Type: | Package |
Title: | Non-Negative Garrote Estimation with Penalized Initial Estimators |
Version: | 1.0.4 |
Date: | 2021-10-05 |
Author: | Anthony Christidis <anthony.christidis@stat.ubc.ca>, Stefan Van Aelst <stefan.vanaelst@kuleuven.be>, Ruben Zamar <ruben@stat.ubc.ca> |
Maintainer: | Anthony Christidis <anthony.christidis@stat.ubc.ca> |
Description: | Functions to compute the non-negative garrote estimator as proposed by Breiman (1995) https://www.jstor.org/stable/1269730 with the penalized initial estimators extension as proposed by Yuan and Lin (2007) https://www.jstor.org/stable/4623260. |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
Biarch: | true |
Imports: | glmnet |
RoxygenNote: | 7.1.1 |
Suggests: | testthat, mvnfast |
NeedsCompilation: | no |
Packaged: | 2021-10-06 18:27:11 UTC; antho |
Repository: | CRAN |
Date/Publication: | 2021-10-07 07:40:19 UTC |
Coefficients for cv.nnGarrote Object
Description
coef.cv.nnGarrote
returns the coefficients for a cv.nnGarrote object.
Usage
## S3 method for class 'cv.nnGarrote'
coef(object, optimal.only = TRUE, ...)
Arguments
object |
An object of class cv.nnGarrote |
optimal.only |
A boolean variable (TRUE default) to indicate if only the coefficient of the optimal split are returned. |
... |
Additional arguments for compatibility. |
Value
A matrix with the coefficients of the cv.nnGarrote
object.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
Examples
# Setting the parameters
p <- 500
n <- 100
n.test <- 5000
sparsity <- 0.15
rho <- 0.5
SNR <- 3
set.seed(0)
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
true.beta <- c(nonzero.betas, rep(0, p-p.active))
# Two groups correlation structure
Sigma.rho <- matrix(0, p, p)
Sigma.rho[1:p.active, 1:p.active] <- rho
diag(Sigma.rho) <- 1
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma.rho %*% true.beta)/SNR))
# Simulate some data
library(mvnfast)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma.rho)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# Applying the NNG with Ridge as an initial estimator
nng.out <- cv.nnGarrote(x.train, y.train, intercept=TRUE,
initial.model=c("LS", "glmnet")[2],
lambda.nng=NULL, lambda.initial=NULL, alpha=0,
nfolds=5)
nng.predictions <- predict(nng.out, newx=x.test)
mean((nng.predictions-y.test)^2)/sigma.epsilon^2
coef(nng.out)
Coefficients for nnGarrote Object
Description
coef.nnGarrote
returns the coefficients for a nnGarrote object.
Usage
## S3 method for class 'nnGarrote'
coef(object, ...)
Arguments
object |
An object of class nnGarrote. |
... |
Additional arguments for compatibility. |
Value
A matrix with the coefficients of the nnGarrote
object.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
Examples
# Setting the parameters
p <- 500
n <- 100
n.test <- 5000
sparsity <- 0.15
rho <- 0.5
SNR <- 3
set.seed(0)
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
true.beta <- c(nonzero.betas, rep(0, p-p.active))
# Two groups correlation structure
Sigma.rho <- matrix(0, p, p)
Sigma.rho[1:p.active, 1:p.active] <- rho
diag(Sigma.rho) <- 1
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma.rho %*% true.beta)/SNR))
# Simulate some data
library(mvnfast)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma.rho)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# Applying the NNG with Ridge as an initial estimator
nng.out <- nnGarrote(x.train, y.train, intercept=TRUE,
initial.model=c("LS", "glmnet")[2],
lambda.nng=NULL, lambda.initial=NULL, alpha=0)
nng.predictions <- predict(nng.out, newx=x.test)
nng.coef <- coef(nng.out)
Non-negative Garrote Estimator - Cross-Validation
Description
cv.nnGarrote
computes the non-negative garrote estimator with cross-validation.
Usage
cv.nnGarrote(
x,
y,
intercept = TRUE,
initial.model = c("LS", "glmnet")[1],
lambda.nng = NULL,
lambda.initial = NULL,
alpha = 0,
nfolds = 5,
verbose = TRUE
)
Arguments
x |
Design matrix. |
y |
Response vector. |
intercept |
Boolean variable to determine if there is intercept (default is TRUE) or not. |
initial.model |
Model used for the groups. Must be one of "LS" (default) or "glmnet". |
lambda.nng |
Shinkage parameter for the non-negative garrote. If NULL(default), it will be computed based on data. |
lambda.initial |
The shinkrage parameter for the "glmnet" regularization. |
alpha |
Elastic net mixing parameter for initial estimate. Should be between 0 (default) and 1. |
nfolds |
Number of folds for the cross-validation procedure. |
verbose |
Boolean variable to determine if console output for cross-validation progress is printed (default is TRUE). |
Value
An object of class cv.nnGarrote
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
coef.cv.nnGarrote
, predict.cv.nnGarrote
Examples
# Setting the parameters
p <- 500
n <- 100
n.test <- 5000
sparsity <- 0.15
rho <- 0.5
SNR <- 3
set.seed(0)
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
true.beta <- c(nonzero.betas, rep(0, p-p.active))
# Two groups correlation structure
Sigma.rho <- matrix(0, p, p)
Sigma.rho[1:p.active, 1:p.active] <- rho
diag(Sigma.rho) <- 1
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma.rho %*% true.beta)/SNR))
# Simulate some data
library(mvnfast)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma.rho)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# Applying the NNG with Ridge as an initial estimator
nng.out <- cv.nnGarrote(x.train, y.train, intercept=TRUE,
initial.model=c("LS", "glmnet")[2],
lambda.nng=NULL, lambda.initial=NULL, alpha=0,
nfolds=5)
nng.predictions <- predict(nng.out, newx=x.test)
mean((nng.predictions-y.test)^2)/sigma.epsilon^2
coef(nng.out)
Non-negative Garrote Estimator
Description
nnGarrote
computes the non-negative garrote estimator.
