Title: | Alternative Continuous and Discrete Distributions |
Version: | 0.1.1 |
Maintainer: | Ramazan Akman <ramazanakman12345@gmail.com> |
Description: | The aim is to develop an R package, which is the 'new.dist' package, for the probability (density) function, the distribution function, the quantile function and the associated random number generation function for discrete and continuous distributions, which have recently been proposed in the literature. This package implements the following distributions: The Power Muth Distribution, a Bimodal Weibull Distribution, the Discrete Lindley Distribution, The Gamma-Lomax Distribution, Weighted Geometric Distribution, a Power Log-Dagum Distribution, Kumaraswamy Distribution, Lindley Distribution, the Unit-Inverse Gaussian Distribution, EP Distribution, Akash Distribution, Ishita Distribution, Maxwell Distribution, the Standard Omega Distribution, Slashed Generalized Rayleigh Distribution, Two-Parameter Rayleigh Distribution, Muth Distribution, Uniform-Geometric Distribution, Discrete Weibull Distribution. |
License: | GPL-3 |
URL: | https://github.com/akmn35/new.dist, https://akmn35.github.io/new.dist/ |
BugReports: | https://github.com/akmn35/new.dist/issues |
Imports: | VGAM, expint, pracma |
Suggests: | knitr, rmarkdown, roxygen2, stats, testthat (≥ 3.0.0) |
VignetteBuilder: | knitr |
Config/testthat/edition: | 3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.2.3 |
NeedsCompilation: | no |
Packaged: | 2023-12-09 16:36:08 UTC; Ramazan |
Author: | Ramazan Akman [cre, ctb] (https://www.researchgate.net/profile/Ramazan-Akman), Coşkun Kuş [aut, ctb] (https://www.selcuk.edu.tr/Person/Detail/coskun), Ihab Abusaif [aut, ctb] (https://www.researchgate.net/profile/Ihab-Abusaif) |
Repository: | CRAN |
Date/Publication: | 2023-12-09 16:50:02 UTC |
EP distribution
Description
Density, distribution function, quantile function and random generation for the EP distribution.
Usage
dEPd(x, lambda, beta, log = FALSE)
pEPd(q, lambda, beta, lower.tail = TRUE, log.p = FALSE)
qEPd(p, lambda, beta, lower.tail = TRUE)
rEPd(n, lambda, beta)
Arguments
x , q |
vector of quantiles. |
lambda , beta |
are parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The EP distribution with parameters \lambda
and \beta
,
has density
f\left( x\right) =\frac{\lambda \beta }
{\left( 1-e^{-\lambda }\right) } e^{-\lambda -\beta x+\lambda e^{-\beta x}},
where
x>\mathbb{R}_{+},~\beta ,\lambda \in \mathbb{R}_{+}.
Value
dEPd
gives the density, pEPd
gives the distribution
function, qEPd
gives the quantile function and rEPd
generates
random deviates.
References
Kuş, C., 2007, A new lifetime distribution, Computational Statistics & Data Analysis, 51 (9), 4497-4509.
Examples
library(new.dist)
dEPd(1, lambda=2, beta=3)
pEPd(1,lambda=2,beta=3)
qEPd(.8,lambda=2,beta=3)
rEPd(10,lambda=2,beta=3)
Lindley Distribution
Description
Density, distribution function, quantile function and random generation for the Lindley distribution.
Usage
dLd(x, theta, log = FALSE)
pLd(q, theta, lower.tail = TRUE, log.p = FALSE)
qLd(p, theta, lower.tail = TRUE)
rLd(n, theta)
Arguments
x , q |
vector of quantiles. |
theta |
a parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Lindley distribution with a parameter \theta
, has density
f\left( x\right) =\frac{\theta ^{2}}{1+\theta }\left( 1+x\right)
e^{-\theta~x},
where
x>0,~\theta >0.
Value
dLd
gives the density, pLd
gives the distribution
function, qLd
gives the quantile function and rLd
generates
random deviates.
References
Akgül, F. G., Acıtaş, Ş. ve Şenoğlu, B., 2018, Inferences on stress–strength reliability based on ranked set sampling data in case of Lindley distribution, Journal of statistical computation and simulation, 88 (15), 3018-3032.
