.out=5))
ggplot(dat)+xlim(0, 11)+ylim(1, 9)+
geom_ellipse_cm(aes(x=x, y=y, fill=factor(x)), ab=3, angle=c(0, pi/4, pi/3, pi/2, 0.75*pi))

geom_multi_raster Geom Layer for Drawing Multiple Rasters

Description

Unlike annotation_raster which draws only 1 raster, this layer draws one or more rasters at the
same time. The data must be a tbl object created by package tibble and the reason is that, as we
must give each rectangle a vector of colors, the column that contains these vectors of colors must
be a list rather than a vector. A list can be a column for tbl object, not for a normal data frame. See
examples. Accepted properties are:

• (1) xmin.

• (2) xmax.

• (3) ymin.

• (4) ymax.

• (5) raster. a list with 1 or more rasters. If you have only 1 raster, you also have to put it into a
list. Each raster should be a matrix, a raster object, a character vector or a magick object read
into R by magick::image_read. You can also use a data frame created by package tibble to
combine xmin, xmax, ymin, ymax, raster.

• (6) interpolate. It is the same as that in annotation_raster except that the default value
is TRUE. It can be used either inside or outside the aes(...) function. Its length must be
either 1 or the same as the number of rasters.

• (7) flip. The default is FALSE. You only need to use TRUE when you use coord_flip.
Used outside the aes(...) function.

Usage

geom_multi_raster(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
flip = FALSE,
...

)
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Arguments

mapping aes mapping.

data data. It should be a tbl object.

stat stat.

position position.

na.rm logical, whether to remove NA values.

show.legend This will not be used because the layer does not create any legend.

inherit.aes logical, whether to inherit aes from ggplot().

flip see description.

... additional parameters.

Examples

# Example 1: use vectors and a list.
mycolor=list(
c1=matrix(c("red", "blue", "green", "yellow"), nrow=2),
c2=matrix(c("green", "yellow")),
c3=matrix(c("purple", "red")))
xmin=1: 3
xmax=(1: 3)+0.8
ymin=c(0, 1, 2)
ymax=c(1, 3, 5)
ggplot()+
geom_multi_raster(aes(xmin=xmin, xmax=xmax,
ymin=ymin, ymax=ymax, raster=mycolor))
#
# Example 2: the same as example 1
# except flip=TRUE.
ggplot()+coord_flip()+
geom_multi_raster(aes(xmin=xmin, xmax=xmax,
ymin=ymin, ymax=ymax, raster=mycolor), flip=TRUE)

geom_rect_cm Geom Layer for Rectangle with Absolute Size

Description

This layer uses centimeter as unit to draw rectangles so that the size and shape will not be influenced
by the coordinate systems (even when a polar system is used).

Usage

geom_rect_cm(
mapping = NULL,
data = NULL,
stat = "identity",
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position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping aes mapping.

data data.

stat stat.

position position.

na.rm logical, whether to remove NA values.

show.legend whether to show legend.

inherit.aes logical, whether to inherit aes from ggplot().

... additional parameters.

Details

Accepted properties are:

• (1) width width in centimeter.

• (2) height height in centimeter.

• (3) color color of the outline.

• (4) fill color inside the shape.

• (5) alpha alpha of color and fill.

• (6) size line width of outline.

• (7) linetype line type.

• (8) hjust horizontal adjustment, default is 0.5 which means no adjustment.

• (9) vjust vertical adjustment, default is 0.5 which means no adjustment.

• (10) x x coordinates of middle points.

• (11) y y coordinates of middle points.

Examples

library(ggplot2)
ggplot()+xlim(-0.5, 10.5)+
geom_rect_cm(aes(x=1: 10, y=rep(4, 10)), fill="red", height=rep(1: 2, each=5),
vjust=rep(c(0, 0.5), 5))+
geom_point(aes(x=1: 10, y=rep(4, 10)), color="green")
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geom_shading_bar Geom Layer for Drawing Shading Barplot

Description

This function is similar to geom_bar(aes(x, y), stat="identity") except that it draws bars
with shading colors. Unlike gg_shading_bar which is a convenient function, this function is
used as a ggplot layer. Accepted properties are different from those in geom_multi_raster and
gg_shading_bar.

• (1) x. It is the same as that in geom_bar.

• (2) y. It is the same as that in geom_bar.

• (3) raster. It should be a list with 1 or more character vectors of colors. If the list only has 1
vector, all the bars will use the same shading pattern. If you have, for example, 5 bars to draw,
then you have to put 5 vectors of colors into a list. If you use a data frame, it must be a data
frame made by package tibble, and the column for raster should be a list.

• (4) width. It is the same as that in geom_bar.

• (5) flip. The default is FALSE. You only need to use TRUE when you use coord_flip. Use
outside the aes(...) function.

• (6) modify_raster. If it is TRUE (default), colors will be smoothed using the value of
smooth. If raster has enough colors, you can set this to FALSE. It is the same as that in
gg_shading_bar.

• (7) equal_scale. The default is FALSE. When it is TRUE, a bar will use a certain part of the
shading colors according to a global scale. It is the same as that in gg_shading_bar.

• (8) smooth. The default is 15. The number of shading colors each bar has. The bigger, the
better. It is the same as that in gg_shading_bar.

• (9) space. The color space that is used. It can be "rgb" (default) or "Lab".

• (10) orientation. This parameter mimics the same parameter used in geom_bar, though acts
differently. This enables to flip the x axis and y axis without using coord_flip. If it is NA or
"x" (default), it supposes x = SOME LABELS and y = SOME VALUES. If it is "y", you must
set x = SOME VALUES and y = SOME LABELS. These effects are the same as geom_bar.

NOTE: the function does interpolation as default, so you does not need to use interpolate param-
eter. And, unlike gg_shading_bar, this function does not draw lines around rectangles.

