Encoding: | UTF-8 |
Version: | 1.7.2 |
Date: | 2025-05-21 |
Title: | Interface to the 'Pharmpy' 'Pharmacometrics' Library |
Maintainer: | Rikard Nordgren <rikard.nordgren@uu.se> |
Depends: | R (≥ 3.6.0), altair (≥ 4.0.0) |
SystemRequirements: | Python (>= 3.11.0) |
Imports: | reticulate (≥ 1.38), cli, utils |
Suggests: | testthat, magrittr, here, knitr |
NeedsCompilation: | no |
Description: | Interface to the 'Pharmpy' 'pharmacometrics' library. The 'Reticulate' package is used to interface Python from R. |
URL: | https://github.com/pharmpy/pharmr |
BugReports: | https://github.com/pharmpy/pharmr/issues |
License: | LGPL (≥ 3) |
RoxygenNote: | 7.3.2 |
Packaged: | 2025-05-21 12:22:33 UTC; rikard |
Author: | Rikard Nordgren [aut, cre, cph],
Stella Belin [aut, cph],
Mats O. Karlsson [sad],
Andrew C. Hooker [sad],
Xiaomei Chen [sad],
Sebastian Ueckert |
Repository: | CRAN |
Date/Publication: | 2025-05-22 14:00:04 UTC |
add_admid
Description
Add an admid column to the model dataset and datainfo. Dependent on the presence of a CMT column in order to add admid correctly.
When generated, admids of events in between doses is set to the last used admid.
Usage
add_admid(model)
Arguments
model |
(Model) Pharmpy model |
Value
(model : Model) Pharmpy model
See Also
get_admid : Get or create an admid column
get_cmt : Get or create a cmt column
add_allometry
Description
Add allometric scaling of parameters
Add an allometric function to each listed parameter. The function will be P=P*(X/Z)**T where P is the parameter, X the allometric_variable, Z the reference_value and T is a theta. Default is to automatically use clearance and volume parameters.
If there already exists a covariate effect (or allometric scaling) on a parameter with the specified allometric variable, nothing will be added.
If no allometric variable is specified, it will be extracted from the dataset based on the descriptor "body weight".
Usage
add_allometry(
model,
allometric_variable = NULL,
reference_value = 70,
parameters = NULL,
initials = NULL,
lower_bounds = NULL,
upper_bounds = NULL,
fixed = TRUE
)
Arguments
model |
(Model) Pharmpy model |
allometric_variable |
(str or Expr (optional)) Value to use for allometry (X above) |
reference_value |
(numeric or str or Expr) Reference value (Z above) |
parameters |
(array(numeric or str or Expr) (optional)) Parameters to use or NULL (default) for all available CL, Q and V parameters |
initials |
(array(numeric) (optional)) Initial estimates for the exponents. Default is to use 0.75 for CL and Qs and 1 for Vs |
lower_bounds |
(array(numeric) (optional)) Lower bounds for the exponents. Default is 0 for all parameters |
upper_bounds |
(array(numeric) (optional)) Upper bounds for the exponents. Default is 2 for all parameters |
fixed |
(logical) Whether the exponents should be fixed |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_covariate_effect(model, 'CL', 'WGT')
model <- remove_covariate_effect(model, 'V', 'WGT')
model <- add_allometry(model, allometric_variable='WGT')
model$statements$before_odes
## End(Not run)
add_bioavailability
Description
Add bioavailability statement for the first dose compartment of the model. Can be added as a new parameter or otherwise it will be set to 1. If added as a parameter, a logit transformation can also be applied.
Usage
add_bioavailability(model, add_parameter = TRUE, logit_transform = FALSE)
Arguments
model |
(Model) Pharmpy model |
add_parameter |
(logical) Add new parameter representing bioavailability or not |
logit_transform |
(logical) Logit transform the added bioavailability parameter. |
Value
(Model) Pharmpy model object
See Also
remove_bioavailability
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_bioavailability(model)
## End(Not run)
add_cmt
Description
Add a CMT column to the model dataset and datainfo if not existed
In case of multiple doses, this method is dependent on the presence of an admid column to correctly number each dose.
NOTE : Existing CMT is based on datainfo type being set to 'compartment' and a column named 'CMT' can be replaced
Usage
add_cmt(model)
Arguments
model |
(Model) Pharmpy model |
Value
(model : Model) Pharmpy model
See Also
get_admid : Get or create an admid column
get_cmt : Get or create a cmt column
add_covariate_effect
Description
Adds covariate effect to :class:pharmpy.model
.
The following effects have templates:
Linear function for continuous covariates (lin)
Function:
(equation could not be rendered, see API doc on website)
Init: 0.001
Upper:
If median of covariate equals minimum: 100,000
Otherwise: (equation could not be rendered, see API doc on website)
Lower:
If median of covariate equals maximum: -100,000
Otherwise: (equation could not be rendered, see API doc on website)
Linear function for categorical covariates (cat)
Function:
If covariate is the most common category:
(equation could not be rendered, see API doc on website)
For each additional category:
(equation could not be rendered, see API doc on website)
Init: 0.001
Upper: 5
Lower: -1
(alternative) Linear function for categorical covariates (cat2)
Function:
If covariate is the most common category:
(equation could not be rendered, see API doc on website)
For each additional category:
(equation could not be rendered, see API doc on website)
Init: 0.001
Upper: 6
Lower: 0
Piecewise linear function/"hockey-stick", continuous covariates only (piece_lin)
Function:
If cov <= median:
(equation could not be rendered, see API doc on website)
If cov > median:
(equation could not be rendered, see API doc on website)
Init: 0.001
Upper:
For first state: (equation could not be rendered, see API doc on website)
Otherwise: 100,000
Lower:
For first state: -100,000
Otherwise: (equation could not be rendered, see API doc on website)
Exponential function, continuous covariates only (exp)
Function:
(equation could not be rendered, see API doc on website)
Init:
If lower > 0.001 or upper < 0.001: (equation could not be rendered, see API doc on website)
If estimated init is 0: (equation could not be rendered, see API doc on website)
Otherwise: 0.001
Upper:
If min - median = 0 or max - median = 0: 100
Otherwise:
(equation could not be rendered, see API doc on website)
Lower:
If min - median = 0 or max - median = 0: 0.01
Otherwise:
(equation could not be rendered, see API doc on website)
Power function, continuous covariates only (pow)
Function:
(equation could not be rendered, see API doc on website)
Init: 0.001
Upper: 100,000
Lower: -100
Usage
add_covariate_effect(
model,
parameter,
covariate,
effect,
operation = "*",
allow_nested = FALSE
)
Arguments
model |
(Model) Pharmpy model to add covariate effect to. |
parameter |
(str) Name of parameter to add covariate effect to. |
covariate |
(str) Name of covariate. |
effect |
(str) Type of covariate effect. May be abbreviated covariate effect (see above) or custom. |
operation |
(str) Whether the covariate effect should be added or multiplied (default). |
allow_nested |
(logical) Whether to allow adding a covariate effect when one already exists for the input parameter-covariate pair. |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_covariate_effect(model, "CL", "APGR", "exp")
model$statements$before_odes$full_expression("CL")
## End(Not run)
add_derivative
Description
Add a derivative to be calculcated when running the model. Currently, only derivatives with respect to the prediction is supported. Default is to add all possible ETA and EPS derivatives. First order derivates are specied either by single string or single-element tuple. For instance with_respect_to = "ETA_1" or with_respect_to = ("ETA_1",)
Second order derivatives are specified by giving the two independent varibles in a tuple of tuples. For instance with_respect_to ((ETA_1, EPS_1),)
Multiple derivatives can be specified within a tuple. For instance ((ETA_1, EPS_1), "ETA_1")
Currently, only ETAs and EPSILONs are supported
Usage
add_derivative(model, with_respect_to = NULL)
Arguments
model |
(Model) Pharmpy modeas. |
with_respect_to |
(array(array(str) or str) or str (optional)) Parameter name(s) to use as independent variables. Default is NULL. |
Value
(Pharmpy model.)
add_effect_compartment
Description
Add an effect compartment.
Implemented PD models are:
Linear:
(equation could not be rendered, see API doc on website)
Emax:
(equation could not be rendered, see API doc on website)
Step effect:
(equation could not be rendered, see API doc on website)
Sigmoidal:
(equation could not be rendered, see API doc on website)
Log-linear:
(equation could not be rendered, see API doc on website)
(equation could not be rendered, see API doc on website)
Usage
add_effect_compartment(model, expr)
Arguments
model |
(Model) Pharmpy model |
expr |
(str) Name of the PD effect function. |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_effect_compartment(model, "linear")
model$statements$ode_system$find_compartment("EFFECT")
## End(Not run)
add_estimation_step
Description
Add estimation step
Adds estimation step for a model in a given index. Methods currently supported are: FO, FOCE, ITS, LAPLACE, IMPMAP, IMP, SAEM
Usage
add_estimation_step(
model,
method,
idx = NULL,
interaction = FALSE,
parameter_uncertainty_method = NULL,
evaluation = FALSE,
maximum_evaluations = NULL,
laplace = FALSE,
isample = NULL,
niter = NULL,
auto = NULL,
keep_every_nth_iter = NULL,
residuals = c(),
predictions = c(),
solver = NULL,
solver_rtol = NULL,
solver_atol = NULL,
tool_options = {
},
derivatives = c(),
individual_eta_samples = FALSE
)
Arguments
model |
(Model) Pharmpy model |
method |
(str) estimation method to change to |
idx |
(numeric (optional)) index of estimation step (starting from 0), default is NULL (adds step at the end) |
interaction |
(logical) See :class: |
parameter_uncertainty_method |
(str (optional)) See above |
evaluation |
(logical) See above |
maximum_evaluations |
(numeric (optional)) See above |
laplace |
(logical) See above |
isample |
(numeric (optional)) See above |
niter |
(numeric (optional)) See above |
auto |
(logical (optional)) See above |
keep_every_nth_iter |
(numeric (optional)) See above |
residuals |
(array(str)) See above |
predictions |
(array(str)) See above |
solver |
(str (optional)) See above |
solver_rtol |
(numeric (optional)) See above |
solver_atol |
(numeric (optional)) See above |
tool_options |
(list(str=any)) See above |
derivatives |
(array(array(Expr))) See above |
individual_eta_samples |
(logical) See above |
Value
(Model) Pharmpy model object
See Also
set_estimation_step
remove_estimation_step
append_estimation_step_options
add_parameter_uncertainty_step
remove_parameter_uncertainty_step
set_evaluation_step
Examples
## Not run:
model <- load_example_model("pheno")
opts <- list('NITER'=1000, 'ISAMPLE'=100)
model <- add_estimation_step(model, 'IMP', tool_options=opts)
ests <- model$execution_steps
length(ests)
ests[2]
## End(Not run)
add_iiv
Description
Adds IIVs to :class:pharmpy.model
.
Effects that currently have templates are:
Additive (add)
Proportional (prop)
Exponential (exp)
Logit (log)
Rescaled logit (re_log)
For all except exponential the operation input is not needed. Otherwise user specified input is supported. Initial estimates for new etas are 0.09.
Assuming a statement (equation could not be rendered, see API doc on website)
Additive: (equation could not be rendered, see API doc on website)
Proportional: (equation could not be rendered, see API doc on website)
Exponential: (equation could not be rendered, see API doc on website)
Logit: (equation could not be rendered, see API doc on website)
Rescaled logit: (equation could not be rendered, see API doc on website) with (equation could not be rendered, see API doc on website)
Usage
add_iiv(
model,
list_of_parameters,
expression,
operation = "*",
initial_estimate = 0.09,
eta_names = NULL
)
Arguments
model |
(Model) Pharmpy model to add new IIVs to. |
list_of_parameters |
(array(str) or str) Name/names of parameter to add new IIVs to. |
expression |
(array(str) or str) Effect/effects on eta. Either abbreviated (see above) or custom. |
operation |
(str) Whether the new IIV should be added or multiplied (default). |
initial_estimate |
(numeric) Value of initial estimate of parameter. Default is 0.09 |
eta_names |
(array(str) (optional)) Custom name/names of new eta |
Value
(Model) Pharmpy model object
See Also
add_pk_iiv
add_iov
remove_iiv
remove_iov
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_iiv(model, "CL")
model <- add_iiv(model, "CL", "add")
model$statements$find_assignment("CL")
## End(Not run)
add_indirect_effect
Description
Add indirect (turnover) effect
The concentration (equation could not be rendered, see API doc on website)
Production:
(equation could not be rendered, see API doc on website)
Degradation:
(equation could not be rendered, see API doc on website)
(equation could not be rendered, see API doc on website) Baseline (equation could not be rendered, see API doc on website)
Models:
Linear:
(equation could not be rendered, see API doc on website)
Emax:
(equation could not be rendered, see API doc on website)
Sigmoidal:
(equation could not be rendered, see API doc on website)
Usage
add_indirect_effect(model, expr, prod = TRUE)
Arguments
model |
(Model) Pharmpy model |
expr |
(str) Production (TRUE) (default) or degradation (FALSE) |
prod |
(logical) Name of PD effect function. |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_indirect_effect(model, expr='linear', prod=TRUE)
## End(Not run)
add_individual_parameter
Description
Add an individual or pk parameter to a model
Usage
add_individual_parameter(model, name, init = 0.1, lower = 0)
Arguments
model |
(Model) Pharmpy model |
name |
(str) Name of individual/pk parameter |
init |
(numeric) Initial estimate of the population parameter |
lower |
(numeric) Lower bound for the population parameter |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_individual_parameter(model, "KA")
model$statements$find_assignment("KA")
## End(Not run)
add_iov
Description
Adds IOVs to :class:pharmpy.model
.
Initial estimate of new IOVs are 10% of the IIV eta it is based on.
Usage
add_iov(
model,
occ,
list_of_parameters = NULL,
eta_names = NULL,
distribution = "disjoint"
)
Arguments
model |
(Model) Pharmpy model to add new IOVs to. |
occ |
(str) Name of occasion column. |
list_of_parameters |
(array(str) or str (optional)) List of names of parameters and random variables. Accepts random variable names, parameter names, or a mix of both. |
eta_names |
(array(str) or str (optional)) Custom names of new etas. Must be equal to the number of input etas times the number of categories for occasion. |
distribution |
(str) The distribution that should be used for the new etas. Options are 'disjoint' for disjoint normal distributions, 'joint' for joint normal distribution, 'explicit' for an explicit mix of joint and disjoint distributions, and 'same-as-iiv' for copying the distribution of IIV etas. |
Value
(Model) Pharmpy model object
See Also
add_iiv
add_pk_iiv
remove_iiv
remove_iov
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_iov(model, "TIME", "CL")
model$statements$find_assignment("CL")
## End(Not run)
add_lag_time
Description
Add lag time to the dose compartment of model.
Initial estimate for lag time is set the previous lag time if available, otherwise it is set to the time of first observation/2.
Usage
add_lag_time(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
set_transit_compartments
remove_lag_time
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_lag_time(model)
## End(Not run)
add_metabolite
Description
Adds a metabolite compartment to a model
The flow from the central compartment to the metabolite compartment will be unidirectional.
Presystemic indicate that the metabolite compartment will be directly connected to the DEPOT. If a depot compartment is not present, one will be created.
Usage
add_metabolite(model, drug_dvid = 1, presystemic = FALSE)
Arguments
model |
(Model) Pharmpy model |
drug_dvid |
(numeric) DVID for drug (assuming all other DVIDs being for metabolites) |
presystemic |
(logical) Decide wether or not to add metabolite as a presystemetic fixed drug. |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_metabolite(model)
## End(Not run)
add_parameter_uncertainty_step
Description
Adds parameter uncertainty step to the final estimation step
Usage
add_parameter_uncertainty_step(model, parameter_uncertainty_method)
Arguments
model |
(Model) Pharmpy model |
parameter_uncertainty_method |
(str) Parameter uncertainty method to use |
Value
(Model) Pharmpy model object
See Also
add_estimation_step
set_estimation_step
remove_estimation_step
append_estimation_step_options
remove_parameter_uncertainty_step
set_evaluation_step
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_estimation_step(model, 'FOCE', parameter_uncertainty_method=NULL)
model <- add_parameter_uncertainty_step(model, 'SANDWICH')
ests <- model$execution_steps
ests[1]
## End(Not run)
add_pd_iiv
Description
Adds IIVs to all PD parameters in :class:pharmpy.model
.
Usage
add_pd_iiv(model, initial_estimate = 0.09)
Arguments
model |
(Model) Pharmpy model to add new IIVs to. |
initial_estimate |
(numeric) Value of initial estimate of parameter. Default is 0.09 |
Value
(Model) Pharmpy model object
See Also
add_iiv
add_iov
remove_iiv
remove_iov
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_direct_effect(model, 'emax')
model$statements$find_assignment("EC_50")
model <- add_pd_iiv(model)
model$statements$find_assignment("EC_50")
## End(Not run)
add_peripheral_compartment
Description
Add a peripheral distribution compartment to model
The rate of flow from the central to the peripheral compartment will be parameterized as QPn / VC where VC is the volume of the central compartment. The rate of flow from the peripheral to the central compartment will be parameterized as QPn / VPn where VPn is the volumne of the added peripheral compartment.
If name is set, the peripheral compartment will be added to the compartment with the specified name instead.
Initial estimates:
== =================================================== n == =================================================== 1 (equation could not be rendered, see API doc on website) 2 (equation could not be rendered, see API doc on website) == ===================================================
Usage
add_peripheral_compartment(model, name = NULL)
Arguments
model |
(Model) Pharmpy model |
name |
(str (optional)) Name of compartment to add peripheral to. |
Value
(Model) Pharmpy model object
See Also
set_peripheral_compartment
remove_peripheral_compartment
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_peripheral_compartment(model)
model$statements$ode_system
## End(Not run)
add_pk_iiv
Description
Adds IIVs to all PK parameters in :class:pharmpy.model
.
Will add exponential IIVs to all parameters that are included in the ODE.
Usage
add_pk_iiv(model, initial_estimate = 0.09)
Arguments
model |
(Model) Pharmpy model to add new IIVs to. |
initial_estimate |
(numeric) Value of initial estimate of parameter. Default is 0.09 |
Value
(Model) Pharmpy model object
See Also
add_iiv
add_iov
remove_iiv
remove_iov
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_first_order_absorption(model)
model$statements$find_assignment("MAT")
model <- add_pk_iiv(model)
model$statements$find_assignment("MAT")
## End(Not run)
add_population_parameter
Description
Add a new population parameter to the model
Usage
add_population_parameter(
model,
name,
init,
lower = NULL,
upper = NULL,
fix = FALSE
)
Arguments
model |
(Model) Pharmpy model |
name |
(str) Name of the new parameter |
init |
(numeric) Initial estimate of the new parameter |
lower |
(numeric (optional)) Lower bound of the new parameter |
upper |
(numeric (optional)) Upper bound of the new parameter |
fix |
(logical) Should the new parameter be fixed? |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_population_parameter(model, 'POP_KA', 2)
model$parameters
## End(Not run)
add_predictions
Description
Add predictions and/or residuals
Add predictions to estimation step.
Usage
add_predictions(model, pred)
Arguments
model |
(Model) Pharmpy model |
pred |
(array(str)) List of predictions (e.g. c('IPRED', 'PRED')) |
Value
(Model) Pharmpy model object
See Also
remove_predictions
remove_residuals
set_estimation_step
add_estimation_step
remove_estimation_step
append_estimation_step_options
add_parameter_uncertainty_step
remove_parameter_uncertainty_step
Examples
## Not run:
model <- load_example_model("pheno")
model$execution_steps[-1].predictions
model <- add_predictions(model, c('IPRED'))
model$execution_steps[-1].predictions
## End(Not run)
add_residuals
Description
Add predictions and/or residuals
Add residuals to estimation step.
Added redidual variable(s) need to be one of the following : c('RES', 'IRES', 'WRES', 'IWRES', 'CWRES')
Usage
add_residuals(model, res)
Arguments
model |
(Model) Pharmpy model |
res |
(array(str)) List of residuals (e.g. c('CWRES')) |
Value
(Model) Pharmpy model object
See Also
remove_predictions
remove_residuals
set_estimation_step
add_estimation_step
remove_estimation_step
append_estimation_step_options
add_parameter_uncertainty_step
remove_parameter_uncertainty_step
Examples
## Not run:
model <- load_example_model("pheno")
model$execution_steps[-1].residuals
model <- add_residuals(model, c('WRES'))
model$execution_steps[-1].residuals
## End(Not run)
add_time_after_dose
Description
Calculate and add a TAD column to the dataset
Usage
add_time_after_dose(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_time_after_dose(model)
## End(Not run)
append_estimation_step_options
Description
Append estimation step options
Appends options to an existing estimation step.
