Type: | Package |
Title: | Re-Scale Vectors and Time-Series Features |
Version: | 0.1.2 |
Date: | 2024-02-28 |
Maintainer: | Trent Henderson <then6675@uni.sydney.edu.au> |
Description: | Provides standardized access to a range of re-scaling methods for numerical vectors and time-series features calculated within the 'theft' ecosystem. |
BugReports: | https://github.com/hendersontrent/normaliseR/issues |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
Depends: | R (≥ 3.5.0) |
Imports: | rlang, stats, dplyr, scales |
Suggests: | knitr, markdown, rmarkdown, pkgdown, testthat (≥ 3.0.0) |
RoxygenNote: | 7.2.2 |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
URL: | https://hendersontrent.github.io/normaliseR/ |
NeedsCompilation: | no |
Packaged: | 2024-02-28 00:25:29 UTC; trenthenderson |
Author: | Trent Henderson [cre, aut] |
Repository: | CRAN |
Date/Publication: | 2024-02-29 11:50:02 UTC |
Re-Scale Vectors and Time-Series Features
Description
Re-scale Vectors and Time-Series Features
Rescales a numeric vector using maximum absolute scaling
Description
z_{i} = \frac{x_{i}}{\text{max}(\mathbf{x})}
Usage
maxabs_scaler(x)
Arguments
x |
|
Value
numeric
vector
Author(s)
Trent Henderson
Rescales a numeric vector into the unit interval [0,1]
Description
z_{i} = \frac{x_{i} - \text{min}(\mathbf{x})}{\text{max}(\mathbf{x}) - \text{min}(\mathbf{x})}
Usage
minmax_scaler(x)
Arguments
x |
|
Value
numeric
vector
Author(s)
Trent Henderson
Scale each feature vector into a user-specified range for visualisation and modelling
Description
'normalise()' and 'normalize()' are synonyms.
Usage
normalise(
data,
norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax", "MaxAbs"),
unit_int = FALSE
)
normalize(
data,
norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax", "MaxAbs"),
unit_int = FALSE
)
Arguments
data |
either a |
norm_method |
|
unit_int |
|
Value
either an object of class feature_calculations
object or a numeric
vector depending on the data type supplied to data
Author(s)
Trent Henderson
Rescales a numeric vector using an outlier-robust Sigmoidal transformation
Description
z_{i} = \left[1 + \exp\left(-\frac{x_{i} - \text{median}(\mathbf{x})}{\text{IQR}(\mathbf{x})/{1.35}}\right)\right]^{-1}
Usage
robustsigmoid_scaler(x)
Arguments
x |
|
Value
numeric
vector
Author(s)
Trent Henderson
References
Fulcher, Ben D., Little, Max A., and Jones, Nick S. Highly Comparative Time-Series Analysis: The Empirical Structure of Time Series and Their Methods. Journal of The Royal Society Interface 10(83), (2013).
Rescales a numeric vector using a Sigmoidal transformation
Description
z_{i} = \left[1 + \exp(-\frac{x_{i} - \mu}{\sigma})\right]^{-1}
Usage
sigmoid_scaler(x)
Arguments
x |
|
Value
numeric
vector
Author(s)
Trent Henderson
Rescales a numeric vector into z-scores
Description
z_{i} = \frac{x_{i} - \mu}{\sigma}
Usage
zscore_scaler(x)
Arguments
x |
|
Value
numeric
vector
Author(s)
Trent Henderson