Usage

geom_shading_bar(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
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width = 0.9,
flip = FALSE,
modify_raster = TRUE,
smooth = 15,
equal_scale = FALSE,
space = "rgb",
orientation = "x",
...

)

Arguments

mapping aes mapping.

data data. It should be a tbl object.

stat stat.

position position. The parameter will not be used here.

na.rm logical, whether to remove NA values.

show.legend This will not be used because the layer does not create any legend.

inherit.aes logical, whether to inherit aes from ggplot().

width see description.

flip see description.

modify_raster see description or gg_shading_bar.

smooth see description.

equal_scale see description or gg_shading_bar.

space see description.

orientation see description.

... additional parameters.

Examples

# Example 1: use vectors.
x=c("b", "a", "c", "d", "e")
y=c(2, 1, 3, 5, 4)
raster=list(c("blue", "red"), c("green", "orange"),
c("cyan", "yellow"), c("purple", "orangered"), c("grey", "red"))
ggplot()+
geom_shading_bar(aes(x=x, y=y, raster=raster), smooth=40)
#
# Example 2: other parameters
x=1: 5
y=c(1, 2, -3, 5, 4)
raster=list(c("blue", "red"))
ggplot()+
geom_shading_bar(aes(x=x, y=y, raster=raster),
smooth=50, width=0.6, equal_scale=TRUE)+
scale_x_continuous(breaks=1: 5, labels=letters[1: 5])
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get_click_color Obtaining the Colors of Positions Clicked

Description

The function draws an image and asks the user to click on the positions whose colors the user wants
to know. NOTE: after clicking, you must press Esc button to continue. The result is a vector of
colors in hex mode.

Usage

get_click_color(x)

Arguments

x a raster object, or an image loaded by magick::image_read or the filename of
that image.

get_gg_label Checking Min, Max, Labels and Label Positions

Description

Given a numeric vector or a ggplot object, the function will check the range, labels and label posi-
tions (the same as major grid lines) that will used on the axis. The result is a length 5 list for min
limit, max limit, labels, major grid-line positions, all (major and minor) grid-line positions.

Usage

get_gg_label(
a = NULL,
b = NULL,
v = NULL,
gg = NULL,
mult = 0.05,
add = 0,
axis = "y"

)

Arguments

a extreme values of a numeric vector. Note: only one of a, v, gg can be non-
NULL. It can also be a gg object.

b another extreme value if a is not NULL.

v a numeric vector.
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gg a gg object created by ggplot function. Which value will be checked depends on
axis.

mult default is 0.05 and should be of length 1 or 2. It mimics the mult argument of
ggplot2::expansion. It is only used when a is numeric or v is non-NULL.

add default is 0. It mimics the add argument of ggplot2::expansion.

axis if gg is used or a is a ggplot object, which axis will be checked? It can be "x" or
"y" (default).

Examples

get_gg_label(a=1, b=1000)
# The following three have the same results.
get_gg_label(a=1, b=1000, mult=0)
get_gg_label(v=c(1, 500, 1000), mult=0)
p=ggplot()+geom_point(aes(1: 3, c(1, 500, 1000)))+

scale_y_continuous(expand=expansion(mult=0))
get_gg_label(gg=p)

gg_shading_bar Drawing Barplot with Shading Colors

Description

In ordinary barplot, each bar has only one color. This function aims to draw a barplot whose bars
have shading effect. Note: unlike ggplot2::geom_bar, this function can only deals with a vector
of frequencies.

Usage

gg_shading_bar(
v,
labels = NULL,
raster = NULL,
flip = FALSE,
change_order = "normal",
equal_scale = FALSE,
smooth = 15,
interpolate = TRUE,
width = 0.8,
color = NA,
linetype = 1,
size = 1,
modify_raster = TRUE,
space = "rgb",
...

)
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Arguments

v a vector of item frequencies. Negative values are OK.

labels a vector of item names. Its length should be equal to that of v. If it is NULL, de-
fault names will be used. If it is of class numeric or factor, it will be transformed
to a character vector.

raster a list. The length of the list should be equal to that of v. Each element of the list
should be a color vector corresponding to a value in v. If it is a vector, it will be
automatically transformed to a list. If its length is 1, but the length of v is, say,
3, then it will be automatically repeated for 3 times. Let us suppose v = 5 and
raster = list(c("green", "red")). This means the starting side of the bar is
green and the far side is red. See examples.

flip default is FALSE and the bars are vertical. When it is TRUE, the bars are hori-
zontal. Note: when using this function, DO NOT USE ggplot2::coord_flip
!

change_order when it is "normal" (default), the drawing order is the order of v. When it is
"big", big values will be drawn first. When it is "small", small values will be
drawn first. When it is "rev", the inverse order of v will be used.

equal_scale default is FALSE. When it is TRUE, a bar will use a certain part of the shading
colors according to a global scale. See examples.

smooth default is 15. The number of shading colors each bar has. The bigger, the better.

interpolate when it is TRUE (default), it makes the colors smoother.

width the width of each bar. It should be between 0 and 1.

color color of the outlines of the bars.

linetype line type of the outlines of the bars.

size line width of the outlines of the bars.

modify_raster if it is TRUE (default), colors will be smoothed using the value of smooth. If
raster has enough colors, you can set this to FALSE.

space the space parameter used by colorRampPalette. It should be "rgb" (default)
or "Lab".

... additional arguments used by ggplot2::coord_flip when flip = TRUE.