Usage
append_estimation_step_options(model, tool_options, idx)
Arguments
model |
(Model) Pharmpy model |
tool_options |
(list(str=any)) any additional tool specific options |
idx |
(numeric) index of estimation step (starting from 0) |
Value
(Model) Pharmpy model object
See Also
add_estimation_step
set_estimation_step
remove_estimation_step
add_parameter_uncertainty_step
remove_parameter_uncertainty_step
set_evaluation_step
Examples
## Not run:
model <- load_example_model("pheno")
opts <- list('NITER'=1000, 'ISAMPLE'=100)
model <- append_estimation_step_options(model, tool_options=opts, idx=0)
est <- model$execution_steps[1]
length(est$tool_options)
## End(Not run)
bin_observations
Description
Bin all observations on the independent variable
Available binning methods:
+—————+————————————————-+ | Method | Description | +===============+=================================================+ | equal_width | Bins with equal width based on the idv | +—————+————————————————-+ | equal_number | Bins containing an equal number of observations | +—————+————————————————-+
Usage
bin_observations(model, method, nbins)
Arguments
model |
(Model) Pharmpy model |
method |
(str) Name of the binning method to use |
nbins |
(numeric) The number of bins wanted |
Value
(data.frame) A series of bin ids indexed on the original record index of the dataset vector A vector of bin edges
Examples
## Not run:
model <- load_example_model("pheno")
bins, boundaries <- bin_observations(model, method="equal_width", nbins=10)
bins
boundaries
## End(Not run)
broadcast_log
Description
Broadcast the log of a context
Default is to use the same broadcaster, but optionally another broadcaster could be used.
Usage
broadcast_log(context, broadcaster = NULL)
Arguments
context |
(Context) Broadcast the log of this context |
broadcaster |
(str (optional)) Name of the broadcaster to use. Default is to use the same as was original used. |
bump_model_number
Description
If the model name ends in a number increase it
If path is set increase the number until no file exists with the same name in path. If model name does not end in a number do nothing.
Usage
bump_model_number(model, path = NULL)
Arguments
model |
(Model) Pharmpy model object |
path |
(str (optional)) Default is to not look for files. |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- model$replace(name="run2")
model <- bump_model_number(model)
model$name
## End(Not run)
calculate_aic
Description
Calculate AIC
AIC = -2LL + 2*n_estimated_parameters
Usage
calculate_aic(model, likelihood)
Arguments
model |
(Model) Pharmpy model object |
likelihood |
(numeric) -2LL |
Value
(numeric) AIC of model fit
calculate_bic
Description
Calculate BIC
Different variations of the BIC can be calculated:
| mixed (default) | BIC = -2LL + n_random_parameters * log(n_individuals) + | n_fixed_parameters * log(n_observations)
| fixed | BIC = -2LL + n_estimated_parameters * log(n_observations)
| random | BIC = -2LL + n_estimated_parameters * log(n_individuals)
| iiv | BIC = -2LL + n_estimated_iiv_omega_parameters * log(n_individuals)
Usage
calculate_bic(model, likelihood, type = "mixed")
Arguments
model |
(Model) Pharmpy model object |
likelihood |
(numeric) -2LL to use |
type |
(str) Type of BIC to calculate. Default is the mixed effects. |
Value
(numeric) BIC of model fit
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
ofv <- results$ofv
calculate_bic(model, ofv)
calculate_bic(model, ofv, type='fixed')
calculate_bic(model, ofv, type='random')
calculate_bic(model, ofv, type='iiv')
## End(Not run)
calculate_corr_from_cov
Description
Calculate correlation matrix from a covariance matrix
Usage
calculate_corr_from_cov(cov)
Arguments
cov |
(data.frame) Covariance matrix |
Value
(data.frame) Correlation matrix
See Also
calculate_se_from_cov : Standard errors from covariance matrix
calculate_se_from_prec : Standard errors from precision matrix
calculate_cov_from_prec : Covariance matrix from precision matrix
calculate_cov_from_corrse : Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov : Precision matrix from covariance matrix
calculate_prec_from_corrse : Precision matrix from correlation matrix and standard errors
calculate_corr_from_prec : Correlation matrix from precision matrix
Examples
## Not run:
results <- load_example_modelfit_results("pheno")
cov <- results$covariance_matrix
cov
calculate_corr_from_cov(cov)
## End(Not run)
calculate_corr_from_prec
Description
Calculate correlation matrix from a precision matrix
Usage
calculate_corr_from_prec(precision_matrix)
Arguments
precision_matrix |
(data.frame) Precision matrix |
Value
(data.frame) Correlation matrix
See Also
calculate_se_from_cov : Standard errors from covariance matrix
calculate_se_from_prec : Standard errors from precision matrix
calculate_corr_from_cov : Correlation matrix from covariance matrix
calculate_cov_from_prec : Covariance matrix from precision matrix
calculate_cov_from_corrse : Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov : Precision matrix from covariance matrix
calculate_prec_from_corrse : Precision matrix from correlation matrix and standard errors
Examples
## Not run:
results <- load_example_modelfit_results("pheno")
prec <- results$precision_matrix
prec
calculate_corr_from_prec(prec)
## End(Not run)
calculate_cov_from_corrse
Description
Calculate covariance matrix from a correlation matrix and standard errors
Usage
calculate_cov_from_corrse(corr, se)
Arguments
corr |
(data.frame) Correlation matrix |
se |
(array) Standard errors |
Value
(data.frame) Covariance matrix
See Also
calculate_se_from_cov : Standard errors from covariance matrix
calculate_se_from_prec : Standard errors from precision matrix
calculate_corr_from_cov : Correlation matrix from covariance matrix
calculate_cov_from_prec : Covariance matrix from precision matrix
calculate_prec_from_cov : Precision matrix from covariance matrix
calculate_prec_from_corrse : Precision matrix from correlation matrix and standard errors
calculate_corr_from_prec : Correlation matrix from precision matrix
Examples
## Not run:
results <- load_example_modelfit_results("pheno")
corr <- results$correlation_matrix
se <- results$standard_errors
corr
calculate_cov_from_corrse(corr, se)
## End(Not run)
calculate_cov_from_prec
Description
Calculate covariance matrix from a precision matrix
Usage
calculate_cov_from_prec(precision_matrix)
Arguments
precision_matrix |
(data.frame) Precision matrix |
Value
(data.frame) Covariance matrix
See Also
calculate_se_from_cov : Standard errors from covariance matrix
calculate_se_from_prec : Standard errors from precision matrix
calculate_corr_from_cov : Correlation matrix from covariance matrix
calculate_cov_from_corrse : Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov : Precision matrix from covariance matrix
calculate_prec_from_corrse : Precision matrix from correlation matrix and standard errors
calculate_corr_from_prec : Correlation matrix from precision matrix
Examples
## Not run:
results <- load_example_modelfit_results("pheno")
prec <- results$precision_matrix
prec
calculate_cov_from_prec(prec)
## End(Not run)
calculate_epsilon_gradient_expression
Description
Calculate the symbolic expression for the epsilon gradient
This function currently only support models without ODE systems
Usage
calculate_epsilon_gradient_expression(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Expression) Symbolic expression
See Also
calculate_eta_gradient_expression : Eta gradient
Examples
## Not run:
model <- load_example_model("pheno_linear")
calculate_epsilon_gradient_expression(model)
## End(Not run)
calculate_eta_gradient_expression
Description
Calculate the symbolic expression for the eta gradient
This function currently only support models without ODE systems
Usage
calculate_eta_gradient_expression(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Expression) Symbolic expression
See Also
calculate_epsilon_gradient_expression : Epsilon gradient
Examples
## Not run:
model <- load_example_model("pheno_linear")
calculate_eta_gradient_expression(model)
## End(Not run)
calculate_eta_shrinkage
Description
Calculate eta shrinkage for each eta
Usage
calculate_eta_shrinkage(
model,
parameter_estimates,
individual_estimates,
sd = FALSE
)
Arguments
model |
(Model) Pharmpy model |
parameter_estimates |
(array) Parameter estimates |
individual_estimates |
(data.frame) Table of individual (eta) estimates |
sd |
(logical) Calculate shrinkage on the standard deviation scale (default is to calculate on the variance scale) |
Value
(Series) Shrinkage for each eta
See Also
calculate_individual_shrinkage
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
pe <- results$parameter_estimates
ie <- results$individual_estimates
calculate_eta_shrinkage(model, pe, ie)
calculate_eta_shrinkage(model, pe, ie, sd=TRUE)
## End(Not run)
calculate_individual_parameter_statistics
Description
Calculate statistics for individual parameters
Calculate the mean (expected value of the distribution), variance (variance of the distribution) and standard error for individual parameters described by arbitrary expressions. Any dataset column or variable used in the model can be used in the expression. The exception being that variables that depends on the solution of the ODE system cannot be used. If covariates are used in the expression the statistics of the parameter is calculated at the median value of each covariate as well as at the 5:th and 95:th percentiles. If no parameter uncertainty is available for the model the standard error will not be calculated.
Usage
calculate_individual_parameter_statistics(
model,
expr_or_exprs,
parameter_estimates,
covariance_matrix = NULL,
seed = 1234
)
Arguments
model |
(Model) A previously estimated model |
expr_or_exprs |
(array(BooleanExpr) or array(Expr) or array(str) or BooleanExpr or Expr or str) expression or iterable of str or expressions Expressions or equations for parameters of interest. If equations are used the names of the left hand sides will be used as the names of the parameters. |
parameter_estimates |
(list(str=numeric)) Parameter estimates |
covariance_matrix |
(data.frame (optional)) Parameter uncertainty covariance matrix |
seed |
(numeric) Random number generator or integer seed |
Value
(data.frame) A DataFrame of statistics indexed on parameter and covariate value.
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
rng <- create_rng(23)
pe <- results$parameter_estimates
cov <- results$covariance_matrix
calculate_individual_parameter_statistics(model, "K=CL/V", pe, cov, seed=rng)
## End(Not run)
calculate_individual_shrinkage
Description
Calculate the individual eta-shrinkage
Definition: ieta_shr = (var(eta) / omega)
Usage
calculate_individual_shrinkage(
model,
parameter_estimates,
individual_estimates_covariance
)
Arguments
model |
(Model) Pharmpy model |
parameter_estimates |
(array) Parameter estimates of model |
individual_estimates_covariance |
(data.frame) Uncertainty covariance matrices of individual estimates |
Value
(DataFrame) Shrinkage for each eta and individual
See Also
calculate_eta_shrinkage
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
pe <- results$parameter_estimates
covs <- results$individual_estimates_covariance
calculate_individual_shrinkage(model, pe, covs)
## End(Not run)
calculate_parameters_from_ucp
Description
Scale parameter values from ucp to normal scale
Usage
calculate_parameters_from_ucp(model, scale, ucps)
Arguments
model |
(Model) Pharmpy model |
scale |
(UCPScale) A parameter scale |
ucps |
(array or list(str=numeric)) Series of parameter values |
Value
(data.frame) Parameters on the normal scale
See Also
calculate_ucp_scale : Calculate the scale for conversion from ucps
Examples
## Not run:
model <- load_example_model("pheno")
scale <- calculate_ucp_scale(model)
values <- list('POP_CL'=0.1, 'POP_VC'=0.1, 'COVAPGR'=0.1, 'IIV_CL'=0.1, 'IIV_VC'=0.1, 'SIGMA'=0.1)
calculate_parameters_from_ucp(model, scale, values)
## End(Not run)
calculate_pk_parameters_statistics
Description
Calculate statistics for common pharmacokinetic parameters
Calculate the mean (expected value of the distribution), variance (variance of the distribution) and standard error for some individual pre-defined pharmacokinetic parameters.
Usage
calculate_pk_parameters_statistics(
model,
parameter_estimates,
covariance_matrix = NULL,
seed = 1234
)
Arguments
model |
(Model) A previously estimated model |
parameter_estimates |
(array) Parameter estimates |
covariance_matrix |
(data.frame (optional)) Parameter uncertainty covariance matrix |
seed |
(numeric) Random number generator or seed |
Value
(data.frame) A DataFrame of statistics indexed on parameter and covariate value.
See Also
calculate_individual_parameter_statistics : Calculation of statistics for arbitrary parameters
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
rng <- create_rng(23)
pe <- results$parameter_estimates
cov <- results$covariance_matrix
calculate_pk_parameters_statistics(model, pe, cov, seed=rng)
## End(Not run)
calculate_prec_from_corrse
Description
Calculate precision matrix from a correlation matrix and standard errors
Usage
calculate_prec_from_corrse(corr, se)
Arguments
corr |
(data.frame) Correlation matrix |
se |
(array) Standard errors |
Value
(data.frame) Precision matrix
See Also
calculate_se_from_cov : Standard errors from covariance matrix
calculate_se_from_prec : Standard errors from precision matrix
calculate_corr_from_cov : Correlation matrix from covariance matrix
calculate_cov_from_prec : Covariance matrix from precision matrix
calculate_cov_from_corrse : Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov : Precision matrix from covariance matrix
calculate_corr_from_prec : Correlation matrix from precision matrix
Examples
## Not run:
results <- load_example_modelfit_results("pheno")
corr <- results$correlation_matrix
se <- results$standard_errors
corr
calculate_prec_from_corrse(corr, se)
## End(Not run)
calculate_prec_from_cov
Description
Calculate precision matrix from a covariance matrix
Usage
calculate_prec_from_cov(cov)
Arguments
cov |
(data.frame) Covariance matrix |
Value
(data.frame) Precision matrix
See Also
calculate_se_from_cov : Standard errors from covariance matrix
calculate_se_from_prec : Standard errors from precision matrix
calculate_corr_from_cov : Correlation matrix from covariance matrix
calculate_cov_from_prec : Covariance matrix from precision matrix
calculate_cov_from_corrse : Covariance matrix from correlation matrix and standard errors
calculate_prec_from_corrse : Precision matrix from correlation matrix and standard errors
calculate_corr_from_prec : Correlation matrix from precision matrix
Examples
## Not run:
results <- load_example_modelfit_results("pheno")
cov <- results$covariance_matrix
cov
calculate_prec_from_cov(cov)
## End(Not run)
calculate_se_from_cov
Description
Calculate standard errors from a covariance matrix
Usage
calculate_se_from_cov(cov)
Arguments
cov |
(data.frame) Input covariance matrix |
Value
(data.frame) Standard errors
See Also
calculate_se_from_prec : Standard errors from precision matrix
calculate_corr_from_cov : Correlation matrix from covariance matrix
calculate_cov_from_prec : Covariance matrix from precision matrix
calculate_cov_from_corrse : Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov : Precision matrix from covariance matrix
calculate_prec_from_corrse : Precision matrix from correlation matrix and standard errors
calculate_corr_from_prec : Correlation matrix from precision matrix
Examples
## Not run:
results <- load_example_modelfit_results("pheno")
cov <- results$covariance_matrix
cov
calculate_se_from_cov(cov)
## End(Not run)
calculate_se_from_prec
Description
Calculate standard errors from a precision matrix
Usage
calculate_se_from_prec(precision_matrix)
Arguments
precision_matrix |
(data.frame) Input precision matrix |
Value
(data.frame) Standard errors
See Also
calculate_se_from_cov : Standard errors from covariance matrix
calculate_corr_from_cov : Correlation matrix from covariance matrix
calculate_cov_from_prec : Covariance matrix from precision matrix
calculate_cov_from_corrse : Covariance matrix from correlation matrix and standard errors
calculate_prec_from_cov : Precision matrix from covariance matrix
calculate_prec_from_corrse : Precision matrix from correlation matrix and standard errors
calculate_corr_from_prec : Correlation matrix from precision matrix
Examples
## Not run:
results <- load_example_modelfit_results("pheno")
prec <- results$precision_matrix
prec
calculate_se_from_prec(prec)
## End(Not run)
calculate_ucp_scale
Description
Calculate a scale for unconstrained parameters for a model
The UCPScale object can be used to calculate unconstrained parameters back into the normal parameter space.
Usage
calculate_ucp_scale(model)
Arguments
model |
(Model) Model for which to calculate an ucp scale |
Value
(UCPScale) A scale object
See Also
calculate_parameters_from_ucp : Calculate parameters from ucp:s
Examples
## Not run:
model <- load_example_model("pheno")
scale <- calculate_ucp_scale(model)
## End(Not run)
check_dataset
Description
Check dataset for consistency across a set of rules
Usage
check_dataset(model, dataframe = FALSE, verbose = FALSE)
Arguments
model |
(Model) Pharmpy model object |
dataframe |
(logical) TRUE to return a DataFrame instead of printing to the console |
verbose |
(logical) Print out all rules checked if TRUE else print only failed rules |
Value
(data.frame) Only returns a DataFrame is dataframe=TRUE
check_high_correlations
Description
Check for highly correlated parameter estimates
Usage
check_high_correlations(model, cor, limit = 0.9)
Arguments
model |
(Model) Pharmpy model object |
cor |
(data.frame) Estimated correlation matrix |
limit |
(numeric) Lower limit for a high correlation |
Value
(data.frame) Correlation values indexed on pairs of parameters for (absolute) correlations above limit
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
cor <- results$correlation_matrix
check_high_correlations(model, cor, limit=0.3)
## End(Not run)
check_parameters_near_bounds
Description
Check if any estimated parameter value is close to its bounds
Usage
check_parameters_near_bounds(
model,
values,
zero_limit = 0.001,
significant_digits = 2
)
Arguments
model |
(Model) Pharmpy model object |
values |
(array) Series of values with index a subset of parameter names. |
zero_limit |
(numeric) maximum distance to 0 bounds |
significant_digits |
(numeric) maximum distance to non-zero bounds in number of significant digits |
Value
(data.frame) Logical Series with same index as values
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
check_parameters_near_bounds(model, results$parameter_estimates)
## End(Not run)
Checks version of Pharmpy/pharmr
Description
Checks whether Pharmpy and pharmr has the same version
Usage
check_pharmpy(pharmpy_version)
Arguments
pharmpy_version |
(str) version number as string |
Checks setup of Pharmpy/pharmr
Description
Checks if everything is setup correctly. The following things are checked:
If Python is installed and has correct version
If Pharmpy is available
If Pharmpy and pharmr version matches
Usage
check_setup()
cleanup_model
Description
Perform various cleanups of a model
This is what is currently done
Make model statements declarative, i.e. only one assignment per symbol
Inline all assignments of one symbol, e.g. X = Y
Remove all random variables with no variability (i.e. with omegas fixed to zero)
Put fixed thetas directly in the model statements
Usage
cleanup_model(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Model) Updated model
Note
When creating NONMEM code from the cleaned model Pharmpy might need toadd certain assignments to make it in line with what NONMEM requires.
Examples
## Not run:
model <- load_example_model("pheno")
model$statements
model <- cleanup_model(model)
model$statements
## End(Not run)
convert_model
Description
Convert model to other format
Note that the operation is not done inplace.
Usage
convert_model(model, to_format)
Arguments
model |
(Model) Model to convert |
to_format |
(str) Name of format to convert into. Currently supported 'generic', 'nlmixr', 'nonmem', and 'rxode' |
Value
(Model) New model object with new underlying model format
Examples
## Not run:
model <- load_example_model("pheno")
converted_model <- convert_model(model, "nlmixr")
## End(Not run)
create_basic_pk_model
Description
Creates a basic pk model of given type. The model will be a one compartment model, with first order elimination and in the case of oral administration first order absorption with no absorption delay. The elimination rate will be (equation could not be rendered, see API doc on website)
Usage
create_basic_pk_model(
administration = "iv",
dataset_path = NULL,
cl_init = 0.01,
vc_init = 1,
mat_init = 0.1
)
Arguments
administration |
(str) Type of PK model to create. Supported are 'iv', 'oral' and 'ivoral' |
dataset_path |
(str (optional)) Optional path to a dataset |
cl_init |
(numeric) Initial estimate of the clearance parameter |
vc_init |
(numeric) Initial estimate of the central volume parameter |
mat_init |
(numeric) Initial estimate of the mean absorption time parameter (if applicable) |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- create_basic_pk_model('oral')
## End(Not run)
create_config_template
Description
Create a basic config file template
If a configuration file already exists it will not be overwritten
Usage
create_config_template()
Examples
## Not run:
create_config_template()
## End(Not run)
create_joint_distribution
Description
Combines some or all etas into a joint distribution.
The etas must be IIVs and cannot be fixed. Initial estimates for covariance between the etas is dependent on whether the model has results from a previous run. In that case, the correlation will be calculated from individual estimates, otherwise correlation will be set to 10%.
Usage
create_joint_distribution(model, rvs = NULL, individual_estimates = NULL)
Arguments
model |
(Model) Pharmpy model |
rvs |
(array(str) (optional)) Sequence of etas or names of etas to combine. If NULL, all etas that are IIVs and non-fixed will be used (full block). NULL is default. |
individual_estimates |
(data.frame (optional)) Optional individual estimates to use for calculation of initial estimates |
Value
(Model) Pharmpy model object
See Also
split_joint_distribution : split etas into separate distributions
Examples
## Not run:
model <- load_example_model("pheno")
model$random_variables$etas
model <- create_joint_distribution(model, c('ETA_CL', 'ETA_VC'))
model$random_variables$etas
## End(Not run)
create_report
Description
Create standard report for results
The report will be an html created at specified path.