Examples
library(new.dist)
dLd(1,theta=2)
pLd(1,theta=2)
qLd(.8,theta=1)
rLd(10,theta=1)
Ram Awadh Distribution
Description
Density, distribution function, quantile function and random generation for
a Ram Awadh distribution with parameter scale
.
Usage
dRA(x, theta = 1, log = FALSE)
pRA(q, theta = 1, lower.tail = TRUE, log.p = FALSE)
qRA(p, theta = 1, lower.tail = TRUE)
rRA(n, theta = 1)
Arguments
x , q |
vector of quantiles. |
theta |
a scale parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
Ram Awadh distribution with scale
parameter
\theta
, has density
f\left( x\right) =\frac{\theta ^{6}}{\theta ^{6}+120}
\left( \theta+x^{5}\right) e^{-\theta x},
where
x>0,~\theta >0.
Value
dRA
gives the density, pRA
gives the distribution
function, qRA
gives the quantile function and rRA
generates random deviates.
References
Shukla, K. K., Shanker, R. ve Tiwari, M. K., 2022, A new one parameter discrete distribution and its applications, Journal of Statistics and Management Systems, 25 (1), 269-283.
Examples
library(new.dist)
dRA(1,theta=2)
pRA(1,theta=2)
qRA(.1,theta=1)
rRA(10,theta=1)
Bimodal Weibull Distribution
Description
Density, distribution function, quantile function and random generation for
a Bimodal Weibull distribution with parameters shape
and scale
.
Usage
dbwd(x, alpha, beta = 1, sigma, log = FALSE)
pbwd(q, alpha, beta = 1, sigma, lower.tail = TRUE, log.p = FALSE)
qbwd(p, alpha, beta = 1, sigma, lower.tail = TRUE)
rbwd(n, alpha, beta = 1, sigma)
Arguments
x , q |
vector of quantiles. |
alpha |
a shape parameter. |
beta |
a scale parameter. |
sigma |
a control parameter that controls the uni- or bimodality of the distribution. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
A Bimodal Weibull distribution with shape
parameter \alpha
,
scale
parameter \beta
,and the control
parameter
\sigma
that determines the uni- or bimodality of the
distribution, has density
f\left( x\right) =\frac{\alpha }{\beta Z_{\theta }}
\left[ 1+\left( 1-\sigma~x\right) ^{2}\right] \left( \frac{x}{\beta }
\right) ^{\alpha -1}\exp \left( -\left( \frac{x}{\beta }\right) ^{\alpha }
\right),
where
Z_{\theta }=2+\sigma ^{2}\beta ^{2}\Gamma
\left( 1+\left( 2/\alpha \right)\right) -2\sigma \beta \Gamma
\left( 1+\left( 1/\alpha \right) \right)
and
x\geq 0,~\alpha ,\beta >0~ and ~\sigma \in\mathbb{R}.
Value
dbwd
gives the density, pbwd
gives the distribution
function, qbwd
gives the quantile function and rbwd
generates
random deviates.
References
Vila, R. ve Niyazi Çankaya, M., 2022, A bimodal Weibull distribution: properties and inference, Journal of Applied Statistics, 49 (12), 3044-3062.
Examples
library(new.dist)
dbwd(1,alpha=2,beta=3,sigma=4)
pbwd(1,alpha=2,beta=3,sigma=4)
qbwd(.7,alpha=2,beta=3,sigma=4)
rbwd(10,alpha=2,beta=3,sigma=4)
Discrete Lindley Distribution
Description
Density, distribution function, quantile function and random generation for the discrete Lindley distribution.
Usage
ddLd1(x, theta, log = FALSE)
pdLd1(q, theta, lower.tail = TRUE, log.p = FALSE)
qdLd1(p, theta, lower.tail = TRUE)
rdLd1(n, theta)
Arguments
x , q |
vector of quantiles. |
theta |
a parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Discrete Lindley distribution with a parameter \theta
, has density
f\left( x\right) =\frac{\lambda ^{x}}{1-\log \lambda }
\left( \lambda \log\lambda +\left( 1-\lambda \right)
\left( 1-\log \lambda^{x+1}\right)\right),
where
x=0,1,...,~\theta >0~and~\lambda =e^{-\theta }.