Examples

library(ggplot2)
x=c(10, 30, 25, 6)
lab=c("children", "youth", "middle", "aged")
r=list(c("cyan", "red"), c("blue", "yellow"),
c("green", "orange"), c("grey", "black"))
#
## (1) change_order
# change_order = "ordinary", the default
p1=gg_shading_bar(v=x, labels=lab)
# change_order = "big"
p2=gg_shading_bar(v=x, labels=lab, change_order="big")
# flip and let the largest on the top
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p3=gg_shading_bar(v=x, labels=lab,
change_order="small", flip=TRUE)
#
## (2) how to use argument raster
p1=gg_shading_bar(v=x, labels=lab, raster=r)
p2=gg_shading_bar(v=x, labels=lab, raster=c("green","red"))
#
## (3) how to use argument equal_scale
# equal_scale = FALSE
# the far side of each bar is red
gg_shading_bar(c(3, 5), raster=c("green", "red"))
# equal_scale = TRUE
# the far side of the shorter bar
# is not red. Rather, it is something
#' between red and green
gg_shading_bar(c(3, 5), raster=c("green", "red"),
equal_scale=TRUE)

image_col_numeric Colorize an Image according to Gray Scale

Description

A color image can be converted to one with different degrees of gray. Then, colors in a palette can be
added according to the gray degrees. The function is a simple wrapper of scales::col_numeric.
The pixels which are deliberately assigned "transparent" in the original magick image will always
kept unchanged.

Usage

image_col_numeric(
x,
palette = c("purple", "yellow"),
n = 256,
alpha = FALSE,
result = "magick",
res = 144

)

Arguments

x an image read into R by magick::image_read.

palette two or more colors. The default is c("purple", "yellow") which means the deeper
colors on the image will become purple and the lighter yellow.

n the max num of colors that will be used. The default is 256. Note, the number
of colors that really exist may be smaller than this number.
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alpha whether transparency is used. Transparency only exists when alpha = TRUE and
your image is in the format (e. g., png) that supports transparency. The default
is FALSE.

result if it is "magick" (default), the result is a picture of the same type used by package
magick. If it is "raster", the result is a matrix that can be used as a raster by
ggplot2::annotation_raster.

res resolution that is used by magick::image_graph. The default is 144.

image_crop_click Cut out a Subregion of an Image by Mouse Click

Description

This function is a wrapper of magick::image_crop. While the latter asks you to set a geometry
parameter, this function enables you to set the four sides of a subregion only by click the mouse.
You must click at least 2 times (that is, click on 2 different points to define a rectangle). After
clicking, please press Esc on your keyboard. You can also designate an irregular polygon by mouse
with at least 3 clicks. If it is irregular, you MUST click on positions in order (something like that,
when you draw a polygon in R, you must input the positions of points in order).

Usage

image_crop_click(x, only_value = FALSE, rectangle = TRUE, trim = FALSE)

Arguments

x an image read into R by magick::image_read or an image modified by func-
tions in the magick package.

only_value the default is FALSE, which will return the subregion. If you set it to TRUE, the
result is only four values with the order: left, right, top, bottom.

rectangle whether the cropped area is a rectangle (default is TRUE). If it is FALSE, the
subregion can be irregular.

trim this is only used when rectangle is FALSE. It decides whether the irregular
subregion is to be trimmed. If it is FALSE (default), no trimming will be done. If
it is a 0 to 100 value, magick::image_trim will be used, whose fuzz argument
is equal to trim. If it is TRUE (not 1), trimming will be done according to the
mouse click you have made.
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image_keep_color Keep Some Colors Unchanged and Make Others into Grayscale

Description

This function keeps pixels with certain colors unchanged and transforms others into grayscale. The
function is in fact a wrapper of magick::image_transparent, so it uses the latter’s color and
fuzz parameters. NOTE: the function only works for fully opaque or fully transparent (labelled as
"transparent") pixels.

Usage

image_keep_color(x, color = NULL, fuzz = 10, result = "magick")

Arguments

x an image read into R by magick::image_read.

color the same as magick::image_transparent. You can use 1 or more colors.

fuzz the same as magick::image_transparent. However, Its length must either be
1 or the same as color.

result if it is "magick" (default), the result is a magick image, if it is "raster", the result
is a matrix.

image_locator Get the Width and Height of the Mouse Clicked Points

Description

This function simply gets the width and height values of the points on which you click. The result
is a list of two vectors, the first vector is for width, the second for height.

Usage

image_locator(x, rectangle = FALSE)

Arguments

x a raster object, or an image loaded by magick::image_read or the filename of
that image.

rectangle if it is FALSE (default), the result list contains the width and height values. If it
is TRUE, only the left, right, top, bottom values of the rectangle designated by
your clicking are returned.
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image_modify_hsv Modify the H, S, V Values of a Color Vector or an Image

Description

The function modifies the H (0 - 1), S, V values of a vector of colors or an image. The three channels
can be modified separately. However, the most frequently used is only the V modification. The ways
to modify include: setting values to some specified values (set_*), adding (add_*), multiplying the
original values (mult_*), rescaling the original values (rescale_*), using a function to recompute
values (fun_*). The most useful way is to use some internal curves that mimic those PS-like apps.
DO see Details.

Usage

image_modify_hsv(
x,
set_h = NULL,
add_h = NULL,
mult_h = NULL,
rescale_h = NULL,
fun_h = NULL,
set_s = NULL,
add_s = NULL,
mult_s = NULL,
rescale_s = NULL,
fun_s = NULL,
set_v = NULL,
add_v = NULL,
mult_v = NULL,
rescale_v = NULL,
fun_v = NULL,
result = "magick",
res = 144

)

Arguments

x an image created by image_read or other functions in package magick. Alter-
natively, it can be a vector of colors.

set_h set H values with specific values.

add_h add specific values to current H values.

mult_h multiply the current values with specific values.

rescale_h a length 2 numeric vector specifying the desired range of H values, e. g.,
rescale_h = c(0.6, 0.95) which will make the smallest original value to be
0.6, and the largest, 0.95. Alternatively, it can be your own scaling function.
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fun_h your own modifying function (e. g., fun_h = sqrt). Alternatively, it can be a
list that designates how to use internal curves. See Details.

set_s, add_s, mult_s, rescale_s, fun_s
parameters to change S values. Used in the same way as those for H. See above.

set_v, add_v, mult_v, rescale_v, fun_v
parameters to change V values. Used in the same way as those for H. See above.

result the default is "magick", the output is a magick picture. When it is "raster", a ma-
trix is created which can be use as a raster for ggplot2::annotation_raster.

res when the result is a magick picture, the res parameter used by magick::image_graph.
Default is 144.