Usage
create_report(results, path)
Arguments
results |
(Results) Results for which to create report |
path |
(str) Path to report file |
create_rng
Description
Create a new random number generator
Pharmpy functions that use random sampling take a random number generator or seed as input. This function can be used to create a default new random number generator.
Usage
create_rng(seed = 1234)
Arguments
seed |
(numeric) Seed for the random number generator or NULL (default) for a randomized seed. If seed is generator it will be passed through. |
Value
(Generator) Initialized numpy random number generator object
Examples
## Not run:
rng <- create_rng(23)
rng$standard_normal()
## End(Not run)
create_symbol
Description
Create a new unique variable symbol given a model
Usage
create_symbol(model, stem, force_numbering = FALSE)
Arguments
model |
(Model) Pharmpy model object |
stem |
(str) First part of the new variable name |
force_numbering |
(logical) Forces addition of number to name even if variable does not exist, e.g. COVEFF → COVEFF1 |
Value
(Symbol) Created symbol with unique name
Examples
## Not run:
model <- load_example_model("pheno")
create_symbol(model, "TEMP")
create_symbol(model, "TEMP", force_numbering=TRUE)
create_symbol(model, "CL")
## End(Not run)
deidentify_data
Description
Deidentify a dataset
Two operations are performed on the dataset:
All ID numbers are randomized from the range 1 to n
All columns containing dates will have the year changed
The year change is done by letting the earliest year in the dataset be used as a reference and by maintaining leap years. The reference year will either be 1901, 1902, 1903 or 1904 depending on its distance to the closest preceeding leap year.
Usage
deidentify_data(df, id_column = "ID", date_columns = NULL)
Arguments
df |
(data.frame) A dataset |
id_column |
(str) Name of the id column |
date_columns |
(array(str) (optional)) Names of all date columns |
Value
(data.frame) Deidentified dataset
display_odes
Description
Displays the ordinary differential equation system
Usage
display_odes(model)
Arguments
model |
(Model) Pharmpy model |
Value
(ODEDisplayer) A displayable object
Examples
## Not run:
model <- load_example_model("pheno")
display_odes(model)
## End(Not run)
drop_columns
Description
Drop columns from the dataset or mark as dropped
Usage
drop_columns(model, column_names, mark = FALSE)
Arguments
model |
(Model) Pharmpy model object |
column_names |
(array(str) or str) List of column names or one column name to drop or mark as dropped |
mark |
(logical) Default is to remove column from dataset. Set this to TRUE to only mark as dropped |
Value
(Model) Pharmpy model object
See Also
drop_dropped_columns : Drop all columns marked as drop
undrop_columns : Undrop columns of model
Examples
## Not run:
model <- load_example_model("pheno")
model <- drop_columns(model, c('WGT', 'APGR'))
vector(model$dataset$columns)
## End(Not run)
drop_dropped_columns
Description
Drop columns marked as dropped from the dataset
NM-TRAN date columns will not be dropped by this function even if marked as dropped. Columns not specified in the datainfo ($INPUT for NONMEM) will also be dropped from the dataset.
Usage
drop_dropped_columns(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Model) Pharmpy model object
See Also
drop_columns : Drop specific columns or mark them as drop
Examples
## Not run:
model <- load_example_model("pheno")
model <- drop_dropped_columns(model)
vector(model$dataset$columns)
## End(Not run)
evaluate_epsilon_gradient
Description
Evaluate the numeric epsilon gradient
The gradient is evaluated at the current model parameter values or optionally at the given parameter values. The gradient is done for each data record in the model dataset or optionally using the dataset argument. The gradient is done at the current eta values or optionally at the given eta values.
This function currently only support models without ODE systems
Usage
evaluate_epsilon_gradient(
model,
etas = NULL,
parameters = NULL,
dataset = NULL
)
Arguments
model |
(Model) Pharmpy model |
etas |
(data.frame (optional)) Optional list of eta values |
parameters |
(list(str=numeric) (optional)) Optional list of parameters and values |
dataset |
(data.frame (optional)) Optional dataset |
Value
(data.frame) Gradient
See Also
evaluate_eta_gradient : Evaluate the eta gradient
Examples
## Not run:
model <- load_example_model("pheno_linear")
results <- load_example_modelfit_results("pheno_linear")
etas <- results$individual_estimates
evaluate_epsilon_gradient(model, etas=etas)
## End(Not run)
evaluate_eta_gradient
Description
Evaluate the numeric eta gradient
The gradient is evaluated at the current model parameter values or optionally at the given parameter values. The gradient is done for each data record in the model dataset or optionally using the dataset argument. The gradient is done at the current eta values or optionally at the given eta values.
This function currently only support models without ODE systems
Usage
evaluate_eta_gradient(model, etas = NULL, parameters = NULL, dataset = NULL)
Arguments
model |
(Model) Pharmpy model |
etas |
(data.frame (optional)) Optional list of eta values |
parameters |
(list(str=numeric) (optional)) Optional list of parameters and values |
dataset |
(data.frame (optional)) Optional dataset |
Value
(data.frame) Gradient
See Also
evaluate_epsilon_gradient : Evaluate the epsilon gradient
Examples
## Not run:
model <- load_example_model("pheno_linear")
results <- load_example_modelfit_results("pheno_linear")
etas <- results$individual_estimates
evaluate_eta_gradient(model, etas=etas)
## End(Not run)
evaluate_expression
Description
Evaluate expression using model
Calculate the value of expression for each data record. The expression can contain dataset columns, variables in model and population parameters. If the model has parameter estimates these will be used. Initial estimates will be used for non-estimated parameters.
Usage
evaluate_expression(model, expression, parameter_estimates = NULL)
Arguments
model |
(Model) Pharmpy model |
expression |
(str or numeric or Expr) Expression to evaluate |
parameter_estimates |
(list(str=numeric) (optional)) Parameter estimates to use instead of initial estimates |
Value
(data.frame) A series of one evaluated value for each data record
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
pe <- results$parameter_estimates
evaluate_expression(model, "TVCL*1000", parameter_estimates=pe)
## End(Not run)
evaluate_individual_prediction
Description
Evaluate the numeric individual prediction
The prediction is evaluated at the current model parameter values or optionally at the given parameter values. The evaluation is done for each data record in the model dataset or optionally using the dataset argument. The evaluation is done at the current eta values or optionally at the given eta values.
This function currently only support models without ODE systems
Usage
evaluate_individual_prediction(
model,
etas = NULL,
parameters = NULL,
dataset = NULL
)
Arguments
model |
(Model) Pharmpy model |
etas |
(data.frame (optional)) Optional list of eta values |
parameters |
(list(str=numeric) (optional)) Optional list of parameters and values |
dataset |
(data.frame (optional)) Optional dataset |
Value
(data.frame) Individual predictions
See Also
evaluate_population_prediction : Evaluate the population prediction
Examples
## Not run:
model <- load_example_model("pheno_linear")
results <- load_example_modelfit_results("pheno_linear")
etas <- results$individual_estimates
evaluate_individual_prediction(model, etas=etas)
## End(Not run)
evaluate_population_prediction
Description
Evaluate the numeric population prediction
The prediction is evaluated at the current model parameter values or optionally at the given parameter values. The evaluation is done for each data record in the model dataset or optionally using the dataset argument.
This function currently only support models without ODE systems
Usage
evaluate_population_prediction(model, parameters = NULL, dataset = NULL)
Arguments
model |
(Model) Pharmpy model |
parameters |
(list(str=numeric) (optional)) Optional list of parameters and values |
dataset |
(data.frame (optional)) Optional dataset |
Value
(data.frame) Population predictions
See Also
evaluate_individual_prediction : Evaluate the individual prediction
Examples
## Not run:
model <- load_example_model("pheno_linear")
results <- load_example_modelfit_results("pheno_linear")
pe <- results$parameter_estimates
evaluate_population_prediction(model, parameters=list(pe))
## End(Not run)
evaluate_weighted_residuals
Description
Evaluate the weighted residuals
The residuals is evaluated at the current model parameter values or optionally at the given parameter values. The residuals is done for each data record in the model dataset or optionally using the dataset argument.
This function currently only support models without ODE systems
Usage
evaluate_weighted_residuals(model, parameters = NULL, dataset = NULL)
Arguments
model |
(Model) Pharmpy model |
parameters |
(list(str=numeric) (optional)) Optional list of parameters and values |
dataset |
(data.frame (optional)) Optional dataset |
Value
(data.frame) WRES
Examples
## Not run:
model <- load_example_model("pheno_linear")
results <- load_example_modelfit_results("pheno_linear")
parameters <- results$parameter_estimates
evaluate_weighted_residuals(model, parameters=list(parameters))
## End(Not run)
expand_additional_doses
Description
Expand additional doses into separate dose records
Usage
expand_additional_doses(model, flag = FALSE)
Arguments
model |
(Model) Pharmpy model object |
flag |
(logical) TRUE to add a boolean EXPANDED column to mark added records. In this case all columns in the original dataset will be kept. Care needs to be taken to handle the new dataset. |
Value
(Model) Pharmpy model object
filter_dataset
Description
Filter dataset according to expr and return a model with the filtered dataset.
Example: "DVID == 1" will filter the dataset so that only the rows with DVID = 1 remain.
Usage
filter_dataset(model, expr)
Arguments
model |
(Model) Pharmpy model object |
expr |
(str) expression for dataset query |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model$dataset
model <- filter_dataset(model, 'WGT < 1.4')
model$dataset
## End(Not run)
find_clearance_parameters
Description
Find clearance parameters in model
Usage
find_clearance_parameters(model)
Arguments
model |
(Model) Pharmpy model |
Value
(vector) A vector of clearance parameters
Examples
## Not run:
model <- load_example_model("pheno")
find_clearance_parameters(model)
## End(Not run)
find_volume_parameters
Description
Find volume parameters in model
Usage
find_volume_parameters(model)
Arguments
model |
(Model) Pharmpy model |
Value
(vector) A vector of volume parameters
Examples
## Not run:
model <- load_example_model("pheno")
find_volume_parameters(model)
## End(Not run)
fit
Description
Fit models.
Usage
fit(model_or_models, esttool = NULL, name = NULL, context = NULL, ncores = 1)
Arguments
model_or_models |
(Model or array(Model)) List of models or one single model |
esttool |
(str (optional)) Estimation tool to use. NULL to use default |
name |
(str (optional)) Name of run |
context |
(Context (optional)) Run in this context |
ncores |
(numeric) Number of cores to use for estimation |
Value
(ModelfitResults | vector of ModelfitResults) ModelfitResults for the model or models
See Also
run_tool
Examples
## Not run:
model <- load_example_model("pheno")
results <- fit(model)
## End(Not run)
fix_or_unfix_parameters
Description
Fix or unfix parameters
Set fixedness of parameters to specified values
Usage
fix_or_unfix_parameters(model, parameters, strict = TRUE)
Arguments
model |
(Model) Pharmpy model |
parameters |
(list(str=logical)) Set fix/unfix for these parameters |
strict |
(logical) Whether all parameters in input need to exist in the model. Default is TRUE |
Value
(Model) Pharmpy model object
See Also
fix_parameters : Fix parameters
unfix_paramaters : Unfixing parameters
fix_paramaters_to : Fixing parameters and setting a new initial estimate in the same
function
unfix_paramaters_to : Unfixing parameters and setting a new initial estimate in the same
function
Examples
## Not run:
model <- load_example_model("pheno")
model$parameters['POP_CL']
model <- fix_or_unfix_parameters(model, list('POP_CL'=TRUE))
model$parameters['POP_CL']
## End(Not run)
fix_parameters
Description
Fix parameters
Fix all listed parameters
Usage
fix_parameters(model, parameter_names, strict = TRUE)
Arguments
model |
(Model) Pharmpy model |
parameter_names |
(array(str) or str) one parameter name or a vector of parameter names |
strict |
(logical) Whether all parameters in input need to exist in the model. Default is TRUE |
Value
(Model) Pharmpy model object
See Also
fix_or_unfix_parameters : Fix or unfix parameters (given boolean)
fix_parameters_to : Fixing and setting parameter initial estimates in the same function
unfix_paramaters : Unfixing parameters
unfix_paramaters_to : Unfixing parameters and setting a new initial estimate in the same
function
Examples
## Not run:
model <- load_example_model("pheno")
model$parameters['POP_CL']
model <- fix_parameters(model, 'POP_CL')
model$parameters['POP_CL']
## End(Not run)
fix_parameters_to
Description
Fix parameters to
Fix all listed parameters to specified value/values
Usage
fix_parameters_to(model, inits, strict = TRUE)
Arguments
model |
(Model) Pharmpy model |
inits |
(list(str=numeric)) Inits for all parameters to fix and set init |
strict |
(logical) Whether all parameters in input need to exist in the model. Default is TRUE |
Value
(Model) Pharmpy model object
See Also
fix_parameters : Fix parameters
fix_or_unfix_parameters : Fix or unfix parameters (given boolean)
unfix_paramaters : Unfixing parameters
unfix_paramaters_to : Unfixing parameters and setting a new initial estimate in the same
function
Examples
## Not run:
model <- load_example_model("pheno")
model$parameters['POP_CL']
model <- fix_parameters_to(model, list('POP_CL'=0.5))
model$parameters['POP_CL']
## End(Not run)
get_admid
Description
Get the admid from model dataset
If an administration column is present this will be extracted otherwise an admid column will be created based on the admids of the present doses. This is dependent on the presence of a CMT column to be generated correctly.
When generated, admids of events in between doses is set to the last used admid.
Usage
get_admid(model)
Arguments
model |
(Model) Pharmpy model |
Value
(data.frame) ADMID
get_baselines
Description
Baselines for each subject.
Baseline is taken to be the first row even if that has a missing value.
Usage
get_baselines(model)
Arguments
model |
(Model) Pharmpy model |
Value
(data.frame) Dataset with the baselines
Examples
## Not run:
model <- load_example_model("pheno")
get_baselines(model)
## End(Not run)
get_bioavailability
Description
Get bioavailability of doses for all compartments
Usage
get_bioavailability(model)
Arguments
model |
(Model) Pharmpy model |
Value
(list) Dictionary from compartment name to bioavailability expression
get_central_volume_and_clearance
Description
Get the volume and clearance parameters
Usage
get_central_volume_and_clearance(model)
Arguments
model |
(Model) Pharmpy model |
Value
(sympy.Symbol) Volume symbol sympy.Symbol Clearance symbol
Examples
## Not run:
model <- load_example_model("pheno")
get_central_volume_and_clearance(model)
## End(Not run)
get_cmt
Description
Get the cmt (compartment) column from the model dataset
If a cmt column is present this will be extracted otherwise a cmt column will be created. If created, multiple dose compartments are dependent on the presence of an admid type column, otherwise, dose/non-dose will be considered.
Usage
get_cmt(model)
Arguments
model |
(Model) Pharmpy model |
Value
(data.frame) CMT
get_concentration_parameters_from_data
Description
Create a dataframe with concentration parameters
Note that all values are directly calculated from the dataset
Usage
get_concentration_parameters_from_data(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(data.frame) Concentration parameters
Examples
## Not run:
model <- load_example_model("pheno")
get_concentration_parameters_from_data(model)
## End(Not run)
get_config_path
Description
Returns path to the user config path
Usage
get_config_path()
Value
(str or NULL) Path to user config or NULL if file does not exist
Examples
## Not run:
get_config_path()
## End(Not run)
get_covariate_baselines
Description
Return a dataframe with baselines of all covariates for each id.
Baseline is taken to be the first row even if that has a missing value.
Usage
get_covariate_baselines(model)
Arguments
model |
(Model) Pharmpy model |
Value
(data.frame) covariate baselines
See Also
get_baselines : baselines for all data columns
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_covariates(model, c("WGT", "APGR"))
get_covariate_baselines(model)
## End(Not run)
get_covariate_effects
Description
Return a list of all used covariates within a model
The list will have parameter name as key with a connected value as a vector of tuple(s) with (covariate, effect type, operator)
Usage
get_covariate_effects(model)
Arguments
model |
(Model) Model to extract covariates from. |
Value
(Dictionary : Dictionary of parameters and connected covariate(s))
get_doseid
Description
Get a DOSEID series from the dataset with an id of each dose period starting from 1
If a a dose and observation exist at the same time point the observation will be counted towards the previous dose.
Usage
get_doseid(model)
Arguments
model |
(Model) Pharmpy model |
Value
(data.frame) DOSEIDs
Examples
## Not run:
model <- load_example_model("pheno")
get_doseid(model)
## End(Not run)
get_doses
Description
Get a series of all doses
Indexed with ID and TIME
Usage
get_doses(model)
Arguments
model |
(Model) Pharmpy model |
Value
(data.frame) doses
Examples
## Not run:
model <- load_example_model("pheno")
get_doses(model)
## End(Not run)
get_dv_symbol
Description
Get the symbol for a certain dvid or dv and check that it is valid
Usage
get_dv_symbol(model, dv = NULL)
Arguments
model |
(Model) Pharmpy model |
dv |
(Expr or str or numeric (optional)) Either a dv symbol, str or dvid. If NULL (default) return the only or first dv. |
Value
(Expr) DV symbol
Examples
## Not run:
model <- load_example_model("pheno")
get_dv_symbol(model, "Y")
get_dv_symbol(model, 1)
## End(Not run)
get_evid
Description
Get the evid from model dataset
If an event column is present this will be extracted otherwise an evid column will be created.
Usage
get_evid(model)
Arguments
model |
(Model) Pharmpy model |
Value
(data.frame) EVID
get_ids
Description
Retrieve a vector of all subject ids of the dataset
Usage
get_ids(model)
Arguments
model |
(Model) Pharmpy model |
Value
(vector) All subject ids
Examples
## Not run:
model <- load_example_model("pheno")
get_ids(model)
## End(Not run)
get_individual_parameters
Description
Retrieves all individual parameters in a :class:pharmpy.model
.
By default all individual parameters will be found even ones having no random effect. The level arguments makes it possible to find only those having any random effect or only those having a certain random effect. Using the dv option will give all individual parameters affecting a certain dv. Note that the DV for PD in a PKPD model often also is affected by the PK parameters.
Usage
get_individual_parameters(model, level = "all", dv = NULL)
Arguments
model |
(Model) Pharmpy model to retrieve the individuals parameters from |
level |
(str) The variability level to look for: 'iiv', 'iov', 'random' or 'all' (default) |
dv |
(str or Expr or numeric (optional)) Name or DVID of dependent variable. NULL for all (default) |
Value
(vectorc(str)) A vector of the parameter names as strings
See Also
get_pd_parameters
get_pk_parameters
get_rv_parameters
has_random_effect
Examples
## Not run:
model <- load_example_model("pheno")
get_individual_parameters(model)
get_individual_parameters(model, 'iiv')
get_individual_parameters(model, 'iov')
## End(Not run)
get_individual_prediction_expression
Description
Get the full symbolic expression for the modelled individual prediction
This function currently only support models without ODE systems
Usage
get_individual_prediction_expression(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Expression) Symbolic expression
See Also
get_population_prediction_expression : Get full symbolic epression for the population prediction
Examples
## Not run:
model <- load_example_model("pheno_linear")
get_individual_prediction_expression(model)
## End(Not run)
get_initial_conditions
Description
Get initial conditions for the ode system
Default initial conditions at t=0 for amounts is 0
Usage
get_initial_conditions(model, dosing = FALSE)
Arguments
model |
(Model) Pharmpy model |
dosing |
(logical) Set to TRUE to add dosing as initial conditions |
Value
(list) Initial conditions
Examples
## Not run:
model <- load_example_model("pheno")
get_initial_conditions(model)
get_initial_conditions(model, dosing=TRUE)
## End(Not run)
get_lag_times
Description
Get lag times for all compartments
Usage
get_lag_times(model)
Arguments
model |
(Model) Pharmpy model |
Value
(list) Dictionary from compartment name to lag time expression
get_mdv
Description
Get MDVs from dataset
Usage
get_mdv(model)
Arguments
model |
(Model) Pharmpy model |
Value
(data.frame) MDVs
get_model_code
Description
Get the model code of the underlying model language as a string
Usage
get_model_code(model)
Arguments
model |
(Model) Pharmpy model |
Value
(str) Model code
Examples
## Not run:
model <- load_example_model("pheno")
code <- get_model_code(model)
## End(Not run)
get_model_covariates
Description
List of covariates used in model
A covariate in the model is here defined to be a data item affecting the model prediction excluding dosing items that are not used in model code.