Value
ddLd1
gives the density, pdLd1
gives the distribution
function, qdLd1
gives the quantile function and rdLd1
generates
random deviates.
References
Gómez-Déniz, E. ve Calderín-Ojeda, E., 2011, The discrete Lindley distribution: properties and applications.Journal of statistical computation and simulation, 81 (11), 1405-1416.
Examples
library(new.dist)
ddLd1(1,theta=2)
pdLd1(2,theta=1)
qdLd1(.993,theta=2)
rdLd1(10,theta=1)
Discrete Lindley Distribution
Description
Density, distribution function, quantile function and random generation for the discrete Lindley distribution.
Usage
ddLd2(x, theta, log = FALSE)
pdLd2(q, theta, lower.tail = TRUE, log.p = FALSE)
qdLd2(p, theta, lower.tail = TRUE)
rdLd2(n, theta)
Arguments
x , q |
vector of quantiles. |
theta |
a parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
the discrete Lindley distribution with a parameter \theta
,
has density
f\left( x\right) =\frac{\lambda ^{x}}{1+\theta }
\left( \theta \left(1-2\lambda \right) +\left( 1-\lambda \right)
\left( 1+\theta x\right)\right),
where
x=0,1,2,...~,\lambda =\exp \left( -\theta \right) ~and~\theta >0.
Value
ddLd2
gives the density, pdLd2
gives the distribution
function, qdLd2
gives the quantile function and rdLd2
generates
random deviates.
References
Bakouch, H. S., Jazi, M. A. ve Nadarajah, S., 2014, A new discrete distribution, Statistics, 48 (1), 200-240.
Examples
library(new.dist)
ddLd2(2,theta=2)
pdLd2(1,theta=2)
qdLd2(.5,theta=2)
rdLd2(10,theta=1)
Gamma-Lomax Distribution
Description
Density, distribution function, quantile function and random generation for
the gamma-Lomax distribution with parameters shapes
and scale
.
Usage
dgld(x, a, alpha, beta = 1, log = FALSE)
pgld(q, a, alpha, beta = 1, lower.tail = TRUE, log.p = FALSE)
qgld(p, a, alpha, beta = 1, lower.tail = TRUE)
rgld(n, a, alpha, beta = 1)
Arguments
x , q |
vector of quantiles. |
a , alpha |
are shape parameters. |
beta |
a scale parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Gamma-Lomax distribution shape
parameters
a
and \alpha
, and scale
parameter is \beta
,
has density
f\left( x\right) =\frac{\alpha \beta ^{\alpha }}
{\Gamma \left( a\right)\left( \beta +x\right) ^{\alpha +1}}\left\{ -\alpha
\log \left( \frac{\beta }{\beta +x}\right) \right\} ^{a-1},
where
x>0,~a,\alpha ,\beta >0.
Value
dgld
gives the density, pgld
gives the distribution
function, qgld
gives the quantile function and rgld
generates
random deviates.
References
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015, The gamma-Lomax distribution, Journal of statistical computation and simulation, 85 (2), 305-319.
Ristić, M. M., & Balakrishnan, N. (2012), The gamma-exponentiated exponential distribution. Journal of statistical computation and simulation , 82(8), 1191-1206.
Examples
library(new.dist)
dgld(1, a=2, alpha=3, beta=4)
pgld(1, a=2,alpha=3,beta=4)
qgld(.8, a=2,alpha=3,beta=4)
rgld(10, a=2,alpha=3,beta=4)
Kumaraswamy Distribution
Description
Density, distribution function, quantile function and random generation for
Kumaraswamy distribution with shape
parameters.
Usage
dkd(x, lambda, alpha, log = FALSE)
pkd(q, lambda, alpha, lower.tail = TRUE, log.p = FALSE)
qkd(p, lambda, alpha, lower.tail = TRUE)
rkd(n, lambda, alpha)
Arguments
x , q |
vector of quantiles. |
alpha , lambda |
are non-negative shape parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
Kumaraswamy distribution with non-negative shape
parameters \alpha
and \lambda
has density
f\left( x\right) =\alpha \lambda x^{\lambda -1}\left( 1-x^{\lambda }
\right)^{\alpha -1},
where
0<x<1,~~\alpha ,\lambda >0.