Details

fun_* can be a function or a named list which tells the function which internal function is to be
used. You must ensure values used by the function specified by you to be in the range [0, 1] for H,
S, V modification and [0, 255] for R, G, B modification. Also, you’d better make sure the output
values of the function are in

When fun_* is a list, it should be written in the following way:

• (1) fun_* = list(fun = "s", c1 = -2,c2 = 2, domain = c(0, 1)) An "s" curve will be used.
c1 points out how to deal with values below 0.5, c2 with values above 0.5. For c1 and c2,
a value larger than 0 means a curvature towards y = 1, and a value smaller than 0 means a
curvature towards y = 0. So, c1 < 0 and c2 > 0 will make an s shape curve. c1 and c2 can be
any number, though those with absolute values below 4 are quite good (default is -2 and 2). 0
means no change. domain specifies the value domain to put the result. The default is c(0, 1)
which means not to rescale, thus 0.1 is 0.1. However, if you set domain = c(0.5, 1), then 0.1
will be 0.55. If you do not know how to set domain, just ignore it.

• (2) fun_* = list(fun = "circle",value = 0.5) When the fun is "circle" or "c", an arc will
be used. value must be a number between -1 and 1 (default is 0.5). A number larger than 0
means the curvature is towards y = 1, and a number smaller than 0 means it is towards y = 0.
value should not be 0.

• (3) list(fun_* = "linear", x0 = 0.4,y0 = 0.6) This makes a linear modification except
that there is a breakpoint. The default point is (0.4, 0.6) which means: suppose all the original
numbers and output numbers are in the [0, 1] range and the points with their x position smaller
than 0.4 will be put along the line that links (0, 0) and (0.4, 0.6), and, those with x position
larger than 0.4 will be put along the line that links (0.4, 0.6) and (1, 1).

Examples

# First create an image
library(magick)
mycolor=grDevices::hsv(0, s=seq(0.1, 0.9, 0.1),
v=seq(0.1, 0.9, 0.1))
img=image_graph(width=400, height=400)
print(showcolor(mycolor)+theme_void())
dev.off()
# Now increase S values with
# an internal circle curve and
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# set V values between [0.5, 1].
res=image_modify_hsv(img,
fun_s=list("circle", value=1),
rescale_v=c(0.5, 1))

image_modify_local Modify Only a Subregion of an Image

Description

The function allows you to modify a subregion of your image (or, the opposite, keep the subregion
unchanged while modifying other parts). You can set the four sides of the subregion or an irregular
polygon by mouse click. If it is irregular, you MUST click in order.

Usage

image_modify_local(
x,
FUN,
geometry = "click",
local = "local",
rectangle = TRUE,
trim = FALSE,
...

)

Arguments

x an image read into R by magick::image_read or an image modified by func-
tions in the magick package.

FUN the function used to modify x. NOTE: the result of FUN must be of the same
class as x and its width and height must not be changed during modification.

geometry this parameter is different from the one used in package magick. Here, in this
function, you can set geometry = "click" if you want to show which part you
want to modify by mouse click (see function image_crop_click for how to use
mouse click). Otherwise, you can use a length 4 vector with the exact order:
left, right, top, bottom.

local if it is 1 or "local", only a subregion of your image will be modified. If it is 2 or
"other", keep the subregion unchanged while modifying other parts. If it is 3 or
"subregion", the result is only the modified subregion, not the whole image.

rectangle if it is TRUE (default), the subregion is a rectangle. If it is FALSE, the subregion
can be an irregular polygon designated by your mouse click.

trim whether to trim the subregion. This is only used when local is 3 or "subregion".
It helps remove the transparent parts. See image_crop_click to know how to
use this parameter.

... extra parameters used by FUN.
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image_modify_local2 Modify both a Subregion and the Whole of an Image

Description

The function is similar to image_modify_local but with different parameters. It modifies both a
subregion of the image and the whole image, and then combines them. The subregion can be chosen
either by numeric values or by mouse click ,which is the same as image_modify_local.

Usage

image_modify_local2(x, FUN1, FUN2 = NULL, geometry = "click", rectangle = TRUE)

Arguments

x an image read into R by magick::image_read or an image modified by func-
tions in the magick package.

FUN1 a function to modify a subregion of x. NOTE: the result of these functions must
be of the same class as x and should not change the sizes of the subregion.

FUN2 a function to modify the whole image, which must not change the size of the
image. If it is NULL (default), nothing will do to the whole image.

geometry this parameter is different from the one used in package magick. Here, in this
function, you can set geometry = "click" if you want to show which part is
the subregion by mouse click (see function image_crop_click for how to use
mouse click). Otherwise, you can use a length 4 vector with the exact order:
left, right, top, bottom.

rectangle if it is TRUE (default), the subregion is a rectangle area. If it is FALSE, the
subregion is an irregular polygon area, and, now geometry is ignored, you must
designate the area by mouse click.