Usage
get_model_covariates(model, strings = FALSE)
Arguments
model |
(Model) Pharmpy model |
strings |
(logical) Return strings instead of symbols? FALSE (default) will give symbols |
Value
(vector) Covariate symbols or names
Examples
## Not run:
model <- load_example_model("pheno")
get_model_covariates(model)
get_model_covariates(model, strings=TRUE)
## End(Not run)
get_mu_connected_to_parameter
Description
Return Mu name connected to parameter
If the given parameter is not dependent on any Mu, NULL is returned
Usage
get_mu_connected_to_parameter(model, parameter)
Arguments
model |
(Model) Pharmpy model object. |
parameter |
(str) Name of parameter which to find Mu parameter for. |
Value
(str) Name of Mu parameter or NULL
get_nested_model
Description
Return nested model from a pair of models
Function to get a nested model from a pair of models, NULL if neither model is nested. A model is not considered nested if:
They are the same model
They have the same number of parameters
The parameters of the reduced model is not a subset of the extended model
The dosing or DV is changed
Assumptions made:
Parametrization is the same
Parameter names are the same
Usage
get_nested_model(model_1, model_2)
Arguments
model_1 |
(Model) Pharmpy model object |
model_2 |
(Model) Pharmpy model object |
Value
(Model | NULL) Pharmpy model object or NULL
Examples
## Not run:
model_1 <- load_example_model("pheno")
model_2 <- add_peripheral_compartment(model_1)
model_2 <- set_name(model_2, 'pheno_2')
nested <- get_nested_model(model_1, model_2)
nested$name
## End(Not run)
get_number_of_individuals
Description
Retrieve the number of individuals in the model dataset
Usage
get_number_of_individuals(model)
Arguments
model |
(Model) Pharmpy model |
Value
(integer) Number of individuals in the model dataset
Note
For NONMEM models this is the number of individuals of the active dataset, i.e. after filteringof IGNORE and ACCEPT and removal of individuals with no observations.
See Also
get_number_of_observations : Get the number of observations in a dataset
get_number_of_observations_per_individual : Get the number of observations per individual in a
dataset
Examples
## Not run:
model <- load_example_model("pheno")
get_number_of_individuals(model)
## End(Not run)
get_number_of_observations
Description
Retrieve the total number of observations in the model dataset
Usage
get_number_of_observations(model)
Arguments
model |
(Model) Pharmpy model |
Value
(integer) Number of observations in the model dataset
Note
For NONMEM models this is the number of observations of the active dataset, i.e. after filteringof IGNORE and ACCEPT and removal of individuals with no observations.
See Also
get_number_of_individuals : Get the number of individuals in a dataset
get_number_of_observations_per_individual : Get the number of observations per individual in a
dataset
Examples
## Not run:
model <- load_example_model("pheno")
get_number_of_observations(model)
## End(Not run)
get_number_of_observations_per_individual
Description
Number of observations for each individual
Usage
get_number_of_observations_per_individual(model)
Arguments
model |
(Model) Pharmpy model |
Value
(data.frame) Number of observations in the model dataset
Note
For NONMEM models this is the individuals and number of observations of the active dataset, i.e.after filtering of IGNORE and ACCEPT and removal of individuals with no observations.
See Also
get_number_of_individuals : Get the number of individuals in a dataset
get_number_of_observations_per_individual : Get the number of observations per individual in a
dataset
Examples
## Not run:
model <- load_example_model("pheno")
get_number_of_observations_per_individual(model)
## End(Not run)
get_number_of_peripheral_compartments
Description
Return the number of peripherals compartments connected to the central compartment
Usage
get_number_of_peripheral_compartments(model)
Arguments
model |
(Model) Pharmpy model |
Value
(integer) Number of peripherals compartments
get_number_of_transit_compartments
Description
Return the number of transit compartments in the model
Usage
get_number_of_transit_compartments(model)
Arguments
model |
(Model) Pharmpy model |
Value
(integer) Number of transit compartments
get_observation_expression
Description
Get the full symbolic expression for the observation according to the model
This function currently only support models without ODE systems
Usage
get_observation_expression(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Expression) Symbolic expression
Examples
## Not run:
model <- load_example_model("pheno_linear")
expr <- get_observation_expression(model)
print(expr$unicode())
## End(Not run)
get_observations
Description
Get observations from dataset
Usage
get_observations(model, keep_index = FALSE, dv = NULL)
Arguments
model |
(Model) Pharmpy model |
keep_index |
(logical) Set to TRUE if the original index should be kept. Otherwise a new index using ID and idv will be created. |
dv |
(Expr or str or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only) |
Value
(data.frame) Observations indexed over ID and TIME
See Also
get_number_of_observations : get the number of observations
get_number_of_observations_per_individual : get the number of observations per individual
Examples
## Not run:
model <- load_example_model("pheno")
get_observations(model)
## End(Not run)
get_omegas
Description
Get all omegas (variability parameters) of a model
Usage
get_omegas(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Parameters) A copy of all omega parameters
See Also
get_thetas : Get theta parameters
get_sigmas : Get sigma parameters
Examples
## Not run:
model <- load_example_model("pheno")
get_omegas(model)
## End(Not run)
get_parameter_rv
Description
Retrieves name of random variable in :class:pharmpy.model.Model
given a parameter.
Usage
get_parameter_rv(model, parameter, var_type = "iiv")
Arguments
model |
(Model) Pharmpy model to retrieve parameters from |
parameter |
(str) Name of parameter to retrieve random variable from |
var_type |
(str) Variability type: iiv (default) or iov |
Value
(vectorc(str)) A vector of random variable names for the given parameter
See Also
get_rv_parameters
has_random_effect
get_pk_parameters
get_individual_parameters
Examples
## Not run:
model <- load_example_model("pheno")
get_parameter_rv(model, 'CL')
## End(Not run)
get_pd_parameters
Description
Retrieves PD parameters in :class:pharmpy.model.Model
.
Usage
get_pd_parameters(model)
Arguments
model |
(Model) Pharmpy model to retrieve the PD parameters from |
Value
(vectorc(str)) A vector of the PD parameter names of the given model
See Also
get_pk_parameters
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_direct_effect(model, "linear")
get_pd_parameters(model)
## End(Not run)
get_pk_parameters
Description
Retrieves PK parameters in :class:pharmpy.model.Model
.
Usage
get_pk_parameters(model, kind = "all")
Arguments
model |
(Model) Pharmpy model to retrieve the PK parameters from |
kind |
(str) The type of parameter to retrieve: 'absorption', 'distribution', 'elimination', or 'all' (default). |
Value
(vectorc(str)) A vector of the PK parameter names of the given model
See Also
get_individual_parameters
get_rv_parameters
Examples
## Not run:
model <- load_example_model("pheno")
get_pk_parameters(model)
get_pk_parameters(model, 'absorption')
get_pk_parameters(model, 'distribution')
get_pk_parameters(model, 'elimination')
## End(Not run)
get_population_prediction_expression
Description
Get the full symbolic expression for the modelled population prediction
This function currently only support models without ODE systems
Usage
get_population_prediction_expression(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Expression) Symbolic expression
See Also
get_individual_prediction_expression : Get full symbolic epression for the individual prediction
Examples
## Not run:
model <- load_example_model("pheno_linear")
get_population_prediction_expression(model)
## End(Not run)
get_rv_parameters
Description
Retrieves parameters in :class:pharmpy.model.Model
given a random variable.
Usage
get_rv_parameters(model, rv)
Arguments
model |
(Model) Pharmpy model to retrieve parameters from |
rv |
(str) Name of random variable to retrieve |
Value
(vectorc(str)) A vector of parameter names for the given random variable
See Also
has_random_effect
get_pk_parameters
get_individual_parameters
Examples
## Not run:
model <- load_example_model("pheno")
get_rv_parameters(model, 'ETA_CL')
## End(Not run)
get_sigmas
Description
Get all sigmas (residual error variability parameters) of a model
Usage
get_sigmas(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Parameters) A copy of all sigma parameters
See Also
get_thetas : Get theta parameters
get_omegas : Get omega parameters
Examples
## Not run:
model <- load_example_model("pheno")
get_sigmas(model)
## End(Not run)
get_thetas
Description
Get all thetas (structural parameters) of a model
Usage
get_thetas(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Parameters) A copy of all theta parameters
See Also
get_omegas : Get omega parameters
get_sigmas : Get sigma parameters
Examples
## Not run:
model <- load_example_model("pheno")
get_thetas(model)
## End(Not run)
get_unit_of
Description
Derive the physical unit of a variable in the model
Unit information for the dataset needs to be available. The variable can be defined in the code, a dataset olumn, a parameter or a random variable.
Usage
get_unit_of(model, variable)
Arguments
model |
(Model) Pharmpy model object |
variable |
(str) Find physical unit of this variable |
Value
(Unit) A unit expression
Examples
## Not run:
model <- load_example_model("pheno")
get_unit_of(model, "Y")
get_unit_of(model, "VC")
get_unit_of(model, "WGT")
## End(Not run)
get_zero_order_inputs
Description
Get zero order inputs for all compartments
Usage
get_zero_order_inputs(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Matrix) Vector of inputs
Examples
## Not run:
model <- load_example_model("pheno")
get_zero_order_inputs(model)
## End(Not run)
greekify_model
Description
Convert to using greek letters for all population parameters
Usage
greekify_model(model, named_subscripts = FALSE)
Arguments
model |
(Model) Pharmpy model |
named_subscripts |
(logical) Use previous parameter names as subscripts. Default is to use integer subscripts |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model$statements
model <- greekify_model(cleanup_model(model))
model$statements
## End(Not run)
has_additive_error_model
Description
Check if a model has an additive error model
Multiple dependent variables are supported. By default the only (in case of one) or the first (in case of many) dependent variable is going to be checked.
Usage
has_additive_error_model(model, dv = NULL)
Arguments
model |
(Model) The model to check |
dv |
(Expr or str or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only) |
Value
(logical) TRUE if the model has an additive error model and FALSE otherwise
See Also
has_proportional_error_model : Check if a model has a proportional error model
has_combined_error_model : Check if a model has a combined error model
has_weighted_error_model : Check if a model has a weighted error model
Examples
## Not run:
model <- load_example_model("pheno")
has_additive_error_model(model)
## End(Not run)
has_combined_error_model
Description
Check if a model has a combined additive and proportional error model
Multiple dependent variables are supported. By default the only (in case of one) or the first (in case of many) dependent variable is going to be checked.
Usage
has_combined_error_model(model, dv = NULL)
Arguments
model |
(Model) The model to check |
dv |
(Expr or str or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only) |
Value
(logical) TRUE if the model has a combined error model and FALSE otherwise
See Also
has_additive_error_model : Check if a model has an additive error model
has_proportional_error_model : Check if a model has a proportional error model
has_weighted_error_model : Check if a model has a weighted error model
Examples
## Not run:
model <- load_example_model("pheno")
has_combined_error_model(model)
## End(Not run)
has_covariate_effect
Description
Tests if an instance of :class:pharmpy.model
has a given covariate
effect.
Usage
has_covariate_effect(model, parameter, covariate)
Arguments
model |
(Model) Pharmpy model to check for covariate effect. |
parameter |
(str) Name of parameter. |
covariate |
(str) Name of covariate. |
Value
(logical) Whether input model has a covariate effect of the input covariate on the input parameter.
Examples
## Not run:
model <- load_example_model("pheno")
has_covariate_effect(model, "CL", "APGR")
## End(Not run)
has_first_order_absorption
Description
Check if ode system describes a first order absorption
Currently defined as the central compartment having a unidirectional input flow from another compartment (such as depot or transit)
Usage
has_first_order_absorption(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Bool : TRUE if model has first order absorption)
has_first_order_elimination
Description
Check if the model describes first order elimination
This function relies on heuristics and will not be able to detect all possible ways of coding the first order elimination.
Usage
has_first_order_elimination(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) TRUE if model has describes first order elimination
Examples
## Not run:
model <- load_example_model("pheno")
has_first_order_elimination(model)
## End(Not run)
has_instantaneous_absorption
Description
Check if ode system describes a instantaneous absorption
Defined as being a instantaneous dose directly into the central compartment
Usage
has_instantaneous_absorption(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Bool : TRUE if model has instantaneous absorption)
has_linear_odes
Description
Check if model has a linear ODE system
Usage
has_linear_odes(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) TRUE if model has an ODE system that is linear
See Also
has_odes
has_linear_odes_with_real_eigenvalues
Examples
## Not run:
model <- load_example_model("pheno")
has_linear_odes(model)
## End(Not run)
has_linear_odes_with_real_eigenvalues
Description
Check if model has a linear ode system with real eigenvalues
Usage
has_linear_odes_with_real_eigenvalues(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) TRUE if model has an ODE system that is linear
See Also
has_odes
has_linear_odes
Examples
## Not run:
model <- load_example_model("pheno")
has_linear_odes_with_real_eigenvalues(model)
## End(Not run)
has_michaelis_menten_elimination
Description
Check if the model describes Michaelis-Menten elimination
This function relies on heuristics and will not be able to detect all possible ways of coding the Michaelis-Menten elimination.
Usage
has_michaelis_menten_elimination(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) TRUE if model has describes Michaelis-Menten elimination
Examples
## Not run:
model <- load_example_model("pheno")
has_michaelis_menten_elimination(model)
model <- set_michaelis_menten_elimination(model)
has_michaelis_menten_elimination(model)
## End(Not run)
has_mixed_mm_fo_elimination
Description
Check if the model describes mixed Michaelis-Menten and first order elimination
This function relies on heuristics and will not be able to detect all possible ways of coding the mixed Michalis-Menten and first order elimination.
Usage
has_mixed_mm_fo_elimination(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) TRUE if model has describes Michaelis-Menten elimination
Examples
## Not run:
model <- load_example_model("pheno")
has_mixed_mm_fo_elimination(model)
model <- set_mixed_mm_fo_elimination(model)
has_mixed_mm_fo_elimination(model)
## End(Not run)
has_mu_reference
Description
Check if model is Mu-reference or not.
Will return TRUE if each parameter with an ETA is dependent on a Mu parameter.
Usage
has_mu_reference(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(logical) Whether the model is mu referenced
has_odes
Description
Check if model has an ODE system
Usage
has_odes(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) TRUE if model has an ODE system
See Also
has_linear_odes
has_linear_odes_with_real_eigenvalues
Examples
## Not run:
model <- load_example_model("pheno")
has_odes(model)
## End(Not run)
has_presystemic_metabolite
Description
Checks whether a model has a presystemic metabolite
If pre-systemic drug there will be a flow from DEPOT to METABOLITE as well as being a flow from the CENTRAL to METABOLITE
Usage
has_presystemic_metabolite(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) Whether a model has presystemic metabolite
Examples
## Not run:
model <- load_example_model("pheno")
model <- add_metabolite(model, presystemic=TRUE)
has_presystemic_metabolite(model)
## End(Not run)
has_proportional_error_model
Description
Check if a model has a proportional error model
Multiple dependent variables are supported. By default the only (in case of one) or the first (in case of many) dependent variable is going to be checked.
Usage
has_proportional_error_model(model, dv = NULL)
Arguments
model |
(Model) The model to check |
dv |
(Expr or str or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only) |
Value
(logical) TRUE if the model has a proportional error model and FALSE otherwise
See Also
has_additive_error_model : Check if a model has an additive error model
has_combined_error_model : Check if a model has a combined error model
has_weighted_error_model : Check if a model has a weighted error model
Examples
## Not run:
model <- load_example_model("pheno")
has_proportional_error_model(model)
## End(Not run)
has_random_effect
Description
Decides whether the given parameter of a :class:pharmpy.model
has a
random effect.
Usage
has_random_effect(model, parameter, level = "all")
Arguments
model |
(Model) Input Pharmpy model |
parameter |
(str) Input parameter |
level |
(str) The variability level to look for: 'iiv', 'iov', or 'all' (default) |
Value
(logical) Whether the given parameter has a random effect
See Also
get_individual_parameters
get_rv_parameters
Examples
## Not run:
model <- load_example_model("pheno")
has_random_effect(model, 'S1')
has_random_effect(model, 'CL', 'iiv')
has_random_effect(model, 'CL', 'iov')
## End(Not run)
has_seq_zo_fo_absorption
Description
Check if ode system describes a sequential zero-order, first-order absorption
Defined as the model having both zero- and first-order absorption.
Usage
has_seq_zo_fo_absorption(model)
Arguments
model |
(Model) DPharmpy model |
See Also
has_zero_order_absorption
has_first_order_absorption
has_weibull_absorption
Description
Check if ode system describes a weibull type absorption
warning:: This function is still under development.
Usage
has_weibull_absorption(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Bool : TRUE if model has weibull type absorption)
has_weighted_error_model
Description
Check if a model has a weighted error model
Usage
has_weighted_error_model(model)
Arguments
model |
(Model) The model to check |
Value
(logical) TRUE if the model has a weighted error model and FALSE otherwise
See Also
has_additive_error_model : Check if a model has an additive error model
has_combined_error_model : Check if a model has a combined error model
has_proportional_error_model : Check if a model has a proportional error model
Examples
## Not run:
model <- load_example_model("pheno")
has_weighted_error_model(model)
## End(Not run)
has_zero_order_absorption
Description
Check if ode system describes a zero order absorption
currently defined as having Infusion dose with rate not in dataset
Usage
has_zero_order_absorption(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) Whether the model has zero order absorption or not
Examples
## Not run:
model <- load_example_model("pheno")
has_zero_order_absorption(model)
## End(Not run)
has_zero_order_elimination
Description
Check if the model describes zero-order elimination
This function relies on heuristics and will not be able to detect all possible ways of coding the zero-order elimination.
Usage
has_zero_order_elimination(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) TRUE if model has describes zero order elimination
Examples
## Not run:
model <- load_example_model("pheno")
has_zero_order_elimination(model)
model <- set_zero_order_elimination(model)
has_zero_order_elimination(model)
## End(Not run)
Install Pharmpy
Description
Install the pharmpy-core python package into virtual environment. Uses the same Pharmpy version as pharmr.
Usage
install_pharmpy(envname = "r-reticulate", method = "auto")
Arguments
envname |
(str) name of environment. Default is r-reticulate |
method |
(str) type of environment type (virtualenv, conda). Default is auto (virtualenv is not available on Windows) |
Install Pharmpy (with specified version)
Description
Install the pharmpy-core python package into virtual environment.
Usage
install_pharmpy_devel(
envname = "r-reticulate",
method = "auto",
version = "devel"
)
Arguments
envname |
(str) name of environment. Default is r-reticulate |
method |
(str) type of environment type (virtualenv, conda). Default is auto (virtualenv is not available on Windows) |
version |
(str) which pharmpy version to use (use 'same' for most cases) |
is_linearized
Description
Determine if a model is linearized
Usage
is_linearized(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) TRUE if model has been linearized and FALSE otherwise
Examples
## Not run:
model1 <- load_example_model("pheno")
is_linearized(model1)
model2 <- load_example_model("pheno_linear")
is_linearized(model2)
## End(Not run)
is_real
Description
Determine if an expression is real valued given constraints of a model
Usage
is_real(model, expr)
Arguments
model |
(Model) Pharmpy model |
expr |
(numeric or str or Expr) Expression to test |
Value
(logical or NULL) TRUE if expression is real, FALSE if not and NULL if unknown
Examples
## Not run:
model <- load_example_model("pheno")
is_real(model, "CL")
## End(Not run)
is_simulation_model
Description
Check if a model is a pure simulation model
Usage
is_simulation_model(model)
Arguments
model |
(Model) Pharmpy model |
Value
(logical) TRUE if it is a simulation model
Examples
## Not run:
model <- load_example_model("pheno")
is_simulation_model(model)
## End(Not run)
is_strictness_fulfilled
Description
Takes a ModelfitResults object and a statement as input and returns TRUE/FALSE if the evaluation of the statement is TRUE/FALSE.
Usage
is_strictness_fulfilled(model, results, strictness)
Arguments
model |
(Model) Model for parameter specific strictness. |
results |
(ModelfitResults) ModelfitResults object |
strictness |
(str) A strictness expression |
Value
(logical) A logical indicating whether the strictness criteria are fulfilled or not.
Examples
## Not run:
res <- load_example_modelfit_results('pheno')
model <- load_example_model('pheno')
is_strictness_fulfilled(model, res, "minimization_successful or rounding_errors")
## End(Not run)
list_models
Description
List names of all models in a context
Will by default vector only models in the top level, but can vector all recursively using the recursive option. This will add the context path to each model name as a qualifier.