Value
dkd
gives the density, pkd
gives the distribution
function, qkd
gives the quantile function and rkd
generates
random deviates.
References
Kohansal, A. ve Bakouch, H. S., 2021, Estimation procedures for Kumaraswamy distribution parameters under adaptive type-II hybrid progressive censoring, Communications in Statistics-Simulation and Computation, 50 (12), 4059-4078.
Examples
library("new.dist")
dkd(0.1,lambda=2,alpha=3)
pkd(0.5,lambda=2,alpha=3)
qkd(.8,lambda=2,alpha=3)
rkd(10,lambda=2,alpha=3)
Maxwell Distribution
Description
Density, distribution function, quantile function and random generation for
Maxwell distribution with parameter scale
.
Usage
dmd(x, theta = 1, log = FALSE)
pmd(q, theta = 1, lower.tail = TRUE, log.p = FALSE)
qmd(p, theta = 1, lower.tail = TRUE)
rmd(n, theta = 1)
Arguments
x , q |
vector of quantiles. |
theta |
a scale parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
Maxwell distribution with scale
parameter \theta
,
has density
f\left( x\right) =\frac{4}{\sqrt{\pi }}
\frac{1}{\theta ^{3/2}}x^{2}e^{-x^{2}/\theta },
where
0\leq x<\infty ,~~\theta >0.
Value
dmd
gives the density, pmd
gives the distribution
function, qmd
gives the quantile function and rmd
generates
random deviates.
References
Krishna, H., Vivekanand ve Kumar, K., 2015, Estimation in Maxwell distribution with randomly censored data, Journal of statistical computation and simulation, 85 (17), 3560-3578.
Examples
library(new.dist)
dmd(1,theta=2)
pmd(1,theta=2)
qmd(.4,theta=5)
rmd(10,theta=1)
Muth Distribution
Description
Density, distribution function, quantile function and random generation for on the Muth distribution.
Usage
domd(x, alpha, log = FALSE)
pomd(q, alpha, lower.tail = TRUE, log.p = FALSE)
qomd(p, alpha, lower.tail = TRUE)
romd(n, alpha)
Arguments
x , q |
vector of quantiles. |
alpha |
a parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Muth distribution with a parameter \alpha
, has
density
f\left( x\right) =\left( e^{\alpha x}-
\alpha \right) e^{\alpha x-\left(1/\alpha \right) \left( e^{\alpha x}-
1\right) },
where
x>0,~\alpha \in \left( 0,1\right].
Value
domd
gives the density, pomd
gives the distribution
function, qomd
gives the quantile function and romd
generates
random deviates.
References
Jodrá, P., Jiménez-Gamero, M. D. ve Alba-Fernández, M. V., 2015, On the Muth distribution, Mathematical Modelling and Analysis, 20 (3), 291-310.
Examples
library(new.dist)
domd(1,alpha=.2)
pomd(1,alpha=.2)
qomd(.8,alpha=.1)
romd(10,alpha=1)
Power Log Dagum Distribution
Description
Density, distribution function, quantile function and random generation for a Power Log Dagum distribution.
Usage
dpldd(x, alpha, beta, theta, log = FALSE)
ppldd(q, alpha, beta, theta, lower.tail = TRUE, log.p = FALSE)
qpldd(p, alpha, beta, theta, lower.tail = TRUE)
rpldd(n, alpha, beta, theta)
Arguments
x , q |
vector of quantiles. |
alpha , beta , theta |
are parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
A Power Log Dagum Distribution with parameters \alpha
, \beta
and
\theta
, has density
f\left( x\right) =\alpha
\left( \beta +\theta \left\vert x\right\vert^{\beta -1}
\right) e^{-\left( \beta x+sign\left( x\right)
\left( \theta/\beta \right) \left\vert
x\right\vert ^{\beta }\right) ~}~\left(1+e^{-\left( \beta x+sign
\left( x\right)\left( \theta /\beta \right)
\left\vert x\right\vert ^{\beta }\right) }
\right) ^{-\left( \alpha +1\right)},
where
x\in \mathbb{R},~\beta \in \mathbb{R},~\alpha >0~and~\theta \geq 0
Value
dpldd
gives the density, ppldd
gives the distribution
function, qpldd
gives the quantile function and rpldd
generates
random deviates.