image_modify_rgb Modify R, G, B Values of an Image

Description

The function modifies the R, G, B values of an image and is used in the same way as image_modify_hsv
in this package. The three channels can be modified separately. The ways to modify include: setting
values to some specified values (set_*), adding (add_*), multiplying the original values (mult_*),
rescaling the original values (rescale_*), using a function to recompute values (fun_*). The most
useful way is to use some internal curves that mimic those PS-like apps.
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Usage

image_modify_rgb(
x,
set_r = NULL,
add_r = NULL,
mult_r = NULL,
rescale_r = NULL,
fun_r = NULL,
set_g = NULL,
add_g = NULL,
mult_g = NULL,
rescale_g = NULL,
fun_g = NULL,
set_b = NULL,
add_b = NULL,
mult_b = NULL,
rescale_b = NULL,
fun_b = NULL,
result = "magick",
res = 144

)

Arguments

x an image created by magick::image_read or other functions in package mag-
ick.

set_r set r values with specific values.
add_r add specific values to current R values.
mult_r multiply the current values with specific values.
rescale_r a length 2 numeric vector specifying the desired range of R values, e. g.,

rescale_r = c(180, 240) which will make the smallest original value to be
180, and the largest, 240. Alternatively, it can be your own scaling function.

fun_r your own modifying function (e. g., fun_r = sqrt). Alternatively, it can be a
list that designates how to use internal curves. See image_modify_hsv.

set_g, add_g, mult_g, rescale_g, fun_g
parameters to change G values. Used in the same way as those for R. See above.

set_b, add_b, mult_b, rescale_b, fun_b
parameters to change B values. Used in the same way as those for R. See above.

result the default is "magick", the output is a magick picture. When it is "raster", a ma-
trix is created which can be use as a raster for ggplot2::annotation_raster.

res when the result is a magick picture, the res parameter used by magick::image_graph.
Default is 144.

Details

Several internal curves can be used. Please see the Details part of image_modify_hsv.
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image_modify_rgb_v Modify R, G, B Values according to V values

Description

While the image_modify_rgb function modifies R, G, B with reference to the original values,
image_modify_rgb_v also takes into account the brightness (V) values. It is similar to those apps
which divide an image into a bright part and a dark part (and, for example, you can increase red in
the bright part and decrease red in the dark part.

Usage

image_modify_rgb_v(
x,
fun_r = NULL,
fun_g = NULL,
fun_b = NULL,
alpha = FALSE,
rescale_v = NULL,
result = "magick",
res = 144

)

Arguments

x an image created by magick::image_read or other functions in package mag-
ick.

fun_r, fun_g, fun_b
a function or a list which designates an internal curve. See the Details part of
image_modify_hsv.

alpha whether to allow the output colors have transparency. Default is FALSE.
rescale_v You can rescale the V values before modifying colors. A desired range of V

values can be given, e. g., rescale_v = c(0.2, 1) which will make the smallest
original value to be 0.2, and the largest, 1. Alternatively, it can be your own
scaling function.

result the default is "magick", the output is a magick picture. When it is "raster", a ma-
trix is created which can be use as a raster for ggplot2::annotation_raster.

res when the result is a magick picture, the res parameter used by magick::image_graph.
Default is 144.

Details

This function uses custom functions or internal curves to make modification. See the Details part
of image_modify_hsv to know how to use them. Note: values will be coerced to be in the [0, 255]
range with no warning. For example, the original value is 240 and it becomes 280 in the output,
then it will be set to 255 automatically.
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image_transparent_inverse

Keep Certain Colors Unchanged and Make Others Transparent

Description

This function is an inverse version of magick::image_transparent. While the latter makes certain
colors transparent, the former keeps them unchanged and make others transparent.

Usage

image_transparent_inverse(x, color, fuzz = 0)

Arguments

x a magick image.

color one or more colors you want want to keep unchanged.

fuzz color tolerance between 0 and 100. Its length must be 1 or the same as color
(which means you can have different fuzz values for different colors). Sup-
pose your color is white. If fuzz=0, then only white will be kept unchanged; if
fuzz=10, colors similar to white will also kept unchanged.

raster_alpha Combine a Matrix of Colors and a Matrix of Alpha Values

Description

The function is a wrapper of scales::alpha. While the latter only works on vectors, the former
can combine a matrix of colors and a matrix of alpha values as long as the two have the same
numbers of rows and columns.

Usage

raster_alpha(color, alpha, result = "raster", res = 144)

Arguments

color a matrix of colors, a raster or an image read into R by magick::image_read.

alpha either a single value (e.g., 0.4) or a matrix of alpha values. The matrix should
have the same numbers of rows and columns as color.

result if it is "raster", the result will be a matrix which can be used by annotation_raster
(default), if it is "magick", the result is a magick image.

res the res parameter used by magick::image_graph when result is "magick".
Default is 144.
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Examples

# A color matrix
co=c("red", "yellow", "green", "blue")
co=rbind(co, co, co)
# An alpha matrix
alp=c(1, 0.6, 0.3, 0.1)
alp=rbind(alp, alp, alp)
# Now combine the two
result=raster_alpha(co, alp)

rectxy Generating Coordinates of Multiple Rectangles

Description

Note: the shapes are correct only when ggplot2::coord_fixed() is used.

Usage

rectxy(
x = 0,
y = 0,
a = 1,
b = 1,
angle = 0,
xytype = "middle",
group = TRUE,
todf = TRUE,
checks = TRUE

)

Arguments

x the x coordinates of relative points. Its length can be larger than 1. See xytype.

y the y coordinates of relative points. Its length can be larger than 1. See xytype.

a the side that is parallel to x-axis before rotation. Its length can be larger than 1.

b the side that is parallel to y-axis before rotation. Its length can be larger than 1.

angle default is 0. The rotation angle in radian. Note: "radian = degree * pi / 180". Its
length can be larger than 1. The rotation direction is anti-clockwise.

xytype should be one of "middle/center" (default), "bottomleft", "middleleft/centerleft/left".
It indicates the type of argument of the middle point of an shape. If it is "mid-
dleleft", x and y are the middle-left coordinates before rotation. If it is "bottom-
left", x and y are the coordinates of the bottom-left corner.

group default is TRUE. It indicates whether to add a 3rd column named "g" to label the
group number of each group of points. It is useful when using aes(...group=g)
with ’ggplot2’.
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todf default is TRUE. It indicates whether to combine the output (a list) into a data
frame.

checks default is TRUE. It indicates whether to check input validity. Do not turn it off
unless you are sure that the input is OK.