Usage
list_models(context, recursive = FALSE)
Arguments
context |
(Context) The context |
recursive |
(logical) Only top level or all levels recursively down. |
Value
(vectorc(str)) A vector of the model names
list_time_varying_covariates
Description
Return a vector of names of all time varying covariates
Usage
list_time_varying_covariates(model)
Arguments
model |
(Model) Pharmpy model |
Value
(vector) Names of all time varying covariates
See Also
get_covariate_baselines : get baselines for all covariates
Examples
## Not run:
model <- load_example_model("pheno")
list_time_varying_covariates(model)
## End(Not run)
load_dataset
Description
Load the dataset given datainfo
Usage
load_dataset(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model with dataset removed
Examples
## Not run:
model <- load_example_model("pheno")
model <- unload_dataset(model)
model$dataset is NULL
model <- load_dataset(model)
model$dataset
## End(Not run)
load_example_model
Description
Load an example model
Load an example model from models built into Pharmpy
Usage
load_example_model(name)
Arguments
name |
(str) Name of the model. Currently available models are "pheno" and "pheno_linear" |
Value
(Model) Loaded model object
Examples
## Not run:
model <- load_example_model("pheno")
model$statements
## End(Not run)
load_example_modelfit_results
Description
Load the modelfit results of an example model
Load the modelfit results of an example model built into Pharmpy
Usage
load_example_modelfit_results(name)
Arguments
name |
(str) Name of the model. Currently available models are "pheno" and "pheno_linear" |
Value
(ModelfitResults) Loaded modelfit results object
Examples
## Not run:
results <- load_example_modelfit_results("pheno")
results$parameter_estimates
## End(Not run)
make_declarative
Description
Make the model statments declarative
Each symbol will only be declared once.
Usage
make_declarative(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model$statements$before_odes
model <- make_declarative(model)
model$statements$before_odes
## End(Not run)
mu_reference_model
Description
Convert model to use mu-referencing
Mu-referencing an eta is to separately define its actual mu (mean) parameter. For example: (equation could not be rendered, see API doc on website) normal distribution would give (equation could not be rendered, see API doc on website) (equation could not be rendered, see API doc on website)
Usage
mu_reference_model(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- mu_reference_model(model)
model$statements$before_odes
## End(Not run)
omit_data
Description
Iterate over omissions of a certain group in a dataset. One group is omitted at a time.
Usage
omit_data(dataset_or_model, group, name_pattern = "omitted_{}")
Arguments
dataset_or_model |
(data.frame or Model) Dataset or model for which to omit records |
group |
(str) Name of the column to use for grouping |
name_pattern |
(str) Name to use for generated datasets. A number starting from 1 will be put in the placeholder. |
Value
(iterator) Iterator yielding tuples of models/dataframes and the omitted group
open_context
Description
Open a context from a tool run
Usage
open_context(name, ref = NULL)
Arguments
name |
(str) Name of the context |
ref |
(str (optional)) Parent path of the context |
Examples
## Not run:
ctx <- open_context("myrun")
## End(Not run)
plot_abs_cwres_vs_ipred
Description
Plot \|CWRES\| vs IPRED
Usage
plot_abs_cwres_vs_ipred(
model,
predictions,
residuals,
stratify_on = NULL,
bins = 8
)
Arguments
model |
(Model) Pharmpy model |
predictions |
(data.frame) DataFrame containing the predictions |
residuals |
(data.frame) DataFrame containing the residuals |
stratify_on |
(str (optional)) Name of parameter for stratification |
bins |
(numeric) Number of bins for stratification |
Value
(alt.Chart) Plot
Examples
## Not run:
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_abs_cwres_vs_ipred(model, res$predictions, res$residuals)
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_abs_cwres_vs_ipred(model, res$predictions, res$residuals, 'WGT', bins=4)
## End(Not run)
plot_cwres_vs_idv
Description
Plot CWRES vs idv
Usage
plot_cwres_vs_idv(model, residuals, stratify_on = NULL, bins = 8)
Arguments
model |
(Model) Pharmpy model |
residuals |
(data.frame) DataFrame containing CWRES |
stratify_on |
(str (optional)) Name of parameter for stratification |
bins |
(numeric) Number of bins for stratification |
Value
(alt.Chart) Plot
Examples
## Not run:
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_cwres_vs_idv(model, res$residuals)
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_cwres_vs_idv(model, res$residuals, 'WGT', bins=4)
## End(Not run)
plot_dv_vs_ipred
Description
Plot DV vs IPRED
Usage
plot_dv_vs_ipred(model, predictions, stratify_on = NULL, bins = 8)
Arguments
model |
(Model) Pharmpy model |
predictions |
(data.frame) DataFrame containing the predictions |
stratify_on |
(str (optional)) Name of parameter for stratification |
bins |
(numeric) Number of bins for stratification |
Value
(alt.Chart) Plot
Examples
## Not run:
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_dv_vs_ipred(model, res$predictions)
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_dv_vs_ipred(model, res$predictions, 'WGT', bins=4)
## End(Not run)
plot_dv_vs_pred
Description
Plot DV vs PRED
Usage
plot_dv_vs_pred(model, predictions, stratify_on = NULL, bins = 8)
Arguments
model |
(Model) Pharmpy model |
predictions |
(data.frame) DataFrame containing the predictions |
stratify_on |
(str (optional)) Name of parameter for stratification |
bins |
(numeric) Number of bins for stratification |
Value
(alt.Chart) Plot
Examples
## Not run:
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_dv_vs_pred(model, res$predictions)
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_dv_vs_pred(model, res$predictions, 'WGT', bins=4)
## End(Not run)
plot_eta_distributions
Description
Plot eta distributions for all etas
Usage
plot_eta_distributions(model, individual_estimates)
Arguments
model |
(Model) Previously run Pharmpy model. |
individual_estimates |
(data.frame) Individual estimates for etas |
Value
(alt.Chart) Plot
Examples
## Not run:
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_eta_distributions(model, res$individual_estimates)
## End(Not run)
plot_individual_predictions
Description
Plot DV and predictions grouped on individuals
Usage
plot_individual_predictions(model, predictions, individuals = NULL)
Arguments
model |
(Model) Previously run Pharmpy model. |
predictions |
(data.frame) One column for each type of prediction |
individuals |
(array(numeric) (optional)) A vector of individuals to include. NULL for all individuals |
Value
(alt.Chart) Plot
Examples
## Not run:
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
plot_individual_predictions(model, res$predictions, individuals=c(1, 2, 3, 4, 5))
## End(Not run)
plot_iofv_vs_iofv
Description
Plot individual OFV of two models against each other
Usage
plot_iofv_vs_iofv(iofv1, iofv2, name1, name2)
Arguments
iofv1 |
(array) Estimated iOFV of the first model |
iofv2 |
(array) Estimated iOFV of the second model |
name1 |
(str) Name of first model |
name2 |
(str) Name of second model |
Value
(alt.Chart) Scatterplot
Examples
## Not run:
res1 <- load_example_modelfit_results("pheno")
res2 <- load_example_modelfit_results("pheno_linear")
plot_iofv_vs_iofv(res1$individual_ofv, res2$individual_ofv, "nonlin", "linear")
## End(Not run)
plot_transformed_eta_distributions
Description
Plot transformed eta distributions for all transformed etas
Usage
plot_transformed_eta_distributions(
model,
parameter_estimates,
individual_estimates
)
Arguments
model |
(Model) Previously run Pharmpy model. |
parameter_estimates |
(array or list(str=numeric)) Parameter estimates of model fit |
individual_estimates |
(data.frame) Individual estimates for etas |
Value
(alt.Chart) Plot
plot_vpc
Description
Creates a VPC plot for a model
Usage
plot_vpc(
model,
simulations,
binning = "equal_number",
nbins = 8,
qi = 0.95,
ci = 0.95,
stratify_on = NULL
)
Arguments
model |
(Model) Pharmpy model |
simulations |
(data.frame or str) DataFrame containing the simulation data or path to dataset. The dataset has to have one (index) column named "SIM" containing the simulation number, one (index) column named "index" containing the data indices and one dv column. See below for more information. |
binning |
(str) Binning method. Can be "equal_number" or "equal_width". The default is "equal_number". |
nbins |
(numeric) Number of bins. Default is 8. |
qi |
(numeric) Upper quantile. Default is 0.95. |
ci |
(numeric) Confidence interval. Default is 0.95. |
stratify_on |
(str (optional)) Parameter to use for stratification. Optional. |
Value
(alt.Chart) Plot The simulation data should have the following format: +—–+——-+——–+ | SIM | index | DV | +=====+=======+========+ | 1 | 0 | 0.000 | +—–+——-+——–+ | 1 | 1 | 34.080 | +—–+——-+——–+ | 1 | 2 | 28.858 | +—–+——-+——–+ | 1 | 3 | 0.000 | +—–+——-+——–+ | 1 | 4 | 12.157 | +—–+——-+——–+ | 2 | 0 | 23.834 | +—–+——-+——–+ | 2 | 1 | 0.000 | +—–+——-+——–+ | ... | ... | ... | +—–+——-+——–+ | 20 | 2 | 0.000 | +—–+——-+——–+ | 20 | 3 | 31.342 | +—–+——-+——–+ | 20 | 4 | 29.983 | +—–+——-+——–+
Examples
## Not run:
model <- load_example_model("pheno")
sim_model <- set_simulation(model, n=100)
sim_data <- run_simulation(sim_model)
plot_vpc(model, sim_data)
## End(Not run)
predict_influential_individuals
Description
Predict influential individuals for a model using a machine learning model.
Please refer to www.page-meeting.org/?abstract=10029 for more information on training and estimated precision and accuracy.
Usage
predict_influential_individuals(model, results, cutoff = 3.84)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults) Results for model |
cutoff |
(numeric) Cutoff threshold for a dofv signalling an influential individual |
Value
(data.frame) Dataframe over the individuals with a dofv
column containing the raw predicted delta-OFV and an influential
column with a boolean to tell whether the individual is influential or not.
See Also
predict_influential_outliers
predict_outliers
predict_influential_outliers
Description
Predict influential outliers for a model using a machine learning model.
Please refer to www.page-meeting.org/?abstract=10029 for more information on training and estimated precision and accuracy.
Usage
predict_influential_outliers(
model,
results,
outlier_cutoff = 3,
influential_cutoff = 3.84
)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults) Results for model |
outlier_cutoff |
(numeric) Cutoff threshold for a residual signaling an outlier |
influential_cutoff |
(numeric) Cutoff threshold for a dofv signaling an influential individual |
Value
(data.frame) Dataframe over the individuals with a outliers
and dofv
columns containing the raw predictions and influential
, outlier
and influential_outlier
boolean columns.
See Also
predict_influential_individuals
predict_outliers
predict_outliers
Description
Predict outliers for a model using a machine learning model.
See the :ref:simeval <Individual OFV summary>
documentation for a definition of the residual
Please refer to www.page-meeting.org/?abstract=10029 for more information on training and estimated precision and accuracy.
Usage
predict_outliers(model, results, cutoff = 3)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults) ModelfitResults for the model |
cutoff |
(numeric) Cutoff threshold for a residual signaling an outlier |
Value
(data.frame) Dataframe over the individuals with a residual
column containing the raw predicted residuals and a outlier
column with a boolean to tell whether the individual is an outlier or not.
See Also
predict_influential_individuals
predict_influential_outliers
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
predict_outliers(model, results)
## End(Not run)
print_fit_summary
Description
Print a summary of the model fit
Usage
print_fit_summary(model, modelfit_results)
Arguments
model |
(Model) Pharmpy model object |
modelfit_results |
(ModelfitResults) Pharmpy ModelfitResults object |
print_log
Description
Print the log of a context
Usage
print_log(context)
Arguments
context |
(Context) Print the log of this context |
print_model_code
Description
Print the model code of the underlying model language to the console
Usage
print_model_code(model)
Arguments
model |
(Model) Pharmpy model |
Examples
## Not run:
model <- load_example_model("pheno")
print_model_code(model)
## End(Not run)
print_model_symbols
Description
Print all symbols defined in a model
Symbols will be in one of the categories thetas, etas, omegas, epsilons, sigmas, variables and data columns
Usage
print_model_symbols(model)
Arguments
model |
(Model) Pharmpy model object |
Examples
## Not run:
model <- load_example_model("pheno")
print_model_symbols(model)
## End(Not run)
Print pharmpy version
Description
Print the pharmpy version pharmr uses.
Usage
print_pharmpy_version()
read_dataset_from_datainfo
Description
Read a dataset given a datainfo object or path to a datainfo file
Usage
read_dataset_from_datainfo(datainfo, datatype = NULL)
Arguments
datainfo |
(DataInfo or str) A datainfo object or a path to a datainfo object |
datatype |
(str (optional)) A string to specify dataset type |
Value
(data.frame) The dataset
read_model
Description
Read model from file
Usage
read_model(path, missing_data_token = NULL)
Arguments
path |
(str) Path to model |
missing_data_token |
(str (optional)) Use this token for missing data. This option will override the token from the config. (This option was added in Pharmpy version 1.2.0) |
Value
(Model) Read model object
See Also
read_model_from_database : Read model from database
read_model_from_string : Read model from string
Examples
## Not run:
model <- read_model("/home/run1$mod")
## End(Not run)
read_model_from_string
Description
Read model from the model code in a string
Usage
read_model_from_string(code)
Arguments
code |
(str) Model code to read |
Value
(Model) Pharmpy model object
See Also
read_model : Read model from file
read_model_from_database : Read model from database
Examples
## Not run:
s <- "$PROBLEM
$INPUT ID DV TIME
$DATA file$csv
$PRED
Y=THETA(1)+ETA(1)+ERR(1)
$THETA 1
$OMEGA 0.1
$SIGMA 1
$ESTIMATION METHOD=1"
read_model_from_string(s)
## End(Not run)
read_modelfit_results
Description
Read results from external tool for a model
Usage
read_modelfit_results(path, esttool = NULL)
Arguments
path |
(str) Path to model file |
esttool |
(str) Set if other than the default estimation tool is to be used |
Value
(ModelfitResults) Results object
read_results
Description
Read results object from file
Usage
read_results(path)
Arguments
path |
(str) Path to results file |
Value
(Results) Results object for tool
See Also
create_results
Examples
## Not run:
res <- read_results("results$json")
## End(Not run)
remove_bioavailability
Description
Remove bioavailability from the first dose compartment of model.
Usage
remove_bioavailability(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
set_bioavailability
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_bioavailability(model)
## End(Not run)
remove_covariate_effect
Description
Remove a covariate effect from an instance of :class:pharmpy.model
.
Usage
remove_covariate_effect(model, parameter, covariate)
Arguments
model |
(Model) Pharmpy model from which to remove the covariate effect. |
parameter |
(str) Name of parameter. |
covariate |
(str) Name of covariate. |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
has_covariate_effect(model, "CL", "WGT")
model <- remove_covariate_effect(model, "CL", "WGT")
has_covariate_effect(model, "CL", "WGT")
## End(Not run)
remove_derivative
Description
Remove a derivative currently being calculcate when running model. Currently, only derivatives with respect to the prediction is supported. Default is to remove all that are present, First order derivates are specied either by single string or single-element tuple. For instance with_respect_to = "ETA_1" or with_respect_to = ("ETA_1",)
Second order derivatives are specified by giving the two independent varibles in a tuple of tuples. For instance with_respect_to ((ETA_1, EPS_1),)
Multiple derivatives can be specified within a tuple. For instance ((ETA_1, EPS_1), "ETA_1")
Currently, only ETAs and EPSILONs are supported
Usage
remove_derivative(model, with_respect_to = NULL)
Arguments
model |
(Model) Pharmpy modeas. |
with_respect_to |
(array(array(str) or str) or str (optional)) Parameter name(s) to use as independent variables. Default is NULL. |
Value
(Pharmpy model.)
remove_error_model
Description
Remove error model.
Usage
remove_error_model(model)
Arguments
model |
(Model) Remove error model for this model |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model$statements$find_assignment("Y")
model <- remove_error_model(model)
model$statements$find_assignment("Y")
## End(Not run)
remove_estimation_step
Description
Remove estimation step
Usage
remove_estimation_step(model, idx)
Arguments
model |
(Model) Pharmpy model |
idx |
(numeric) index of estimation step to remove (starting from 0) |
Value
(Model) Pharmpy model object
See Also
add_estimation_step
set_estimation_step
append_estimation_step_options
add_parameter_uncertainty_step
remove_parameter_uncertainty_step
set_evaluation_step
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_estimation_step(model, 0)
ests <- model$execution_steps
length(ests)
## End(Not run)
remove_iiv
Description
Removes all IIV etas given a vector with eta names and/or parameter names.
Usage
remove_iiv(model, to_remove = NULL)
Arguments
model |
(Model) Pharmpy model to create block effect on. |
to_remove |
(array(str) or str (optional)) Name/names of etas and/or name/names of individual parameters to remove. If NULL, all etas that are IIVs will be removed. NULL is default. |
Value
(Model) Pharmpy model object
See Also
remove_iov
add_iiv
add_iov
add_pk_iiv
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_iiv(model)
model$statements$find_assignment("CL")
model <- load_example_model("pheno")
model <- remove_iiv(model, "VC")
model$statements$find_assignment("VC")
## End(Not run)
remove_iov
Description
Removes all IOV etas given a vector with eta names.
Usage
remove_iov(model, to_remove = NULL)
Arguments
model |
(Model) Pharmpy model to remove IOV from. |
to_remove |
(array(str) or str (optional)) Name/names of IOV etas to remove, e.g. 'ETA_IOV_1_1'. If NULL, all etas that are IOVs will be removed. NULL is default. |
Value
(Model) Pharmpy model object
See Also
add_iiv
add_iov
remove_iiv
add_pk_iiv
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_iov(model)
## End(Not run)
remove_lag_time
Description
Remove lag time from the dose compartment of model.
Usage
remove_lag_time(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
set_transit_compartments
add_lag_time
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_lag_time(model)
## End(Not run)
remove_loq_data
Description
Remove loq data records from the dataset
Does nothing if none of the limits are specified.
Usage
remove_loq_data(
model,
lloq = NULL,
uloq = NULL,
blq = NULL,
alq = NULL,
keep = 0
)
Arguments
model |
(Model) Pharmpy model object |
lloq |
(numeric or str (optional)) Value or column name for lower limit of quantification. |
uloq |
(numeric or str (optional)) Value or column name for upper limit of quantification. |
blq |
(str (optional)) Column name for below limit of quantification indicator. |
alq |
(str (optional)) Column name for above limit of quantification indicator. |
keep |
(numeric) Number of loq records to keep for each run of consecutive loq records. |
Value
(Model) Pharmpy model object
See Also
set_lloq_data
transform_blq
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_loq_data(model, lloq=10, uloq=40)
length(model$dataset)
## End(Not run)
remove_parameter_uncertainty_step
Description
Removes parameter uncertainty step from the final estimation step
Usage
remove_parameter_uncertainty_step(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
add_estimation_step
set_estimation_step
remove_estimation_step
append_estimation_step_options
add_parameter_uncertainty_step
set_evaluation_step
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_parameter_uncertainty_step(model)
ests <- model$execution_steps
ests[1]
## End(Not run)
remove_peripheral_compartment
Description
Remove a peripheral distribution compartment from model
If name is set, a peripheral compartment will be removed from the compartment with the specified name.
Initial estimates:
== =================================================== n == =================================================== 2 (equation could not be rendered, see API doc on website) 3 (equation could not be rendered, see API doc on website) == ===================================================
Usage
remove_peripheral_compartment(model, name = NULL)
Arguments
model |
(Model) Pharmpy model |
name |
(str (optional)) Name of compartment to remove peripheral compartment from. |
Value
(Model) Pharmpy model object
See Also
set_peripheral_compartment
add_peripheral_compartment
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_peripheral_compartments(model, 2)
model <- remove_peripheral_compartment(model)
model$statements$ode_system
## End(Not run)
remove_predictions
Description
Remove predictions and/or residuals
Remove predictions from estimation step.
Usage
remove_predictions(model, to_remove = NULL)
Arguments
model |
(Model) Pharmpy model |
to_remove |
(array(str) (optional)) Predictions to remove |
Value
(Model) Pharmpy model object
See Also
add_predictions
add_residuals
set_estimation_step
add_estimation_step
remove_estimation_step
append_estimation_step_options
add_parameter_uncertainty_step
remove_parameter_uncertainty_step
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_predictions(model)
model$execution_steps[-1].predictions
## End(Not run)
remove_residuals
Description
Remove residuals
Remove residuals from estimation step.
Usage
remove_residuals(model, to_remove = NULL)
Arguments
model |
(Model) Pharmpy model |
to_remove |
(array(str) (optional)) Residuals to remove |
Value
(Model) Pharmpy model object
See Also
add_predictions
add_residuals
set_estimation_step
add_estimation_step
remove_estimation_step
append_estimation_step_options
add_parameter_uncertainty_step
remove_parameter_uncertainty_step
Examples
## Not run:
model <- load_example_model("pheno")
model <- remove_residuals(model)
model$execution_steps[-1].residuals
## End(Not run)
remove_unused_parameters_and_rvs
Description
Remove any parameters and rvs that are not used in the model statements
Usage
remove_unused_parameters_and_rvs(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Model) Pharmpy model object
rename_symbols
Description
Rename symbols in the model
Make sure that no name clash occur.