Usage
nnGarrote(
x,
y,
intercept = TRUE,
initial.model = c("LS", "glmnet")[1],
lambda.nng = NULL,
lambda.initial = NULL,
alpha = 0
)
Arguments
x |
Design matrix. |
y |
Response vector. |
intercept |
Boolean variable to determine if there is intercept (default is TRUE) or not. |
initial.model |
Model used for the groups. Must be one of "LS" (default) or "glmnet". |
lambda.nng |
Shinkage parameter for the non-negative garrote. If NULL(default), it will be computed based on data. |
lambda.initial |
The shinkrage parameter for the "glmnet" regularization. If NULL (default), optimal value is chosen by cross-validation. |
alpha |
Elastic net mixing parameter for initial estimate. Should be between 0 (default) and 1. |
Value
An object of class nnGarrote.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
coef.nnGarrote
, predict.nnGarrote
Examples
# Setting the parameters
p <- 500
n <- 100
n.test <- 5000
sparsity <- 0.15
rho <- 0.5
SNR <- 3
set.seed(0)
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
true.beta <- c(nonzero.betas, rep(0, p-p.active))
# Two groups correlation structure
Sigma.rho <- matrix(0, p, p)
Sigma.rho[1:p.active, 1:p.active] <- rho
diag(Sigma.rho) <- 1
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma.rho %*% true.beta)/SNR))
# Simulate some data
library(mvnfast)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma.rho)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# Applying the NNG with Ridge as an initial estimator
nng.out <- nnGarrote(x.train, y.train, intercept=TRUE,
initial.model=c("LS", "glmnet")[2],
lambda.nng=NULL, lambda.initial=NULL, alpha=0)
nng.predictions <- predict(nng.out, newx=x.test)
nng.coef <- coef(nng.out)
Predictions for cv.nnGarrote Object
Description
predict.cv.nnGarrote
returns the prediction for cv.nnGarrote for new data.
Usage
## S3 method for class 'cv.nnGarrote'
predict(object, newx, optimal.only = TRUE, ...)
Arguments
object |
An object of class cv.nnGarrote |
newx |
A matrix with the new data. |
optimal.only |
A boolean variable (TRUE default) to indicate if only the coefficient of the optimal split are returned. |
... |
Additional arguments for compatibility. |
Value
A matrix with the predictions of the cv.nnGarrote
object.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
Examples
# Setting the parameters
p <- 500
n <- 100
n.test <- 5000
sparsity <- 0.15
rho <- 0.5
SNR <- 3
set.seed(0)
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
true.beta <- c(nonzero.betas, rep(0, p-p.active))
# Two groups correlation structure
Sigma.rho <- matrix(0, p, p)
Sigma.rho[1:p.active, 1:p.active] <- rho
diag(Sigma.rho) <- 1
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma.rho %*% true.beta)/SNR))
# Simulate some data
library(mvnfast)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma.rho)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# Applying the NNG with Ridge as an initial estimator
nng.out <- cv.nnGarrote(x.train, y.train, intercept=TRUE,
initial.model=c("LS", "glmnet")[2],
lambda.nng=NULL, lambda.initial=NULL, alpha=0,
nfolds=5)
nng.predictions <- predict(nng.out, newx=x.test)
mean((nng.predictions-y.test)^2)/sigma.epsilon^2
coef(nng.out)
Predictions for nnGarrote Object
Description
predict.nnGarrote
returns the prediction for nnGarrote for new data.
Usage
## S3 method for class 'nnGarrote'
predict(object, newx, ...)
Arguments
object |
An object of class nnGarrote |
newx |
A matrix with the new data. |
... |
Additional arguments for compatibility. |
Value
A matrix with the predictions of the nnGarrote
object.
Author(s)
Anthony-Alexander Christidis, anthony.christidis@stat.ubc.ca
See Also
Examples
# Setting the parameters
p <- 500
n <- 100
n.test <- 5000
sparsity <- 0.15
rho <- 0.5
SNR <- 3
set.seed(0)
# Generating the coefficient
p.active <- floor(p*sparsity)
a <- 4*log(n)/sqrt(n)
neg.prob <- 0.2
nonzero.betas <- (-1)^(rbinom(p.active, 1, neg.prob))*(a + abs(rnorm(p.active)))
true.beta <- c(nonzero.betas, rep(0, p-p.active))
# Two groups correlation structure
Sigma.rho <- matrix(0, p, p)
Sigma.rho[1:p.active, 1:p.active] <- rho
diag(Sigma.rho) <- 1
sigma.epsilon <- as.numeric(sqrt((t(true.beta) %*% Sigma.rho %*% true.beta)/SNR))
# Simulate some data
library(mvnfast)
x.train <- mvnfast::rmvn(n, mu=rep(0,p), sigma=Sigma.rho)
y.train <- 1 + x.train %*% true.beta + rnorm(n=n, mean=0, sd=sigma.epsilon)
x.test <- mvnfast::rmvn(n.test, mu=rep(0,p), sigma=Sigma.rho)
y.test <- 1 + x.test %*% true.beta + rnorm(n.test, sd=sigma.epsilon)
# Applying the NNG with Ridge as an initial estimator
nng.out <- nnGarrote(x.train, y.train, intercept=TRUE,
initial.model=c("LS", "glmnet")[2],
lambda.nng=NULL, lambda.initial=NULL, alpha=0)
nng.predictions <- predict(nng.out, newx=x.test)
nng.coef <- coef(nng.out)