Value

if todf = TRUE, the output will be a data frame with coordinates of possibly several polygons, oth-
erwise, it will be a list of data frames. Data frames have 2 columns named "x" and "y", and if group
= TRUE, a third column named "g" is added indicating group numbers.

Examples

library(ggplot2)
dat1=rectxy(x=4, y=3, a=2, b=1, angle=0, xytype="bottomleft", todf=TRUE)
dat2=rectxy(x=4, y=3, a=2, b=1, angle=pi/6, xytype="bottomleft", todf=TRUE)
ggplot()+
geom_polygon(data=dat1, aes(x=x, y=y), fill="red", alpha=0.3)+
geom_polygon(data=dat2, aes(x=x, y=y), fill="blue", alpha=0.3)+
coord_fixed()

resize_to_standard Resize an Image According to the Other Image or to Ratios

Description

Simple wrapper of magick::image_resize. See the parameters below.

Usage

resize_to_standard(x, standard = 0.5, what = "all", scale = TRUE)

Arguments

x the image you want to resize.

standard either the image whose size is the standard or two ratios. When it specifies
two ratios, it should be a numeric vector whose first and second elements are
multipliers for width and height. For example, x’s width and height are 100 and
60, and standard = c(0.5, 3), then the result image’s width and height will be
50 and 180. If one of the two number is NA, then the dimension represented by
this NA will be modified automatically.

what this parameter is used only when standard is an image. It specifies the way
to resize. When it is "width", let x’s width be the same as standard; whether
its height is automatically scaled depends on scale. When it is "height", let
x’s height be the same as standard; whether its width is automatically scaled
depends on scale. When it is "all" (or "both"), the default, let x’s width and
height be the same as standard. When it is two number linked with a "_", it
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means resizing a according to b’s width and height multiplied. For example, if
it is "3_2" and b’s width and height are 50, 70, then the result’s width and height
are 50 * 3 = 150, 70 * 2 = 140. Forms like "_2" or "3_" are also accepted.

scale Default is TRUE. It is only used when only one of width and height is to be
modified. This parameter decides whether the image is automatically scaled.

rotatexy Rotation Transformation

Description

A2 (output) is the result of rotating A1 (input) around a point. Note: the two shapes look the same
(though with different angles) only when ggplot2::coord_fixed() is used.

Usage

rotatexy(
x,
angle = pi/4,
xmiddle = 0,
ymiddle = 0,
f = NULL,
group = TRUE,
todf = TRUE,
checks = TRUE

)

Arguments

x the input. It can be a data frame, matrix, tibble object, or a list of these kinds of
objects. Each object must have exactly 2 columns and must be numeric without
NA. If it has more than 2 columns, only the first 2 columns will be used.

angle default is pi/4. The rotation angle in radian. Note: "radian = degree * pi / 180".
Its length can be larger than 1. The rotation direction is anti-clockwise.

xmiddle the x coordinates of rotation centers. Its length can be larger than 1.

ymiddle the y coordinates of rotation centers. Its length can be larger than 1.

f argument passed to split to divide a data frame into a list of data frames. It
should be a vector whose length is equal to the number of rows of x (if x is a
data frame).

group default is TRUE. It indicates whether to add a 3rd column named "g" to label the
group number of each group of points. It is useful when using aes(...group=g)
with ’ggplot2’.

todf default is TRUE. It indicates whether to combine the output (a list) into a data
frame.

checks default is TRUE. It indicates whether to check input validity. Do not turn it off
unless you are sure that the input is OK.
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Value

if todf = TRUE, the output will be a data frame with coordinates of possibly several polygons, oth-
erwise, it will be a list of data frames. Data frames have 2 columns named "x" and "y", and if group
= TRUE, a third column named "g" is added indicating group numbers.

Examples

library(ggplot2)
dat1=data.frame(x=c(0, 4, 4, 0), y=c(0, 0, 2, 2))
dat2=data.frame(x=c(5, 6, 6, 5), y=c(4, 4, 8, 8))
dat3=rotatexy(list(dat1, dat2), angle=c(pi, pi/4),
xmiddle=c(0, 5), ymiddle=c(0, 4), todf=TRUE)
ggplot()+
coord_fixed()+
geom_polygon(data=dat1, aes(x=x, y=y), fill="red", alpha=0.2)+
geom_polygon(data=dat2, aes(x=x, y=y), fill="blue", alpha=0.2)+
geom_polygon(show.legend=FALSE, data=dat3,
aes(x=x, y=y, group=g, fill=factor(g)), alpha=0.2)

round_text Converting Numeric Values into Characters with the Same Digits

Description

This simple function is to facilitate something like decimal horizontal adjustment which demands
each value has the same digits after the decimal point.

Usage

round_text(x, digits = 2, na = NULL)

Arguments

x a vector of numeric values.

digits digits which is to be passed to round. It should not be smaller than 0.

na how to show NAs. The default is to show " NA", however, you can change it to
"NA" or simply NA.

Examples

v=c(3, 3.1, 3.456, 3.452, 3.77, NA, 0, 10.56332)
res=round_text(v, 2, na=NA)
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scale_free Scale values into a Certain Location

Description

A simple function to put numeric values into a certain interval. Suppose you have 20, 60, 80, 100,
and you want them to be in the interval of [0, 1], so you can get 0, 0.5, 0.75, 1.