Usage
rename_symbols(model, new_names)
Arguments
model |
(Model) Pharmpy model object |
new_names |
(list(str or Expr=str or Expr)) From old name or symbol to new name or symbol |
Value
(Model) Pharmpy model object
replace_fixed_thetas
Description
Replace all fixed thetas with constants in the model statements
Usage
replace_fixed_thetas(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) A new model
replace_non_random_rvs
Description
Replace all random variables that are not actually random
Some random variables are constant. For example a normal distribution with the variance parameter fixed to 0 will always yield a single value when sampled. This function will find all such random variables and replace them with their constant value in the model.
Usage
replace_non_random_rvs(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) A new model
resample_data
Description
Iterate over resamples of a dataset.
The dataset will be grouped on the group column then groups will be selected randomly with or without replacement to form a new dataset. The groups will be renumbered from 1 and upwards to keep them separated in the new dataset.
Usage
resample_data(
dataset_or_model,
group,
resamples = 1,
stratify = NULL,
sample_size = NULL,
replace = FALSE,
name_pattern = "resample_{}",
name = NULL
)
Arguments
dataset_or_model |
(data.frame or Model) Dataset or Model to use |
group |
(str) Name of column to group by |
resamples |
(numeric) Number of resamples (iterations) to make |
stratify |
(str (optional)) Name of column to use for stratification. The values in the stratification column must be equal within a group so that the group can be uniquely determined. A ValueError exception will be raised otherwise. |
sample_size |
(numeric (optional)) The number of groups that should be sampled. The default is the number of groups. If using stratification the default is to sample using the proportion of the strata in the dataset. A list of specific sample sizes for each stratum can also be supplied. |
replace |
(logical) A boolean controlling whether sampling should be done with or without replacement |
name_pattern |
(str) Name to use for generated datasets. A number starting from 1 will be put in the placeholder. |
name |
(str (optional)) Option to name pattern in case of only one resample |
Value
(iterator) An iterator yielding tuples of a resampled DataFrame and a vector of resampled groups in order
Reset index
Description
Reset index of dataframe.
Reset index from a multi indexed data.frame so that index is added as columns
Usage
reset_index(df)
Arguments
df |
A data.frame converted from python using reticulate |
Reset result indices
Description
Resets indices in dataframes within Results-objects when needed
Usage
reset_indices_results(res)
Arguments
res |
A Pharmpy results object |
retrieve_model
Description
Retrieve a model from a context
Any models created and run by the tool can be retrieved.
Usage
retrieve_model(context, name)
Arguments
context |
(Context) A previously opened context |
name |
(str) Name of the model or a qualified name with a subcontext path, e.g. |
Value
(Model) The model object
Examples
## Not run:
context <- open_context(ref='path/to/', name='modelsearch1')
model <- retrieve_model(context, 'run1')
## End(Not run)
retrieve_modelfit_results
Description
Retrieve the modelfit results of a model
Usage
retrieve_modelfit_results(context, name)
Arguments
context |
(Context) A previously opened context |
name |
(str) Name of the model or a qualified name with a subcontext path, e.g. |
Value
(ModelfitResults) The results object
Examples
## Not run:
context <- open_context("iivsearch1")
results <- retrieve_modelfit_results(context, 'input')
## End(Not run)
retrieve_models
Description
Retrieve models after a tool run
Any models created and run by the tool can be retrieved.
Usage
retrieve_models(source, names = NULL)
Arguments
source |
(str or Context) Source where to find models. Can be a path (as str or Path), or a Context |
names |
(array(str) (optional)) List of names of the models to retrieve or NULL for all |
Value
(vector) List of retrieved model objects
Examples
## Not run:
tooldir_path <- 'path/to/tool/directory'
models <- retrieve_models(tooldir_path, names=c('run1'))
## End(Not run)
run_allometry
Description
Run allometry tool. For more details, see :ref:allometry
.
Usage
run_allometry(
model,
results,
allometric_variable = "WT",
reference_value = 70,
parameters = NULL,
initials = NULL,
lower_bounds = NULL,
upper_bounds = NULL,
fixed = TRUE,
...
)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults) Results for model |
allometric_variable |
(str or Expr) Name of the variable to use for allometric scaling (default is WT) |
reference_value |
(str or numeric or Expr) Reference value for the allometric variable (default is 70) |
parameters |
(array(str or Expr) (optional)) Parameters to apply scaling to (default is all CL, Q and V parameters) |
initials |
(array(numeric) (optional)) Initial estimates for the exponents. (default is to use 0.75 for CL and Qs and 1 for Vs) |
lower_bounds |
(array(numeric) (optional)) Lower bounds for the exponents. (default is 0 for all parameters) |
upper_bounds |
(array(numeric) (optional)) Upper bounds for the exponents. (default is 2 for all parameters) |
fixed |
(logical) Should the exponents be fixed or not. (default TRUE |
... |
Arguments to pass to tool |
Value
(AllometryResults) Allometry tool result object
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
run_allometry(model=model, results=results, allometric_variable='WGT')
## End(Not run)
run_amd
Description
Run Automatic Model Development (AMD) tool
Usage
run_amd(
input,
results = NULL,
modeltype = "basic_pk",
administration = "oral",
strategy = "default",
cl_init = NULL,
vc_init = NULL,
mat_init = NULL,
b_init = NULL,
emax_init = NULL,
ec50_init = NULL,
met_init = NULL,
search_space = NULL,
lloq_method = NULL,
lloq_limit = NULL,
allometric_variable = NULL,
occasion = NULL,
strictness = "minimization_successful or (rounding_errors and sigdigs>=0.1)",
dv_types = NULL,
mechanistic_covariates = NULL,
retries_strategy = "all_final",
parameter_uncertainty_method = NULL,
ignore_datainfo_fallback = FALSE,
.E = NULL,
...
)
Arguments
input |
(Model or str) Starting model or dataset |
results |
(ModelfitResults (optional)) Reults of input if input is a model |
modeltype |
(str) Type of model to build. Valid strings are 'basic_pk', 'pkpd', 'drug_metabolite' and 'tmdd' |
administration |
(str) Route of administration. Either 'iv', 'oral' or 'ivoral' |
strategy |
(str) Run algorithm for AMD procedure. Valid options are 'default', 'reevaluation', 'SIR', 'SRI', and 'RSI'. |
cl_init |
(numeric (optional)) Initial estimate for the population clearance |
vc_init |
(numeric (optional)) Initial estimate for the central compartment population volume |
mat_init |
(numeric (optional)) Initial estimate for the mean absorption time (not for iv models) |
b_init |
(numeric (optional)) Initial estimate for the baseline (PKPD model) |
emax_init |
(numeric (optional)) Initial estimate for E_max (PKPD model) |
ec50_init |
(numeric (optional)) Initial estimate for EC_50 (PKPD model) |
met_init |
(numeric (optional)) Initial estimate for mean equilibration time (PKPD model) |
search_space |
(str (optional)) MFL for search space for structural and covariate model |
lloq_method |
(str (optional)) Method for how to remove LOQ data. See |
lloq_limit |
(numeric (optional)) Lower limit of quantification. If NULL LLOQ column from dataset will be used |
allometric_variable |
(str or Expr (optional)) Variable to use for allometry. This option is deprecated. Please use ALLOMETRY in the mfl instead. |
occasion |
(str (optional)) Name of occasion column |
strictness |
(str) Strictness criteria |
dv_types |
(list(str=numeric) (optional)) Dictionary of DV types for TMDD models with multiple DVs. |
mechanistic_covariates |
(array(str or list(str)) (optional)) List of covariates or tuple of covariate and parameter combination to run in a separate proioritized covsearch run. For instance c("WT", ("CRCL", "CL")). The effects are extracted from the search space for covsearch. |
retries_strategy |
(str) Whether or not to run retries tool. Valid options are 'skip', 'all_final' or 'final'. Default is 'final'. |
parameter_uncertainty_method |
(str (optional)) Parameter uncertainty method. |
ignore_datainfo_fallback |
(logical) Ignore using datainfo to get information not given by the user. Default is FALSE |
.E |
(list(str=numeric or str) (optional)) EXPERIMENTAL FEATURE. Dictionary of different E-values used in mBIC |
... |
Arguments to pass to tool |
Value
(AMDResults) Results for the run
See Also
run_iiv
run_tool
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
res <- run_amd(model, results=results)
## End(Not run)
run_bootstrap
Description
Run bootstrap tool
Usage
run_bootstrap(model, results = NULL, resamples = 1, dofv = FALSE, ...)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults (optional)) Results for model |
resamples |
(numeric) Number of bootstrap resamples |
dofv |
(logical) Will evaluate bootstrap models with original dataset if se |
... |
Arguments to pass to tool |
Value
(BootstrapResults) Bootstrap tool result object
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
run_bootstrap(model, res, resamples=500)
## End(Not run)
run_covsearch
Description
Run COVsearch tool. For more details, see :ref:covsearch
.
Usage
run_covsearch(
model,
results,
search_space,
p_forward = 0.01,
p_backward = 0.001,
max_steps = -1,
algorithm = "scm-forward-then-backward",
max_eval = FALSE,
adaptive_scope_reduction = FALSE,
strictness = "minimization_successful or (rounding_errors and sigdigs>=0.1)",
naming_index_offset = 0,
nsamples = 10,
.samba_max_covariates = 3,
.samba_selection_criterion = "bic",
.samba_linreg_method = "ols",
.samba_stepwise_lcs = NULL,
...
)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults) Results of model |
search_space |
(str or ModelFeatures) MFL of covariate effects to try |
p_forward |
(numeric) The p-value to use in the likelihood ratio test for forward steps |
p_backward |
(numeric) The p-value to use in the likelihood ratio test for backward steps |
max_steps |
(numeric) The maximum number of search steps to make |
algorithm |
(str) The search algorithm to use. Currently, 'scm-forward' and 'scm-forward-then-backward' are supported. |
max_eval |
(logical) Limit the number of function evaluations to 3.1 times that of the base model. Default is FALSE. |
adaptive_scope_reduction |
(logical) Stash all non-significant parameter-covariate effects to be tested after all significant effects have been tested. Once all these have been tested, try adding the stashed effects once more with a regular forward approach. Default is FALSE |
strictness |
(str) Strictness criteria |
naming_index_offset |
(numeric (optional)) index offset for naming of runs. Default is 0. |
nsamples |
(numeric) Number of samples from individual parameter conditional distribution for linear covariate model selection. Default is 10, i.e. generating 10 samples per subject |
.samba_max_covariates |
(numeric (optional)) Maximum number of covariate inclusion allowed in linear covariate screening for each parameter. |
.samba_selection_criterion |
(str) Method used to fit linear covariate models. Currently, Ordinary Least Squares (ols), Weighted Least Squares (wls), and Linear Mixed-Effects (lme) are supported. |
.samba_linreg_method |
(str) Method used for linear and nonlinear model selection in SAMBA methods. Currently, BIC and LRT are supported. |
.samba_stepwise_lcs |
(logical (optional)) Use stepwise linear covariate screening or not. By default, SAMBA methods use stepwise LCS whereas SCM-LCS uses non-stepwise LCS |
... |
Arguments to pass to tool |
Value
(COVSearchResults) COVsearch tool result object
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
search_space <- 'COVARIATE(c(CL, V), c(AGE, WT), EXP)'
res <- run_covsearch(model=model, results=results, search_space=search_space)
## End(Not run)
run_estmethod
Description
Run estmethod tool.
Usage
run_estmethod(
algorithm,
methods = NULL,
solvers = NULL,
parameter_uncertainty_methods = NULL,
compare_ofv = TRUE,
results = NULL,
model = NULL,
...
)
Arguments
algorithm |
(str) The algorithm to use (can be 'exhaustive', 'exhaustive_with_update' or 'exhaustive_only_eval') |
methods |
(array(str) or str (optional)) List of estimation methods to test. Can be specified as 'all', a vector of estimation methods, or NULL (to not test any estimation method) |
solvers |
(array(str) or str (optional)) List of solvers to test. Can be specified as 'all', a vector of solvers, or NULL (to not test any solver) |
parameter_uncertainty_methods |
(array(str) or str (optional)) List of parameter uncertainty methods to test. Can be specified as 'all', a vector of uncertainty methods, or NULL (to not evaluate any uncertainty) |
compare_ofv |
(logical) Whether to compare the OFV between candidates. Comparison is made by evaluating using IMP |
results |
(ModelfitResults (optional)) Results for model |
model |
(Model (optional)) Pharmpy mode |
... |
Arguments to pass to tool |
Value
(EstMethodResults) Estmethod tool result object
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
methods <- c('IMP', 'SAEM')
parameter_uncertainty_methods <- NULL
run_estmethod(
'reduced', methods=methods, solvers='all',
parameter_uncertainty_methods=parameter_uncertainty_methods, results=results, model=model
)
## End(Not run)
run_iivsearch
Description
Run IIVsearch tool. For more details, see :ref:iivsearch
.
Usage
run_iivsearch(
model,
results,
algorithm = "top_down_exhaustive",
iiv_strategy = "no_add",
rank_type = "bic",
linearize = FALSE,
cutoff = NULL,
keep = c("CL"),
strictness = "minimization_successful or (rounding_errors and sigdigs>=0.1)",
correlation_algorithm = NULL,
E_p = NULL,
E_q = NULL,
...
)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults) Results for model |
algorithm |
(str) Which algorithm to run when determining number of IIVs. |
iiv_strategy |
(str) If/how IIV should be added to start model. Default is 'no_add'. |
rank_type |
(str) Which ranking type should be used. Default is BIC. |
linearize |
(logical) Wheter or not use linearization when running the tool. |
cutoff |
(numeric (optional)) Cutoff for which value of the ranking function that is considered significant. Default is NULL (all models will be ranked) |
keep |
(array(str) (optional)) List of IIVs to keep. Default is "CL" |
strictness |
(str) Strictness criteria |
correlation_algorithm |
(str (optional)) Which algorithm to run for the determining block structure of added IIVs. If NULL, the algorithm is determined based on the 'algorithm' argument |
E_p |
(numeric or str (optional)) Expected number of predictors for diagonal elements (used for mBIC). Must be set when using mBIC and when the argument 'algorithm' is not 'skip' |
E_q |
(numeric or str (optional)) Expected number of predictors for off-diagonal elements (used for mBIC). Must be set when using mBIC
and when the argument |
... |
Arguments to pass to tool |
Value
(IIVSearchResults) IIVsearch tool result object
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
run_iivsearch(model=model, results=results, algorithm='td_brute_force')
## End(Not run)
run_iovsearch
Description
Run IOVsearch tool. For more details, see :ref:iovsearch
.
Usage
run_iovsearch(
model,
results,
column = "OCC",
list_of_parameters = NULL,
rank_type = "bic",
cutoff = NULL,
distribution = "same-as-iiv",
strictness = "minimization_successful or (rounding_errors and sigdigs>=0.1)",
E = NULL,
...
)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults) Results for model |
column |
(str) Name of column in dataset to use as occasion column (default is 'OCC') |
list_of_parameters |
(array(str or array(str)) (optional)) List of parameters to test IOV on, if none all parameters with IIV will be tested (default) |
rank_type |
(str) Which ranking type should be used. Default is BIC. |
cutoff |
(numeric (optional)) Cutoff for which value of the ranking type that is considered significant. Default is NULL (all models will be ranked) |
distribution |
(str) Which distribution added IOVs should have (default is same-as-iiv) |
strictness |
(str (optional)) Strictness criteria |
E |
(numeric or str (optional)) Expected number of predictors (used for mBIC). Must be set when using mBI |
... |
Arguments to pass to tool |
Value
(IOVSearchResults) IOVSearch tool result object
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
run_iovsearch(model=model, results=results, column='OCC')
## End(Not run)
run_linearize
Description
Linearize a model
Usage
run_linearize(
model = NULL,
results = NULL,
model_name = "linbase",
description = "",
...
)
Arguments
model |
(Model (optional)) Pharmpy model. |
results |
(ModelfitResults (optional)) Results of estimation of model |
model_name |
(str) New name of linearized model. The default is "linbase". |
description |
(str) Description of linearized model. The default is "" |
... |
Arguments to pass to tool |
Value
(LinearizeResults) Linearize tool results object.
run_modelfit
Description
Run modelfit tool.
note::
For most use cases the :func:pharmpy.tools.fit
function is a more user friendly option for fitting a model.
Usage
run_modelfit(model_or_models = NULL, n = NULL, ...)
Arguments
model_or_models |
(Model or array(Model) (optional)) A vector of models are one single model object |
n |
(numeric (optional)) Number of models to fit. This is only used if the tool is going to be combined with other tools |
... |
Arguments to pass to tool |
Value
(ModelfitResults) Modelfit tool result object
Examples
## Not run:
model <- load_example_model("pheno")
run_modelfit(model)
## End(Not run)
run_modelsearch
Description
Run Modelsearch tool. For more details, see :ref:modelsearch
.
Usage
run_modelsearch(
model,
results,
search_space,
algorithm = "reduced_stepwise",
iiv_strategy = "absorption_delay",
rank_type = "bic",
cutoff = NULL,
strictness = "minimization_successful or (rounding_errors and sigdigs >= 0.1)",
E = NULL,
...
)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults) Results for model |
search_space |
(str or ModelFeatures) Search space to test. Either as a string or a ModelFeatures object. |
algorithm |
(str) Algorithm to use. |
iiv_strategy |
(str) If/how IIV should be added to candidate models. Default is 'absorption_delay'. |
rank_type |
(str) Which ranking type should be used. Default is BIC. |
cutoff |
(numeric (optional)) Cutoff for which value of the ranking function that is considered significant. Default is NULL (all models will be ranked) |
strictness |
(str) Strictness criteria |
E |
(numeric or str (optional)) Expected number of predictors (used for mBIC). Must be set when using mBI |
... |
Arguments to pass to tool |
Value
(ModelSearchResults) Modelsearch tool result object
Examples
## Not run:
model <- load_example_model("pheno")
res <- load_example_modelfit_results("pheno")
search_space <- 'ABSORPTION(ZO);PERIPHERALS(1)'
run_modelsearch(model=model, results=res, search_space=search_space, algorithm='exhaustive')
## End(Not run)
run_retries
Description
Run retries tool.
Usage
run_retries(
model = NULL,
results = NULL,
number_of_candidates = 5,
fraction = 0.1,
use_initial_estimates = FALSE,
strictness = "minimization_successful or (rounding_errors and sigdigs >= 0.1)",
scale = "UCP",
prefix_name = "",
...
)
Arguments
model |
(Model (optional)) Model object to run retries on. The default is NULL. |
results |
(ModelfitResults (optional)) Connected ModelfitResults object. The default is NULL. |
number_of_candidates |
(numeric) Number of retry candidates to run. The default is 5. |
fraction |
(numeric) Determines allowed increase/decrease from initial parameter estimate. Default is 0.1 (10%) |
use_initial_estimates |
(logical) Use initial parameter estimates instead of final estimates of input model when creating candidate models. |
strictness |
(str) Strictness criteria. The default is "minimization_successful or (rounding_errors and sigdigs >= 0.1)". |
scale |
(str (optional)) Which scale to update the initial values on. Either normal scale or UCP scale. |
prefix_name |
(str (optional)) Prefix the candidate model names with given string |
... |
Arguments to pass to tool |
Value
(RetriesResults) Retries tool results object.
run_ruvsearch
Description
Run the ruvsearch tool. For more details, see :ref:ruvsearch
.
Usage
run_ruvsearch(
model,
results,
groups = 4,
p_value = 0.001,
skip = NULL,
max_iter = 3,
dv = NULL,
strictness = "minimization_successful or (rounding_errors and sigdigs>=0.1)",
...
)
Arguments
model |
(Model) Pharmpy model |
results |
(ModelfitResults) Results of model |
groups |
(numeric) The number of bins to use for the time varying models |
p_value |
(numeric) The p-value to use for the likelihood ratio test |
skip |
(array(str) (optional)) A vector of models to not attempt. |
max_iter |
(numeric) Number of iterations to run (1, 2, or 3). For models with BLQ only one iteration is supported. |
dv |
(numeric (optional)) Which DV to assess the error model for. |
strictness |
(str) Strictness criteri |
... |
Arguments to pass to tool |
Value
(RUVSearchResults) Ruvsearch tool result object
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
run_ruvsearch(model=model, results=results)
## End(Not run)
run_simulation
Description
Run the simulation tool.
Usage
run_simulation(model = NULL, ...)
Arguments
model |
(Model (optional)) Pharmpy mode |
... |
Arguments to pass to tool |
Value
(SimulationResult) SimulationResults object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_simulation(model, n=10)
run_simulations(model)
## End(Not run)
run_structsearch
Description
Run the structsearch tool. For more details, see :ref:structsearch
.
Usage
run_structsearch(
model,
results,
type,
search_space = NULL,
b_init = NULL,
emax_init = NULL,
ec50_init = NULL,
met_init = NULL,
extra_model = NULL,
strictness = "minimization_successful or (rounding_errors and sigdigs >= 0.1)",
extra_model_results = NULL,
dv_types = NULL,
...