Note
The distributions hazard function
h\left( x\right) =\frac{\alpha
\left( \beta +\theta \left\vert x\right\vert^{\beta -1}
\right) e^{-\left( \beta x+sign\left( x\right) \left( \theta/\beta \right)
\left\vert x\right\vert ^{\beta }\right) }\left( 1+e^{-\left(\beta x+sign
\left( x\right) \left( \theta /\beta \right) \left\vert x
\right\vert ^{\beta }\right) }\right) ^{-\left(\alpha +1\right) }}
{1-\left( 1+e^{-\left( \beta x+sign\left( x\right) \left( \theta /
\beta \right) \left\vert x\right\vert ^{\beta }\right) }
\right) ^{-\alpha }} .
References
Bakouch, H. S., Khan, M. N., Hussain, T. ve Chesneau, C., 2019, A power log-Dagum distribution: estimation and applications, Journal of Applied Statistics, 46 (5), 874-892.
Examples
library(new.dist)
dpldd(1, alpha=2, beta=3, theta=4)
ppldd(1,alpha=2,beta=3,theta=4)
qpldd(.8,alpha=2,beta=3,theta=4)
rpldd(10,alpha=2,beta=3,theta=4)
Slashed Generalized Rayleigh Distribution
Description
Density, distribution function, quantile function and random generation for
the Slashed generalized Rayleigh distribution with parameters shape
,
scale
and kurtosis
.
Usage
dsgrd(x, theta, alpha, beta, log = FALSE)
psgrd(q, theta, alpha, beta, lower.tail = TRUE, log.p = FALSE)
qsgrd(p, theta, alpha, beta, lower.tail = TRUE)
rsgrd(n, theta, alpha, beta)
Arguments
x , q |
vector of quantiles. |
theta |
a scale parameter. |
alpha |
a shape parameter. |
beta |
a kurtosis parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Slashed Generalized Rayleigh distribution with shape
parameter
\alpha
, scale
parameter \theta
and kurtosis
parameter \beta
, has density
f\left( x\right) =\frac{\beta x^{-\left( \beta+1\right)}}{\Gamma \left(
\alpha+1\right) \theta ^{\beta/2}}\Gamma \left( \frac{2\alpha +\beta +2}{2}
\right)F\left( \theta x^{2};\frac{2\alpha +\beta +2}{2},1\right),
where F(.;a,b) is the cdf of the Gamma (a,b) distribution, and
x>0,~\theta >0,~\alpha >-1~and~\beta >0
Value
dsgrd
gives the density, psgrd
gives the distribution
function, qsgrd
gives the quantile function and rsgrd
generates
random deviates.
References
Iriarte, Y. A., Vilca, F., Varela, H. ve Gómez, H. W., 2017, Slashed generalized Rayleigh distribution, Communications in Statistics- Theory and Methods, 46 (10), 4686-4699.
Examples
library(new.dist)
dsgrd(2,theta=3,alpha=1,beta=4)
psgrd(5,theta=3,alpha=1,beta=4)
qsgrd(.4,theta=3,alpha=1,beta=4)
rsgrd(10,theta=3,alpha=1,beta=4)
Standard Omega Distribution
Description
Density, distribution function, quantile function and random generation for the Standard Omega distribution.
Usage
dsod(x, alpha, beta, log = FALSE)
psod(q, alpha, beta, lower.tail = TRUE, log.p = FALSE)
qsod(p, alpha, beta, lower.tail = TRUE)
rsod(n, alpha, beta)
Arguments
x , q |
vector of quantiles. |
alpha , beta |
are parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Standard Omega distribution with parameters
\alpha
and \beta
, has density
f\left( x\right) =\alpha \beta x^{\beta -1}\frac{1}{1-x^{2\beta }}
\left( \frac{1+x^{\beta }}{1-x^{\beta }}\right) ^{-\alpha /2},
where
0<x<1,~\alpha ,\beta >0.