Usage

scale_free(
x,
left = 0,
right = 1,
reverse = FALSE,
xmin = NULL,
xmax = NULL,
na.rm = FALSE

)

Arguments

x a numeric vector or a numeric matrix, data frame, tibble object.

left the smallest value of the the interval. If x has n columns, then left is expected
to be of length n. However, if it is shorter, it will be repeated to reach that length.

right the largest value of the the interval. If x has n columns, then right is expected
to be of length n. However, if it is shorter, it will be repeated to reach that length.

reverse whether to assign values in a reverse way. Default is FALSE. If x has n columns,
then reverse is expected to be of length n. However, if it is shorter, it will be
repeated to reach that length.

xmin the min value. Default is NULL, which means use the min value of x. However,
sometimes the min value of x may not be the true min value. Suppose the two
scores of a 100-point test are 59, 87, then the true min score is 0 and the true
max score is 100. Thus you must add xmin = 0, xmax = 100. If reverse = TRUE
(that is, 0 is better than 100), also add xmin = 0, xmax = 100.

xmax the same meaning as xmin, but for max value.

na.rm used by min and max. Default is FALSE.

Examples

y=scale_free(c(-1, 0, 2))
y=scale_free(c(-1, 0, 2), rev=TRUE)
#
# x is a data frame.
x=data.frame(
c(-1, 0, 0, 0, 2), c(-1, 0, 0, 0, 2),
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c(-2, 0, 2, 4, 6), c(-2, 0, 2, 4, 6)
)
y=scale_free(x,
left=0, right=10,
reverse=c(FALSE, TRUE, FALSE, TRUE)
)
y=scale_free(x,
left=c(0, 0, 100, 100), right=c(10, 100, 200, 200),
reverse=c(FALSE, TRUE, FALSE, TRUE)
)

shading_raster Create a Shading Raster with a Palette

Description

The function is a simple wrapper of scales::col_numeric. The function creates a matrix of colors
that can be used to draw a shading rectangle. There are 2 ways to use the function, see the following
parameters.

Usage

shading_raster(
nr = NULL,
nc = NULL,
middle = NULL,
palette = c("blue", "red"),
mat = NULL,
FUN = NULL

)

Arguments

nr method 1 to use this function is to use nr, nc, middle. Suppose there is a matrix
with nr rows and nc columns. A cell whose position in the matrix is designated
by middle. Then, this cell gets the first color of palette, and other cells get
shading colors according to their distances between them and middle. Method
2 to use this function is to use mat. The biggest cell gets the first color and other
cells get shading colors.

nc see nr.

middle see nr. The parameter should be a length 2 vector designating the row number
and column number of a cell.

palette two or more colors used to make shading colors.

mat see nr.

FUN the default NULL makes the colors distributed in a linear way. However, FUN
can be a single parameter function which transforms the numeric values, such
as log, sqrt.
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Examples

# Use method 1.
r=shading_raster(nr=31, nc=60, middle=c(10, 55),
palette=c("darkorange", "red", "purple"))
ggplot()+xlim(0, 8)+ylim(0, 6)+
annotation_raster(r, xmin=-Inf, xmax=Inf,
ymin=-Inf, ymax=Inf, interpolate=TRUE)
# Use method 2.

r=matrix(c(
1, 2, 3, 4, 5, 6, 7, 8,
1, 2, 3, 4, 5, 6, 7, 8,
1, 1, 1, 1, 1, 1, 1, 1),
nrow=3, byrow=TRUE)
r=shading_raster(mat=r, palette=c("green", "blue"))

showcolor Show a Color Palette

Description

Simple function to show colors. NOTE: do not add coord_flip().

Usage

showcolor(x, label_size = 15, ...)

Arguments

x a character vector of colors.

label_size size of text on x-axis to show color names.

... other arguments passed to geom_bar.

Examples

# A palette used by David Hockney
co=c("#833822", "#C03800", "#D3454C",
"#DC6A30", "#F29856", "#FEEF70",
"#A5D56D", "#16D670", "#00932F",
"#03592E", "#04B7B0", "#007BA9",
"#EC46BF", "#6A2C8F"
)
showcolor(co, label_size=10)
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spathxy Reordering Points to Form a "s" Shape

Description

This is a convenient function to generate points with x and y coordinates (which form a 2-column
data.frame). It is much like expand.grid. The points generated by expand.grid always in this "s"
order: the bottom line, form left to right, and the second line, from left to right. However, spathxy
allows you choose the order you want. See examples.

Usage

spathxy(
x,
y,
first = "right",
second = "top",
change_line = FALSE,
stringsAsFactors = TRUE

)

Arguments

x a vector of values to be paired with y.

y a vector of values to be paired with x.

first the first direction. It may be one of "right", "left", "top", "bottom". Default is
"right".

second the second direction. It may be one of "right", "left", "top", "bottom". Default is
"top".

change_line tail-to-tail or tail-to-head. Default is FALSE which means tail-to-tail. See ex-
amples.

stringsAsFactors

to be passed to data.frame.

Value

always a 3-column data frame. Column x and y are coordinates of points; column index contains
the index number of points.

Examples

library(ggplot2)
#
# dat1 is generated by expand.grid
# Note the difference between dat1 and dat2.
# dat3 is the same as dat1.
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dat1=expand.grid(1: 3, 1: 7)
colnames(dat1)=c("x", "y")
dat2=spathxy(1: 3, 1: 7,
change_line=FALSE, first="right", second="top")
dat3=spathxy(1: 3, 1: 7,
change_line=TRUE, first="right", second="top")
#
mycolor=rainbow(nrow(dat1), end=0.6)
ggplot(dat1)+geom_path(aes(x, y), color=mycolor, size=3)
ggplot(dat2)+geom_path(aes(x, y), color=mycolor, size=3)
ggplot(dat3)+geom_path(aes(x, y), color=mycolor, size=3)

stretchxy Stretching Transformation

Description

A2 (output) is the result of enlarging (or shrinking) A1 (input) in x dimension and y dimension.
Note: the two shapes manifest enlarging or shrinking effect only when ggplot2::coord_fixed()
is used.