)
Arguments
model |
(Model) Pharmpy start model |
results |
(ModelfitResults) Results for the start model |
type |
(str) Type of model. Currently only 'drug_metabolite' and 'pkpd' |
search_space |
(str or ModelFeatures (optional)) Search space to test |
b_init |
(numeric (optional)) Initial estimate for the baseline for pkpd models. |
emax_init |
(numeric (optional)) Initial estimate for E_MAX (for pkpd models only). |
ec50_init |
(numeric (optional)) Initial estimate for EC_50 (for pkpd models only). |
met_init |
(numeric (optional)) Initial estimate for MET (for pkpd models only). |
extra_model |
(Model (optional)) Optional extra Pharmpy model to use in TMDD structsearch |
strictness |
(str (optional)) Results for the extra model |
extra_model_results |
(ModelfitResults (optional)) Strictness criteria |
dv_types |
(list(str=numeric) (optional)) Dictionary of DV types for TMDD models with multiple DV |
... |
Arguments to pass to tool |
Value
(StructSearchResult) structsearch tool result object
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
run_structsearch(model=model, results=results, model_type='pkpd')
## End(Not run)
run_tool
Description
Run tool workflow
note:: This is a general function that can run any tool. There is also one function for each specific tool. Please refer to the documentation of these for more specific information.
Usage
run_tool(tool_name, ...)
Arguments
tool_name |
(str) Name of tool to run |
... |
Arguments to pass to tool |
Value
(Results) Results object for tool
Examples
## Not run:
model <- load_example_model("pheno")
res <- run_tool("ruvsearch", model)
## End(Not run)
sample_individual_estimates
Description
Sample individual estimates given their covariance.
Usage
sample_individual_estimates(
model,
individual_estimates,
individual_estimates_covariance,
parameters = NULL,
samples_per_id = 100,
seed = 1234
)
Arguments
model |
(Model) Pharmpy model |
individual_estimates |
(data.frame) Individual estimates to use |
individual_estimates_covariance |
(data.frame) Uncertainty covariance of the individual estimates |
parameters |
(array(str) (optional)) A vector of a subset of individual parameters to sample. Default is NULL, which means all. |
samples_per_id |
(numeric) Number of samples per individual |
seed |
(numeric) Random number generator or seed |
Value
(data.frame) Pool of samples in a DataFrame
See Also
sample_parameters_from_covariance_matrix : Sample parameter vectors using the
uncertainty covariance matrix
sample_parameters_uniformly : Sample parameter vectors using uniform distribution
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
rng <- create_rng(23)
ie <- results$individual_estimates
iec <- results$individual_estimates_covariance
sample_individual_estimates(model, ie, iec, samples_per_id=2, seed=rng)
## End(Not run)
sample_parameters_from_covariance_matrix
Description
Sample parameter vectors using the covariance matrix
If parameters is not provided all estimated parameters will be used
Usage
sample_parameters_from_covariance_matrix(
model,
parameter_estimates,
covariance_matrix,
force_posdef_samples = NULL,
force_posdef_covmatrix = FALSE,
n = 1,
seed = 1234
)
Arguments
model |
(Model) Input model |
parameter_estimates |
(array) Parameter estimates to use as means in sampling |
covariance_matrix |
(data.frame) Parameter uncertainty covariance matrix |
force_posdef_samples |
(numeric (optional)) Set to how many iterations to do before forcing all samples to be positive definite. NULL is default and means never and 0 means always |
force_posdef_covmatrix |
(logical) Set to TRUE to force the input covariance matrix to be positive definite |
n |
(numeric) Number of samples |
seed |
(numeric) Random number generator |
Value
(data.frame) A dataframe with one sample per row
See Also
sample_parameters_uniformly : Sample parameter vectors using uniform distribution
sample_individual_estimates : Sample individual estiates given their covariance
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
rng <- create_rng(23)
cov <- results$covariance_matrix
pe <- results$parameter_estimates
sample_parameters_from_covariance_matrix(model, pe, cov, n=3, seed=rng)
## End(Not run)
sample_parameters_uniformly
Description
Sample parameter vectors using uniform sampling
Each parameter value will be randomly sampled from a uniform distribution with the bounds being estimate ± estimate * fraction.
Usage
sample_parameters_uniformly(
model,
parameter_estimates,
fraction = 0.1,
force_posdef_samples = NULL,
n = 1,
seed = 1234,
scale = "normal"
)
Arguments
model |
(Model) Pharmpy model |
parameter_estimates |
(array) Parameter estimates for parameters to use |
fraction |
(numeric) Fraction of estimate value to use for distribution bounds |
force_posdef_samples |
(numeric (optional)) Number of samples to reject before forcing variability parameters to give positive definite covariance matrices. |
n |
(numeric) Number of samples |
seed |
(numeric) Random number generator or seed |
scale |
(str) Scale to perform sampling on. Valid options are 'normal' and 'UCP' |
Value
(data.frame) samples
See Also
sample_parameters_from_covariance_matrix : Sample parameter vectors using the
uncertainty covariance matrix
sample_individual_estimates : Sample individual estiates given their covariance
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
rng <- create_rng(23)
pe <- results$parameter_estimates
sample_parameters_uniformly(model, pe, n=3, seed=rng)
## End(Not run)
set_additive_error_model
Description
Set an additive error model. Initial estimate for new sigma is (equation could not be rendered, see API doc on website)
The error function being applied depends on the data transformation. The table displays some examples.
+————————+—————————————-+ | Data transformation | Additive error | +========================+========================================+ | (equation could not be rendered, see API doc on website) +————————+—————————————-+ | (equation could not be rendered, see API doc on website) +————————+—————————————-+
Usage
set_additive_error_model(model, dv = NULL, data_trans = NULL, series_terms = 2)
Arguments
model |
(Model) Set error model for this model |
dv |
(Expr or str or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only) |
data_trans |
(numeric or str or Expr (optional)) A data transformation expression or NULL (default) to use the transformation specified by the model. Series expansion will be used for approximation. |
series_terms |
(numeric) Number of terms to use for the series expansion approximation for data transformation. |
Value
(Model) Pharmpy model object
See Also
set_proportional_error_model : Proportional error model
set_combined_error_model : Combined error model
Examples
## Not run:
model <- load_example_model("pheno")
model$statements$find_assignment("Y")
model <- set_additive_error_model(model)
model$statements$find_assignment("Y")
model <- load_example_model("pheno")
model$statements$find_assignment("Y")
model <- set_additive_error_model(model, data_trans="log(Y)")
model$statements$find_assignment("Y")
## End(Not run)
set_baseline_effect
Description
Create baseline effect model.
Currently implemented baseline effects are:
Constant baseline effect (const):
(equation could not be rendered, see API doc on website)
Usage
set_baseline_effect(model, expr = "const")
Arguments
model |
(Model) Pharmpy model |
expr |
(str) Name of baseline effect function. |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_baseline_effect(model, expr='const')
model$statements$find_assignment("E")
## End(Not run)
set_combined_error_model
Description
Set a combined error model. Initial estimates for new sigmas are (equation could not be rendered, see API doc on website) proportional and 0.09 for additive.
The error function being applied depends on the data transformation.
+————————+—————————————————–+ | Data transformation | Combined error | +========================+=====================================================+ | (equation could not be rendered, see API doc on website) +————————+—————————————————–+ | (equation could not be rendered, see API doc on website) +————————+—————————————————–+
Usage
set_combined_error_model(model, dv = NULL, data_trans = NULL)
Arguments
model |
(Model) Set error model for this model |
dv |
(Expr or str or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only) |
data_trans |
(numeric or str or Expr (optional)) A data transformation expression or NULL (default) to use the transformation specified by the model. |
Value
(Model) Pharmpy model object
See Also
set_additive_error_model : Additive error model
set_proportional_error_model: Proportional error model
Examples
## Not run:
model <- remove_error_model(load_example_model("pheno"))
model <- set_combined_error_model(model)
model$statements$find_assignment("Y")
model <- remove_error_model(load_example_model("pheno"))
model <- set_combined_error_model(model, data_trans="log(Y)")
model$statements$find_assignment("Y")
## End(Not run)
set_covariates
Description
Set columns in the dataset to be covariates in the datainfo
Usage
set_covariates(model, covariates)
Arguments
model |
(Model) Pharmpy model |
covariates |
(array(str)) List of column names |
Value
(Model) Pharmpy model object
set_dataset
Description
Load the dataset given datainfo
Usage
set_dataset(model, path_or_df, datatype = NULL)
Arguments
model |
(Model) Pharmpy model |
path_or_df |
(str or data.frame) Dataset path or dataframe |
datatype |
(str (optional)) Type of dataset (optional) |
Value
(Model) Pharmpy model with new dataset and updated datainfo
Examples
## Not run:
model <- load_example_model("pheno")
model <- unload_dataset(model)
dataset_path <- model$datainfo$path
model$dataset is NULL
model <- set_dataset(model, dataset_path, datatype='nonmem')
model$dataset
## End(Not run)
set_description
Description
Set description of model object
Usage
set_description(model, new_description)
Arguments
model |
(Model) Pharmpy model |
new_description |
(str) New description of model |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model$description
model <- set_description(model, "PHENOBARB run 2")
model$description
## End(Not run)
set_direct_effect
Description
Add an effect to a model.
Effects are by default using concentratrion, but any user specified variable in the model can be used. Implemented PD models are:
Linear:
(equation could not be rendered, see API doc on website)
Emax:
(equation could not be rendered, see API doc on website)
Step effect:
(equation could not be rendered, see API doc on website)
Sigmoidal:
(equation could not be rendered, see API doc on website)
Log-linear:
(equation could not be rendered, see API doc on website)
(equation could not be rendered, see API doc on website)
Usage
set_direct_effect(model, expr, variable = NULL)
Arguments
model |
(Model) Pharmpy model |
expr |
(str) Name of PD effect function. |
variable |
(str (optional)) Name of variable to use (if NULL concentration will be used) |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_direct_effect(model, "linear")
model$statements$find_assignment("E")
## End(Not run)
set_dtbs_error_model
Description
Dynamic transform both sides
Usage
set_dtbs_error_model(model, fix_to_log = FALSE)
Arguments
model |
(Model) Pharmpy model |
fix_to_log |
(logical) Set to TRUE to fix lambda and zeta to 0, i.e. emulating log-transformed data |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_dtbs_error_model(model)
## End(Not run)
set_dvid
Description
Set a column to act as DVID. Replace DVID if one is already set.
Usage
set_dvid(model, name)
Arguments
model |
(Model) Pharmpy model |
name |
(str) Name of DVID column |
Value
(Model) Pharmpy model object
set_estimation_step
Description
Set estimation step
Sets estimation step for a model. Methods currently supported are: FO, FOCE, ITS, LAPLACE, IMPMAP, IMP, SAEM, BAYES
Usage
set_estimation_step(model, method, idx = 0, ...)
Arguments
model |
(Model) Pharmpy model |
method |
(str) estimation method to change to |
idx |
(numeric) index of estimation step, default is 0 (first estimation step) |
... |
Arguments to pass to EstimationStep (such as interaction, evaluation) |
Value
(Model) Pharmpy model object
See Also
add_estimation_step
remove_estimation_step
append_estimation_step_options
add_parameter_uncertainty_step
remove_parameter_uncertainty_step
set_evaluation_step
Examples
## Not run:
model <- load_example_model("pheno")
opts <- list('NITER'=1000, 'ISAMPLE'=100)
model <- set_estimation_step(model, 'IMP', evaluation=TRUE, tool_options=opts)
model$execution_steps[1]
## End(Not run)
set_evaluation_step
Description
Set evaluation step
Change the final or the estimation step with a specific index to do evaulation.
Usage
set_evaluation_step(model, idx = -1)
Arguments
model |
(Model) Pharmpy model |
idx |
(numeric) Index of estimation step, default is -1 (last estimation step) |
Value
(Model) Pharmpy model object
See Also
set_estimation_step
add_estimation_step
remove_estimation_step
append_estimation_step_options
add_parameter_uncertainty_step
remove_parameter_uncertainty_step
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_evaluation_step(model)
model$execution_steps[1]
## End(Not run)
set_first_order_absorption
Description
Set or change to first order absorption rate.
Initial estimate for absorption rate is set to the previous rate if available, otherwise it is set to the time of first observation/2.
If multiple doses is set to the affected compartment, currently only iv+oral doses (one of each) is supported
Usage
set_first_order_absorption(model)
Arguments
model |
(Model) Model to set or change to use first order absorption rate |
Value
(Model) Pharmpy model object
See Also
set_instantaneous_absorption
set_zero_order_absorption
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_first_order_absorption(model)
model$statements$ode_system
## End(Not run)
set_first_order_elimination
Description
Sets elimination to first order
Usage
set_first_order_elimination(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
set_zero_order_elimination
set_michaelis_menten_elimination
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_first_order_elimination(model)
model$statements$ode_system
## End(Not run)
set_iiv_on_ruv
Description
Multiplies epsilons with exponential (new) etas.
Initial variance for new etas is 0.09.
Usage
set_iiv_on_ruv(
model,
dv = NULL,
list_of_eps = NULL,
same_eta = TRUE,
eta_names = NULL
)
Arguments
model |
(Model) Pharmpy model to apply IIV on epsilons. |
dv |
(str or Expr or numeric (optional)) Name/names of epsilons to multiply with exponential etas. If NULL, all epsilons will be chosen. NULL is default. |
list_of_eps |
(array(str) or str (optional)) Boolean of whether all RUVs from input should use the same new ETA or if one ETA should be created for each RUV. TRUE is default. |
same_eta |
(logical) Custom names of new etas. Must be equal to the number epsilons or 1 if same eta. |
eta_names |
(array(str) or str (optional)) Name or DVID of dependent variable. NULL for the default (first or only) |
Value
(Model) Pharmpy model object
See Also
set_power_on_ruv
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_iiv_on_ruv(model)
model$statements$find_assignment("Y")
## End(Not run)
set_initial_condition
Description
Set an initial condition for the ode system
If the initial condition is already set it will be updated. If the initial condition is set to zero at time zero it will be removed (since the default is 0).
Usage
set_initial_condition(model, compartment, expression, time = 0)
Arguments
model |
(Model) Pharmpy model |
compartment |
(str) Name of the compartment |
expression |
(numeric or str or Expr) The expression of the initial condition |
time |
(numeric or str or Expr) Time point. Default 0 |
Value
(model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_initial_condition(model, "CENTRAL", 10)
get_initial_conditions(model)
## End(Not run)
set_initial_estimates
Description
Update initial parameter estimate for a model
Updates initial estimates of population parameters for a model. If the new initial estimates are out of bounds or NaN this function will raise.
Usage
set_initial_estimates(
model,
inits,
move_est_close_to_bounds = FALSE,
strict = TRUE
)
Arguments
model |
(Model) Pharmpy model to update initial estimates |
inits |
(list(str=numeric)) Initial parameter estimates to update |
move_est_close_to_bounds |
(logical) Move estimates that are close to bounds. If correlation >0.99 the correlation will be set to 0.9, if variance is <0.001 the variance will be set to 0.01. |
strict |
(logical) Whether all parameters in input need to exist in the model. Default is TRUE |
Value
(Model) Pharmpy model object
See Also
fix_parameters_to : Fixing and setting parameter initial estimates in the same function
unfix_paramaters_to : Unfixing parameters and setting a new initial estimate in the same
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
model$parameters$inits
model <- set_initial_estimates(model, results$parameter_estimates)
model$parameters$inits
model <- load_example_model("pheno")
model <- set_initial_estimates(model, list('POP_CL'=2.0))
model$parameters['POP_CL']
## End(Not run)
set_instantaneous_absorption
Description
Set or change to instantaneous absorption rate.
Currently lagtime together with instantaneous absorption is not supported.
Usage
set_instantaneous_absorption(model)
Arguments
model |
(Model) Model to set or change absorption rate |
Value
(Model) Pharmpy model object
See Also
set_zero_order_absorption
set_first_order_absorption
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_instantaneous_absorption(model)
model$statements$ode_system
## End(Not run)
set_lloq_data
Description
Set a dv value for lloq data records
Usage
set_lloq_data(model, value, lloq = NULL, blq = NULL)
Arguments
model |
(Model) Pharmpy model object |
value |
(str or numeric or Expr) The new dv value |
lloq |
(numeric or str (optional)) Value or column name for lower limit of quantification. |
blq |
(str (optional)) Column name for below limit of quantification indicator. |
Value
(Model) Pharmpy model object
See Also
remove_loq_data
transform_blq
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_lloq_data(model, 0, lloq=10)
## End(Not run)
set_lower_bounds
Description
Set parameter lower bounds
Usage
set_lower_bounds(model, bounds, strict = TRUE)
Arguments
model |
(Model) Pharmpy model |
bounds |
(list(str=numeric)) A list of parameter bounds for parameters to change |
strict |
(logical) Whether all parameters in input need to exist in the model. Default is TRUE |
Value
(Model) Pharmpy model object
See Also
set_upper_bounds : Set parameter upper bounds
unconstrain_parameters : Remove all constraints of parameters
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_lower_bounds(model, {'POP_CL': -10})
model$parameters['POP_CL']
## End(Not run)
set_michaelis_menten_elimination
Description
Sets elimination to Michaelis-Menten.
Note that the parametrization is not the usual, but is instead using a CLMM parameter.
Initial estimate for CLMM is set to CL and KM is set to (equation could not be rendered, see API doc on website)
Usage
set_michaelis_menten_elimination(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
set_first_order_elimination
set_zero_order_elimination
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_michaelis_menten_elimination(model)
model$statements$ode_system
## End(Not run)
set_mixed_mm_fo_elimination
Description
Sets elimination to mixed Michaelis-Menten and first order.
Initial estimate for CLMM is set to CL/2 and KM is set to (equation could not be rendered, see API doc on website)
Usage
set_mixed_mm_fo_elimination(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
set_first_order_elimination
set_zero_order_elimination
set_michaelis_menten_elimination
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_mixed_mm_fo_elimination(model)
model$statements$ode_system
## End(Not run)
set_name
Description
Set name of model object
Usage
set_name(model, new_name)
Arguments
model |
(Model) Pharmpy model |
new_name |
(str) New name of model |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model$name
model <- set_name(model, "run2")
model$name
## End(Not run)
set_ode_solver
Description
Sets ODE solver to use for model
Recognized solvers and their corresponding NONMEM advans:
+—————————-+——————+ | Solver | NONMEM ADVAN | +============================+==================+ | CVODES | ADVAN14 | +—————————-+——————+ | DGEAR | ADVAN8 | +—————————-+——————+ | DVERK | ADVAN6 | +—————————-+——————+ | IDA | ADVAN15 | +—————————-+——————+ | LSODA | ADVAN13 | +—————————-+——————+ | LSODI | ADVAN9 | +—————————-+——————+
Usage
set_ode_solver(model, solver)
Arguments
model |
(Model) Pharmpy model |
solver |
(str) Solver to use or NULL for no preference |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_ode_solver(model, 'LSODA')
## End(Not run)
set_peripheral_compartments
Description
Sets the number of peripheral compartments for central compartment to a specified number.
If name is set, the peripheral compartment will be added to the compartment with the specified name instead.
Usage
set_peripheral_compartments(model, n, name = NULL)
Arguments
model |
(Model) Pharmpy model |
n |
(numeric) Number of transit compartments |
name |
(str (optional)) Name of compartment to add peripheral to. |
Value
(Model) Pharmpy model object
See Also
add_peripheral_compartment
remove_peripheral_compartment
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_peripheral_compartments(model, 2)
model$statements$ode_system
## End(Not run)
set_power_on_ruv
Description
Applies a power effect to provided epsilons. If a dependent variable is provided, then only said epsilons affecting said variable will be changed.
Initial estimates for new thetas are 1 if the error model is proportional, otherwise they are 0.1.
NOTE : If no DVs or epsilons are specified, all epsilons with the same name will be connected to the same theta. Running the function per DV will give each epsilon a specific theta.
Usage
set_power_on_ruv(
model,
list_of_eps = NULL,
dv = NULL,
lower_limit = 0.01,
ipred = NULL,
zero_protection = FALSE
)
Arguments
model |
(Model) Pharmpy model to create block effect on. |
list_of_eps |
(str or array (optional)) Name/names of epsilons to apply power effect. If NULL, all epsilons will be used. NULL is default. |
dv |
(str or Expr or numeric (optional)) Name or DVID of dependent variable. NULL will change the epsilon on all occurences regardless of affected dependent variable. |
lower_limit |
(numeric (optional)) Lower limit of power (theta). NULL for no limit. |
ipred |
(str or Expr (optional)) Symbol to use as IPRED. Default is to autodetect expression for IPRED. |
zero_protection |
(logical) Set to TRUE to add code protecting from IPRED=0 |
Value
(Model) Pharmpy model object
See Also
set_iiv_on_ruv
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_power_on_ruv(model)
model$statements$find_assignment("Y")
## End(Not run)
set_proportional_error_model
Description
Set a proportional error model. Initial estimate for new sigma is 0.09.