Value
dsod
gives the density, psod
gives the distribution
function, qsod
gives the quantile function and rsod
generates
random deviates.
References
Birbiçer, İ. ve Genç, A. İ., 2022, On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 1-17.
Examples
library(new.dist)
dsod(0.4, alpha=1, beta=2)
psod(0.4, alpha=1, beta=2)
qsod(.8, alpha=1, beta=2)
rsod(10, alpha=1, beta=2)
Power Muth Distribution
Description
Density, distribution function, quantile function and random generation for
the Power Muth distribution with parameters shape
and scale
.
Usage
dtpmd(x, beta = 1, alpha, log = FALSE)
ptpmd(q, beta = 1, alpha, lower.tail = TRUE, log.p = FALSE)
qtpmd(p, beta = 1, alpha, lower.tail = TRUE)
rtpmd(n, beta = 1, alpha)
Arguments
x , q |
vector of quantiles. |
beta |
a scale parameter. |
alpha |
a shape parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Power Muth distribution with shape
parameter \alpha
and
scale
parameter \beta
has density
f\left( x\right) =\frac{\alpha }{\beta ^\alpha }x^{\alpha -1}
\left( e^{\left(x/\beta \right) ^{\alpha }}-1\right)
\left( e^{\left( x/\beta \right) ^{\alpha }-
\left( e^{\left( x/\beta \right) ^{\alpha }}-1\right) }\right),
where
x>0,~\alpha ,\beta>0.
Value
dtpmd
gives the density, ptpmd
gives the distribution
function, qtpmd
gives the quantile function and rtpmd
generates
random deviates.
Note
Hazard function;
h\left( \beta ,\alpha \right) =\frac{\alpha }{\beta ^{\alpha }}
\left(e^{\left( x/\beta \right) ^{\alpha }}-1\right) x^{\alpha -1}
References
Jodra, P., Gomez, H. W., Jimenez-Gamero, M. D., & Alba-Fernandez, M. V. (2017). The power Muth distribution . Mathematical Modelling and Analysis, 22(2), 186-201.
Examples
library(new.dist)
dtpmd(1, beta=2, alpha=3)
ptpmd(1,beta=2,alpha=3)
qtpmd(.5,beta=2,alpha=3)
rtpmd(10,beta=2,alpha=3)
Two-Parameter Rayleigh Distribution
Description
Density, distribution function, quantile function and random generation
for the Two-Parameter Rayleigh distribution with parameters location
and scale
.
Usage
dtprd(x, lambda = 1, mu, log = FALSE)
ptprd(q, lambda = 1, mu, lower.tail = TRUE, log.p = FALSE)
qtprd(p, lambda = 1, mu, lower.tail = TRUE)
rtprd(n, lambda = 1, mu)
Arguments
x , q |
vector of quantiles. |
lambda |
a scale parameter. |
mu |
a location parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Two-Parameter Rayleigh distribution with scale
parameter
\lambda
and location
parameter \mu
, has density
f\left( x\right) =2\lambda \left( x-\mu \right) e^{-\lambda
\left( x-\mu\right) ^{2}},
where
x>\mu ,~\lambda >0.
Value
dtprd
gives the density, ptprd
gives the distribution
function, qtprd
gives the quantile function and rtprd
generates
random deviates.
References
Dey, S., Dey, T. ve Kundu, D., 2014, Two-parameter Rayleigh distribution: different methods of estimation, American Journal of Mathematical and Management Sciences, 33 (1), 55-74.
Examples
library(new.dist)
dtprd(5, lambda=4, mu=4)
ptprd(2,lambda=2,mu=1)
qtprd(.5,lambda=2,mu=1)
rtprd(10,lambda=2,mu=1)
Uniform-Geometric Distribution
Description
Density, distribution function, quantile function and random generation for the Uniform-Geometric distribution.