Usage

stretchxy(
x,
xlarge = 2,
ylarge = 2,
f = NULL,
group = TRUE,
todf = TRUE,
checks = TRUE

)

Arguments

x the input. It can be a data frame, matrix, tibble object, or a list of these kinds of
objects. Each object must have exactly 2 columns and must be numeric without
NA. If it has more than 2 columns, only the first 2 columns will be used.

xlarge the enlarging extent in x dimension. If it is smaller than 1, the shape will be
shrinking.

ylarge the enlarging extent in y dimension. If it is smaller than 1, the shape will be
shrinking.

f argument passed to split to divide a data frame into a list of data frames. It
should be a vector whose length is equal to the number of rows of x (if x is a
data frame).

group default is TRUE. It indicates whether to add a 3rd column named "g" to label the
group number of each group of points. It is useful when using aes(...group=g)
with ’ggplot2’.
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todf default is TRUE. It indicates whether to combine the output (a list) into a data
frame.

checks default is TRUE. It indicates whether to check input validity. Do not turn it off
unless you are sure that the input is OK.

Value

if todf = TRUE, the output will be a data frame with coordinates of possibly several polygons, oth-
erwise, it will be a list of data frames. Data frames have 2 columns named "x" and "y", and if group
= TRUE, a third column named "g" is added indicating group numbers.

Examples

library(ggplot2)
dat1=data.frame(x=c(0, 1, 1), y=c(0, 0, 1))
dat2=data.frame(x=c(4, 5, 5, 4), y=c(0, 0, 3, 3))
dat3=stretchxy(list(dat1, dat2), xlarge=3, ylarge=c(3, 2), todf=TRUE)
ggplot()+coord_fixed()+
geom_polygon(data=dat1, aes(x, y), fill="red", alpha=0.3)+
geom_polygon(data=dat2, aes(x, y), fill="blue", alpha=0.3)+
geom_polygon(data=dat3, aes(x, y, fill=g, group=g), fill="blue", alpha=0.3)

sunshinexy Generating Lines Which Link One Points to Many

Description

Suppose there is a middle point a, this function simultaneous generates points on lines that start
from a to other points.

Usage

sunshinexy(
x = 0,
y = 0,
outer = data.frame(1, 1),
n = 10,
delete_n = 0,
distance = FALSE,
checks = TRUE

)

Arguments

x the x coordinate of the middle points. It should be of length 1.

y the y coordinate of the middle points. It should be of length 1.

outer the other points. It can be a data frame, It must have exactly 2 columns and must
be numeric without NA.
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n default is 10. The number of points per line.

delete_n default is 0. The number of points to be deleted. Suppose a line has p1, p2, p3,
p4, p5 points on it with p1 as the starting point. if delete_n is 2, then p1 and p2
will be deleted. Note: n - delete_n must be larger than 1.

distance default is FALSE. If it is TRUE, a column named "distance" is added which
indicates the distances from the middle point to other points.

checks default is TRUE. It indicates whether to check input validity. Do not turn it off
unless you are sure that the input is OK.

Value

A data frame that has 3 columns. The first and second columns are named "x" and "y", the third
column is named "g" indicating group numbers. If distance = TRUE, a fourth column is added
which indicates the distances from the middle point to other points.

Examples

library(ggplot2)
p=c(1, 1, 0, -1, -1, -1, 0, 1)
q=c(0, 1, 1, 1, 0, -1, -1, -1)
pq=data.frame(cbind(p, q))
dat=sunshinexy(outer=pq, n=20, delete_n=5, distance=TRUE)
ggplot()+coord_fixed()+theme_void()+
geom_point(data=pq, aes(p, q), size=4)+
geom_line(show.legend=FALSE, data=dat, aes(x, y, group=g, color=distance), size=2)+
scale_color_continuous(low="blue", high="red")

textgif Simple Text ".gif" File

Description

This is a wrapper of functions in package ggfittext and magick. The output is a ".gif" with changing
texts and colors. Characters are automatically enlarged or shrunk.

Usage

textgif(
text,
text_color = NULL,
bg_color = NULL,
reflow = FALSE,
width = 200,
height = 100,
family = "SimHei",
fontface = 1,
fps = 2,
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output = NULL,
...

)

Arguments

text must be a character vector.

text_color colors of the texts. Its length must be the same as that of text.

bg_color background color of the texts. It should have the same length as text.

reflow default is FALSE. If it is TRUE, ggfittext::geom_fit_text will automat-
ically separate characters into several lines. However, you can separate lines
manually by using line break.

width the width of the final gif object. Default is 200. NOTE: how texts are adjusted
in the text box depends on the values of width and height.

height the height of the final gif object. Default is 100.

family default is "SimHei" so that Chinese characters can be shown. However, some
computers may not be able to use this family. And, this family ignores fontface.
For Latin words, the built-in families are "serif", "sans" and "mono", and more
can be found by typing "?Hershey".

fontface 1 (default) for plain, 2 for bold, 3 for italic, 4 for bold italic.

fps the larger the faster. It should be a factor of 100, say, 2 (default), 4, 5, 10, rather
than 3, 6, 7.

output if it is NULL (default), an object is created. Otherwise, object will not only be
created but also be saved with a file name (".gif") represented by this argument.

... extra arguments used by ggfittext::geom_fit_text, e. g., angle (0 to 360),
lineheight.

Examples

mytext=c("AAA", "BBB", "CCC")
color1=c("orange", "red", "white")
color2=c("black", "blue", "green")
g1=textgif(mytext, text_color=color1, bg_color=color2,
width=180, height=120, fps=2, family="serif")
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