The error function being applied depends on the data transformation.
+————————+—————————————-+ | Data transformation | Proportional error | +========================+========================================+ | (equation could not be rendered, see API doc on website) +————————+—————————————-+ | (equation could not be rendered, see API doc on website) +————————+—————————————-+
Usage
set_proportional_error_model(
model,
dv = NULL,
data_trans = NULL,
zero_protection = TRUE
)
Arguments
model |
(Model) Set error model for this model |
dv |
(Expr or str or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only) |
data_trans |
(numeric or str or Expr (optional)) A data transformation expression or NULL (default) to use the transformation specified by the model. |
zero_protection |
(logical) Set to TRUE to add code protecting from IPRED=0 |
Value
(Model) Pharmpy model object
See Also
set_additive_error_model : Additive error model
set_combined_error_model : Combined error model
Examples
## Not run:
model <- remove_error_model(load_example_model("pheno"))
model <- set_proportional_error_model(model)
model$statements$after_odes
model <- remove_error_model(load_example_model("pheno"))
model <- set_proportional_error_model(
model,
data_trans="log(Y)"
model$statements$after_odes
## End(Not run)
set_reference_values
Description
Set reference values for selected columns
All values for each selected column will be replaced. For dose columns only the values for dosing events will be replaced.
Usage
set_reference_values(model, refs)
Arguments
model |
(Model) Pharmpy model object |
refs |
(list(str=numeric)) Pairs of column names and reference values |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_reference_values(model, list('WGT'=0.5, 'AMT'=4.0))
model$dataset
## End(Not run)
set_seq_zo_fo_absorption
Description
Set or change to sequential zero order first order absorption rate.
Initial estimate for absorption rate is set the previous rate if available, otherwise it is set to the time of first observation/2.
Currently lagtime together with sequential zero order first order absorption is not supported.
Usage
set_seq_zo_fo_absorption(model)
Arguments
model |
(Model) Model to set or change absorption rate |
Value
(Model) Pharmpy model object
See Also
set_instantaneous_absorption
set_zero_order_absorption
set_first_order_absorption
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_seq_zo_fo_absorption(model)
model$statements$ode_system
## End(Not run)
set_simulation
Description
Change model into simulation model
Usage
set_simulation(model, n = 1, seed = 1234)
Arguments
model |
(Model) Pharmpy model |
n |
(numeric) Number of replicates |
seed |
(numeric) Random seed for the simulation |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_simulation(model, n=10, seed=1234)
steps <- model$execution_steps
steps[1]
## End(Not run)
set_time_varying_error_model
Description
Set a time varying error model per time cutoff
Usage
set_time_varying_error_model(model, cutoff, idv = "TIME", dv = NULL)
Arguments
model |
(Model) Pharmpy model |
cutoff |
(numeric) A cutoff value for idv column |
idv |
(str) Time or time after dose, default is Time |
dv |
(Expr or str or numeric (optional)) Name or DVID of dependent variable. NULL for the default (first or only) |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_time_varying_error_model(model, cutoff=1.0)
model$statements$find_assignment("Y")
## End(Not run)
set_tmdd
Description
Sets target mediated drug disposition
Implemented target mediated drug disposition (TMDD) models are:
Full model
Irreversible binding approximation (IB)
Constant total receptor approximation (CR)
Irreversible binding and constant total receptor approximation (CR+IB)
Quasi steady-state approximation (QSS)
Wagner
Michaelis-Menten approximation (MMAPP)
Usage
set_tmdd(model, type, dv_types = NULL)
Arguments
model |
(Model) Pharmpy model |
type |
(str) Type of TMDD model |
dv_types |
(list(str=numeric) (optional)) Dictionary of DV types for TMDD models with multiple DVs (e.g. dv_types = list('drug' = 1, 'target'= 2)). Default is NULL which means that all observations are treated as drug observations. For dv = 1 the only allowed keys are 'drug' and 'drug_tot'. If no DV for drug is specified then (free) drug will have dv = 1. |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_tmdd(model, "full")
## End(Not run)
set_transit_compartments
Description
Set the number of transit compartments of model.
Initial estimate for absorption rate is set the previous rate if available, otherwise it is set to the time of first observation/2.
Usage
set_transit_compartments(model, n, keep_depot = TRUE)
Arguments
model |
(Model) Pharmpy model |
n |
(numeric) Number of transit compartments |
keep_depot |
(logical) FALSE to convert depot compartment into a transit compartment |
Value
(Model) Pharmpy model object
See Also
add_lag_time
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_transit_compartments(model, 3)
model$statements$ode_system
## End(Not run)
set_upper_bounds
Description
Set parameter upper bounds
Usage
set_upper_bounds(model, bounds, strict = TRUE)
Arguments
model |
(Model) Pharmpy model |
bounds |
(list(str=numeric)) A list of parameter bounds for parameters to change |
strict |
(logical) Whether all parameters in input need to exist in the model. Default is TRUE |
Value
(Model) Pharmpy model object
See Also
set_lower_bounds : Set parameter lower bounds
unconstrain_parameters : Remove all constraints of parameters
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_upper_bounds(model, list('POP_CL'=10))
model$parameters['POP_CL']
## End(Not run)
set_weibull_absorption
Description
Set or change to Weibull type absorption
Initial estimate for absorption rate is set to??
If multiple doses is set to the affected compartment, currently only iv+oral doses (one of each) is supported
Weibull absorption cannot be used together with lag time and transit compartments.
Assumes that absorption of one does is done when next dose is given.
warning:: This function is still under development.
Usage
set_weibull_absorption(model)
Arguments
model |
(Model) Model to set or change to use Weibull absorption rate |
Value
(Model) Pharmpy model object
See Also
set_zero_order_absorption
set_first_order_absorption
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_weibull_absorption(model)
model$statements$ode_system
## End(Not run)
set_weighted_error_model
Description
Encode error model with one epsilon and W as weight
Usage
set_weighted_error_model(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
use_thetas_for_error_stdev : Use thetas to estimate error
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_weighted_error_model(model)
## End(Not run)
set_zero_order_absorption
Description
Set or change to zero order absorption rate.
Initial estimate for absorption rate is set the previous rate if available, otherwise it is set to the time of first observation/2.
Usage
set_zero_order_absorption(model)
Arguments
model |
(Model) Model to set or change to first order absorption rate |
Value
(Model) Pharmpy model object
See Also
set_instantaneous_absorption
set_first_order_absorption
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_zero_order_absorption(model)
model$statements$ode_system
## End(Not run)
set_zero_order_elimination
Description
Sets elimination to zero order.
Initial estimate for KM is set to 1% of smallest observation.
Usage
set_zero_order_elimination(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
set_first_order_elimination
set_michaelis_menten_elimination
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_zero_order_elimination(model)
model$statements$ode_system
## End(Not run)
set_zero_order_input
Description
Set a zero order input for the ode system
If the zero order input is already set it will be updated.
Usage
set_zero_order_input(model, compartment, expression)
Arguments
model |
(Model) Pharmpy model |
compartment |
(str) Name of the compartment |
expression |
(numeric or str or Expr) The expression of the zero order input |
Value
(model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- set_zero_order_input(model, "CENTRAL", 10)
get_zero_order_inputs(model)
## End(Not run)
simplify_expression
Description
Simplify expression given constraints in model
Usage
simplify_expression(model, expr)
Arguments
model |
(Model) Pharmpy model object |
expr |
(str or numeric or Expr) Expression to simplify |
Value
(Expression) Simplified expression
Examples
## Not run:
model <- load_example_model("pheno")
simplify_expression(model, "Abs(POP_CL)")
## End(Not run)
solve_ode_system
Description
Replace ODE system with analytical solution if possible
Warnings This function can currently only handle the most simple of ODE systems.
Usage
solve_ode_system(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
model$statements$ode_system
model <- solve_ode_system(model)
## End(Not run)
split_joint_distribution
Description
Splits etas following a joint distribution into separate distributions.
Usage
split_joint_distribution(model, rvs = NULL)
Arguments
model |
(Model) Pharmpy model |
rvs |
(array(str) or str (optional)) Name/names of etas to separate. If NULL, all etas that are IIVs and non-fixed will become single. NULL is default. |
Value
(Model) Pharmpy model object
See Also
create_joint_distribution : combine etas into a join distribution
Examples
## Not run:
model <- load_example_model("pheno")
model <- create_joint_distribution(model, c('ETA_CL', 'ETA_VC'))
model$random_variables$etas
model <- split_joint_distribution(model, c('ETA_CL', 'ETA_VC'))
model$random_variables$etas
## End(Not run)
summarize_modelfit_results
Description
Summarize results of model runs
Summarize different results after fitting a model, includes runtime, ofv, and parameter estimates (with errors). If include_all_execution_steps is FALSE, only the last estimation step will be included (note that in that case, the minimization_successful value will be referring to the last estimation step, if last step is evaluation it will go backwards until it finds an estimation step that wasn't an evaluation).
Usage
summarize_modelfit_results(context, include_all_execution_steps = FALSE)
Arguments
context |
(Context) Context in which models were run |
include_all_execution_steps |
(logical) Whether to include all estimation steps, default is FALSE |
Value
(data.frame) A DataFrame of modelfit results with model name and estmation step as index.
transform_blq
Description
Transform for BLQ data
Transform a given model, methods available are m1, m3, m4, m5, m6 and m7 (1). The blq information can come from the dataset, the lloq option or a combination. Both LLOQ and BLQ columns are supported. The table below explains which columns are used for the various cases:
+————-+————-+————+——————-+—————+——————-+ | lloq option | LLOQ column | BLQ column | Used as indicator | Used as level | Note | +=============+=============+============+===================+===============+===================+ | Available | NA | NA | DV < lloq | lloq | | +————-+————-+————+——————-+—————+——————-+ | NA | Available | NA | DV < LLOQ | LLOQ | | +————-+————-+————+——————-+—————+——————-+ | NA | NA | Available | BLQ | nothing | Only for M1 and M7| +————-+————-+————+——————-+—————+——————-+ | NA | NA | NA | NA | NA | No BLQ handling | +————-+————-+————+——————-+—————+——————-+ | NA | Available | Available | BLQ | LLOQ | DV column not used| +————-+————-+————+——————-+—————+——————-+ | Available | NA | Available | BLQ | lloq | | +————-+————-+————+——————-+—————+——————-+ | Available | Available | NA | DV < lloq | lloq | Column overridden | +————-+————-+————+——————-+—————+——————-+ | Available | Available | Available | DV < lloq | lloq | Columns overridden| +————-+————-+————+——————-+—————+——————-+
BLQ observations are defined as shown in the table above. If both a BLQ and an LLOQ column exist in the dataset and no lloq is specified then all dv values in rows with BLQ = 1 are counted as BLQ observations. If instead an lloq value is specified then all rows with dv values below the lloq value are counted as BLQ observations. If no lloq is specified and no BLQ column exists in the dataset then all rows with dv values below the value specified in the DV column are counted as BLQ observations.
M1 method:
All BLQ observations are discarded.
This may affect the size of the dataset.
M3 method:
Including the probability that the BLQ observations are below the LLOQ
as part of the maximum likelihood estimation.
For more details see :ref:(1)<ref_article>
.
This method modifies the Y statement of the model (see examples below).
M4 method:
Including the probability that the BLQ observations are below the LLOQ and positive
as part of the maximum likelihood estimation.
For more details see :ref:(1)<ref_article>
.
This method modifies the Y statement of the model (see examples below).
M5 method:
All BLQ observations are replaced by level/2, where level = lloq if lloq is specified.
Else level = value specified in LLOQ column (see table above).
This method may change entries in the dataset.
M6 method:
Every BLQ observation in a consecutive series of BLQ observations is discarded except for the first one.
The remaining BLQ observations are replaced by level/2, where level = lloq if lloq is specified.
Else level = value specified in LLOQ column (see table above).
This method may change entries in the dataset as well as the size of the dataset.
M7 method:
All BLQ observations are replaced by 0.
This method may change entries in the dataset.
Current limitations of the m3 and m4 method:
Does not support covariance between epsilons
Supports additive, proportional, combined, and power error model
_ref_article:
(1) Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001 Oct;28(5):481-504. doi: 10.1023/a:1012299115260. Erratum in: J Pharmacokinet Pharmacodyn 2002 Jun;29(3):309. PMID: 11768292.
Usage
transform_blq(model, method = "m4", lloq = NULL)
Arguments
model |
(Model) Pharmpy model |
method |
(str) Which BLQ method to use |
lloq |
(numeric (optional)) LLOQ limit to use, if NULL Pharmpy will use the BLQ/LLOQ column in the dataset |
Value
(Model) Pharmpy model object
See Also
remove_loq_data
set_lloq_data
Examples
## Not run:
model <- load_example_model("pheno")
model <- transform_blq(model, method='m4', lloq=0.1)
model$statements$find_assignment("Y")
## End(Not run)
transform_etas_boxcox
Description
Applies a boxcox transformation to selected etas
Initial estimate for lambda is 0.1 with bounds (-3, 3).
Usage
transform_etas_boxcox(model, list_of_etas = NULL)
Arguments
model |
(Model) Pharmpy model to apply boxcox transformation to. |
list_of_etas |
(array(str) or str (optional)) Name/names of etas to transform. If NULL, all etas will be transformed (default). |
Value
(Model) Pharmpy model object
See Also
transform_etas_tdist
transform_etas_john_draper
Examples
## Not run:
model <- load_example_model("pheno")
model <- transform_etas_boxcox(model, c("ETA_CL"))
model$statements$before_odes$full_expression("CL")
## End(Not run)
transform_etas_john_draper
Description
Applies a John Draper transformation (1) to spelected etas
Initial estimate for lambda is 0.1 with bounds (-3, 3).
(1) John, J., Draper, N. (1980). An Alternative Family of Transformations. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(2), 190-197. doi:10.2307/2986305
Usage
transform_etas_john_draper(model, list_of_etas = NULL)
Arguments
model |
(Model) Pharmpy model to apply John Draper transformation to. |
list_of_etas |
(array(str) or str (optional)) Name/names of etas to transform. If NULL, all etas will be transformed (default). |
Value
(Model) Pharmpy model object
See Also
transform_etas_boxcox
transform_etas_tdist
Examples
## Not run:
model <- load_example_model("pheno")
model <- transform_etas_john_draper(model, c("ETA_CL"))
model$statements$before_odes$full_expression("CL")
## End(Not run)
transform_etas_tdist
Description
Applies a t-distribution transformation to selected etas
Initial estimate for degrees of freedom is 80 with bounds (3, 100).
Usage
transform_etas_tdist(model, list_of_etas = NULL)
Arguments
model |
(Model) Pharmpy model to apply t distribution transformation to. |
list_of_etas |
(array(str) or str (optional)) Name/names of etas to transform. If NULL, all etas will be transformed (default). |
Value
(Model) Pharmpy model object
See Also
transform_etas_boxcox
transform_etas_john_draper
Examples
## Not run:
model <- load_example_model("pheno")
model <- transform_etas_tdist(model, c("ETA_CL"))
model$statements$before_odes$full_expression("CL")
## End(Not run)
translate_nmtran_time
Description
Translate NM-TRAN TIME and DATE column into one TIME column
If dataset of model have special NM-TRAN TIME and DATE columns these will be translated into one single time column with time in hours.
Warnings Use this function with caution. For example reset events are currently not taken into account.
Usage
translate_nmtran_time(model)
Arguments
model |
(Model) Pharmpy model object |
Value
(Model) Pharmpy model object
unconstrain_parameters
Description
Remove all constraints from parameters
Usage
unconstrain_parameters(model, parameter_names, strict = TRUE)
Arguments
model |
(Model) Pharmpy model |
parameter_names |
(array(str)) Remove all constraints for the listed parameters |
strict |
(logical) Whether all parameters in input need to exist in the model. Default is TRUE |
Value
(Model) Pharmpy model object
See Also
set_lower_bounds : Set parameter lower bounds
set_upper_bounds : Set parameter upper bounds
unfix_parameters : Unfix parameters
Examples
## Not run:
model <- load_example_model("pheno")
model$parameters['POP_CL']
model <- unconstrain_parameters(model, c('POP_CL'))
model$parameters['POP_CL']
## End(Not run)
undrop_columns
Description
Undrop columns of model
Usage
undrop_columns(model, column_names)
Arguments
model |
(Model) Pharmpy model object |
column_names |
(array(str) or str) List of column names or one column name to undrop |
Value
(Model) Pharmpy model object
See Also
drop_dropped_columns : Drop all columns marked as drop
drop_columns : Drop or mark columns as dropped
Examples
## Not run:
model <- load_example_model("pheno")
model <- drop_columns(model, c('WGT', 'APGR'), mark=TRUE)
model <- undrop_columns(model, 'WGT')
## End(Not run)
unfix_parameters
Description
Unfix parameters
Unfix all listed parameters
Usage
unfix_parameters(model, parameter_names, strict = TRUE)
Arguments
model |
(Model) Pharmpy model |
parameter_names |
(array(str) or str) one parameter name or a vector of parameter names |
strict |
(logical) Whether all parameters in input need to exist in the model. Default is TRUE |
Value
(Model) Pharmpy model object
See Also
unfix_paramaters_to : Unfixing parameters and setting a new initial estimate in the same
function
fix_parameters : Fix parameters
fix_or_unfix_parameters : Fix or unfix parameters (given boolean)
fix_parameters_to : Fixing and setting parameter initial estimates in the same function
unconstrain_parameters : Remove all constraints of parameters
Examples
## Not run:
model <- load_example_model("pheno")
model <- fix_parameters(model, c('POP_CL', 'POP_VC'))
model$parameters$fix
model <- unfix_parameters(model, 'POP_CL')
model$parameters$fix
## End(Not run)
unfix_parameters_to
Description
Unfix parameters to
Unfix all listed parameters to specified value/values
Usage
unfix_parameters_to(model, inits, strict = TRUE)
Arguments
model |
(Model) Pharmpy model |
inits |
(list(str=numeric)) Inits for all parameters to unfix and change init |
strict |
(logical) Whether all parameters in input need to exist in the model. Default is TRUE |
Value
(Model) Pharmpy model object
See Also
fix_parameters : Fix parameters
fix_or_unfix_parameters : Fix or unfix parameters (given boolean)
unfix_paramaters : Unfixing parameters
fix_paramaters_to : Fixing parameters and setting a new initial estimate in the same
function
Examples
## Not run:
model <- load_example_model("pheno")
model <- fix_parameters(model, c('POP_CL', 'POP_VC'))
model$parameters$fix
model <- unfix_parameters_to(model, list('POP_CL'=0.5))
model$parameters$fix
model$parameters['POP_CL']
## End(Not run)
unload_dataset
Description
Unload the dataset from a model
Usage
unload_dataset(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model with dataset removed
Examples
## Not run:
model <- load_example_model("pheno")
model <- unload_dataset(model)
model$dataset is NULL
## End(Not run)
update_initial_individual_estimates
Description
Update initial individual estimates for a model
Updates initial individual estimates for a model.
Usage
update_initial_individual_estimates(model, individual_estimates, force = TRUE)
Arguments
model |
(Model) Pharmpy model to update initial estimates |
individual_estimates |
(array) Individual estimates to use |
force |
(logical) Set to FALSE to only update if the model had initial individual estimates before |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
results <- load_example_modelfit_results("pheno")
ie <- results$individual_estimates
model <- update_initial_individual_estimates(model, ie)
## End(Not run)
use_thetas_for_error_stdev
Description
Use thetas to estimate standard deviation of error
Usage
use_thetas_for_error_stdev(model)
Arguments
model |
(Model) Pharmpy model |
Value
(Model) Pharmpy model object
See Also
set_weighted_error_model : Encode error model with one epsilon and weight
write_csv
Description
Write dataset to a csv file and updates the datainfo path
Usage
write_csv(model, path = NULL, force = FALSE)
Arguments
model |
(Model) Model whose dataset to write to file |
path |
(str (optional)) Destination path. Default is to use original path with .csv suffix. |
force |
(logical) Overwrite file with same path. Default is FALSE. |
Value
(Model) Updated model object
Examples
## Not run:
model <- load_example_model("pheno")
model <- write_csv(model, path="newdataset$csv")
## End(Not run)
write_model
Description
Write model code to file
Usage
write_model(model, path = "", force = TRUE)
Arguments
model |
(Model) Pharmpy model |
path |
(str) Destination path |
force |
(logical) Force overwrite, default is TRUE |
Value
(Model) Pharmpy model object
Examples
## Not run:
model <- load_example_model("pheno")
write_model(model)
## End(Not run)
write_results
Description
Write results object to json (or csv) file
Note that the csv-file cannot be read into a results object again.
Usage
write_results(results, path, compression = FALSE, csv = FALSE)
Arguments
results |
(Results) Pharmpy results object |
path |
(str) Path to results file |
compression |
(logical) TRUE to compress the file. Not applicable to csv file |
csv |
(logical) Save as csv file |