Usage
dugd(x, theta, log = FALSE)
pugd(q, theta, lower.tail = TRUE, log.p = FALSE)
qugd(p, theta, lower.tail = TRUE)
rugd(n, theta)
Arguments
x , q |
vector of quantiles. |
theta |
a parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Uniform-Geometric distribution with shape parameter \theta
, has
density
f\left( x\right) =\theta \left( 1-\theta \right) ^{x-1}LerchPhi
\left[ \left(1-\theta \right) ,1,x\right],
where
LerchPhi\left( z,a,v\right) =\sum_{n=0}^{\infty }\frac{z^{n}}
{\left(v+n\right) ^{a}}
and
x=1,2,...~,~~0<\theta <1.
Value
dugd
gives the density, pugd
gives the distribution
function, qugd
gives the quantile function and rugd
generates
random deviates.
References
Akdoğan, Y., Kuş, C., Asgharzadeh, A., Kınacı, İ., & Sharafi, F. (2016). Uniform-geometric distribution. Journal of Statistical Computation and Simulation, 86(9), 1754-1770.
Examples
library(new.dist)
dugd(1, theta=0.5)
pugd(1,theta=.5)
qugd(0.6,theta=.1)
rugd(10,theta=.1)
Unit Inverse Gaussian Distribution
Description
Density, distribution function, quantile function and random generation for
the Unit Inverse Gaussian distribution mean
and scale
.
Usage
duigd(x, mu, lambda = 1, log = FALSE)
puigd(q, mu, lambda = 1, lower.tail = TRUE, log.p = FALSE)
quigd(p, mu, lambda = 1, lower.tail = TRUE)
ruigd(n, mu, lambda = 1)
Arguments
x , q |
vector of quantiles. |
mu |
a mean parameter. |
lambda |
a scale parameter. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Unit Inverse Gaussian distribution scale
parameter \lambda
and mean
parameter \mu
, has density
f\left( x\right) =\sqrt{\frac{\lambda }{2\pi }}
\frac{1}{x^{3/2}}e^{-\frac{ \lambda }{2\mu ^{2}x}\left( x-\mu \right) ^{2}},
where
x>0,~\mu ,\lambda >0.
Value
duigd
gives the density, puigd
gives the distribution
function, quigd
gives the quantile function and ruigd
generates
random deviates.
References
Ghitany, M., Mazucheli, J., Menezes, A. ve Alqallaf, F., 2019, The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval, Communications in Statistics-Theory and Methods, 48 (14), 3423-3438.
Examples
library(new.dist)
duigd(1, mu=2, lambda=3)
puigd(1,mu=2,lambda=3)
quigd(.1,mu=2,lambda=3)
ruigd(10,mu=2,lambda=3)
Weighted Geometric Distribution
Description
Density, distribution function, quantile function and random generation for the Weighted Geometric distribution.
Usage
dwgd(x, alpha, lambda, log = FALSE)
pwgd(q, alpha, lambda, lower.tail = TRUE, log.p = FALSE)
qwgd(p, alpha, lambda, lower.tail = TRUE)
rwgd(n, alpha, lambda)
Arguments
x , q |
vector of quantiles. |
alpha , lambda |
are parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
p |
vector of probabilities. |
n |
number of observations. If |
Details
The Weighted Geometric distribution with parameters \alpha
and
\lambda
, has density
f\left( x\right) =\frac{\left( 1-\alpha \right)
\left( 1-\alpha ^{\lambda+1}\right) }{1-\alpha ^{\lambda }}\alpha ^{x-1}
\left( 1-\alpha ^{\lambda x}\right),
where
x\in \mathbb {N} =1,2,...~,~\lambda >0~and~0<\alpha <1.
Value
dwgd
gives the density, pwgd
gives the distribution
function, qwgd
gives the quantile function and rwgd
generates
random deviates.
References
Najarzadegan, H., Alamatsaz, M. H., Kazemi, I. ve Kundu, D., 2020, Weighted bivariate geometric distribution: Simulation and estimation, Communications in Statistics-Simulation and Computation, 49 (9), 2419-2443.
Examples
library(new.dist)
dwgd(1,alpha=.2,lambda=3)
pwgd(1,alpha=.2,lambda=3)
qwgd(.98,alpha=.2,lambda=3)
rwgd(10,alpha=.2,lambda=3)