
Package ‘netcom’
July 22, 2025

Type Package

Title NETwork COMparison Inference

Version 2.1.7

Date 2024-5-28

Description Infer system functioning with empirical NETwork COMparisons. These meth-
ods are part of a growing paradigm in network science that uses relative comparisons of net-
works to infer mechanistic classifications and predict systemic interventions. They have been de-
veloped and applied in Langendorf and Burgess (2021) <doi:10.1038/s41598-021-99251-
7>, Langendorf (2020) <doi:10.1201/9781351190831-6>, and Langendorf and Gold-
berg (2019) <doi:10.48550/arXiv.1912.12551>.

URL https://github.com/langendorfr/netcom

Repository CRAN

License GPL-3

Encoding UTF-8

Depends R (>= 3.1.0)

Imports stats, dplyr, tibble, clue, expm, igraph, Matrix, pdist,
pracma, vegan, magrittr, foreach, parallel, doParallel, optimx,
GenSA, rlang, ggfortify, ggplot2, ggraph, reshape2

RoxygenNote 7.3.1

Suggests rmarkdown, knitr, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Ryan Langendorf [aut, cre],
Debra Goldberg [ctb],
Matthew Burgess [ctb]

Maintainer Ryan Langendorf <ryan.langendorf@colorado.edu>

Date/Publication 2024-06-04 17:50:05 UTC

1

https://doi.org/10.1038/s41598-021-99251-7
https://doi.org/10.1038/s41598-021-99251-7
https://doi.org/10.1201/9781351190831-6
https://doi.org/10.48550/arXiv.1912.12551
https://github.com/langendorfr/netcom

2 align

Contents

align . 2
best_fit_optim . 5
classify . 8
classify_Systematic . 12
compare . 15
compare_Target . 17
gini . 19
grow_DD . 19
grow_DM . 21
grow_ER . 22
grow_NM . 23
grow_PA . 24
grow_SW . 26
ics . 27
make_DD . 28
make_DM . 29
make_Mixture . 30
make_NM . 32
make_Null . 33
make_Null_canonical . 36
make_Null_mixture . 38
make_SW . 41
make_Systematic . 42
make_Systematic_canonical . 44
make_Systematic_directedCanonicalLike . 46
make_Systematic_mixture . 48
null_fit_optim . 50
stir_DD . 53
stir_DM . 54
stir_ER . 55
stir_NM . 56
stir_PA . 58
stir_SW . 59

Index 61

align Network Alignment

Description

Network alignment by comparing the entropies of diffusion kernels simulated on two networks.
align takes two networks stored as matrices and returns a node-level alignment between them.

align 3

Usage

align(
network_1_input,
network_2_input,
base = 2,
max_duration,
characterization = "entropy",
normalization = FALSE,
unit_test = FALSE

)

Arguments

network_1_input

The first network being aligned, which must be in matrix form. If the two net-
works are of different sizes, it will be easier to interpret the output if this is the
smaller one.

network_2_input

The second network, which also must be a matrix.
base Defaults to 1. The base in the series of time steps to sample the diffusion kernels

at. If base = 1 every time step is sampled. If base = 2, only time steps that are
powers of 2 are sampled, etc. Larger values place more emphasis on earlier
time steps. This can be helpful if the diffusion kernel quickly converges to an
equilibrium, and also runs faster.

max_duration Defaults to twice the diameter of the larger network. Sets the number of time
steps to allow the diffusion kernel to spread for, which is the smallest power of
base that is at least as large as max_duration.

characterization

Defaults to "entropy". Determines how the diffusion kernels are characterized.
Either "entropy" or "gini". "entropy" is a size-normalized version of Shannon’s
entropy with base e (Euler’s number). This is also known as interaction or
species evenness in ecology. "gini" is the Gini coefficient.

normalization Defaults to FALSE. Determines if self-loops should be augmented such that
edge weights are proportional to those in network_1_input and network_2_input.
FALSE by default because this is inappropriate for unweighted binary/logical
networks where edges indicate only the presence of an interaction.

unit_test Defaults to FALSE. Saves the following intermediate steps to help with general
troubleshooting: post-processing matrix representations of both networks, time
steps at which the diffusion kernels were sampled, the diffusion kernels at those
time steps, the characterizations of the diffusion kernels at those time steps, and
the cost matrix fed into the Hungarian algorithm where the ij element is the
difference between the characterization-over-time curves for node i in the first
network and node j in the second network.

Details

Network alignment pairs nodes between two networks so as to maximize similarities in their edge
structures. This allows information from well-studied systems to be used in poorly studied ones,

4 align

such as to identify unknown protein functions or ecosystems that will respond similarly to a given
disturbance. Most network alignment algorithms focus on measures of topological overlap between
edges of the two networks. The method implemented here compares nodes using the predictability
of dynamics originating from each node in each network. Consider network alignment as trying to
compare two hypothetical cities of houses connected by roads. The approach implemented here is
to pairwise compare each house with those in the other city by creating a house-specific signature.
This is accomplished by quantifying the predictability of the location of a person at various times
after they left their house, assuming they were moving randomly. This predictability across all
houses captures much of the way each city is organized and functions. align uses this conceptual
rationale to align two networks, with nodes as houses, edges as roads, and random diffusion repre-
senting people leaving their houses and walking around the city to other houses. The mechanics of
this, which are conceptually akin to flow algorithms and Laplacian dynamics, can be analytically
expressed as a Markov chain raised to successive powers which are the durations of diffusion.

Note that the novel part of align lies in creating a matrix where the ij entry is a measure of similarity
between node i in the first network and node j in the second. The final alignment is found using
solve_LSAP in the package clue, which uses the Hungarian algorithm to solve the assignment
problem optimally.

Value

score Mean of all alignment scores between nodes in both original networks net-
work_1_input and network_2_input.

alignment Data frame of the nodes in both networks, sorted numerically by the first net-
work (why it helps to make the smaller network the first one), and the corre-
sponding alignment score.

score_with_padding

Same as score but includes the padding nodes in the smaller network, which can
be thought of as a size gap penalty for aligning differently sized networks. Only
included if the input networks are different sizes.

alignment_with_padding

Same as alignment but includes the padding nodes in the smaller network. Only
included if the input networks are different sizes.

References

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistics
(NRL), 2(1-2), 83-97.

Langendorf, R. E., & Goldberg, D. S. (2019). Aligning statistical dynamics captures biological
network functioning. arXiv preprint arXiv:1912.12551.

C. Papadimitriou and K. Steiglitz (1982), Combinatorial Optimization: Algorithms and Complexity.
Englewood Cliffs: Prentice Hall.

Examples

The two networks to be aligned
net_one <- matrix(stats::runif(25,0,1), nrow=5, ncol=5)
net_two <- matrix(stats::runif(25,0,1), nrow=5, ncol=5)

best_fit_optim 5

align(net_one, net_two)
align(net_one, net_two, base = 1, characterization = "gini", normalization = TRUE)

best_fit_optim Empirical parameterization

Description

Helper function to find the best fitting version of a mechanism by searching across its parameter
space

Usage

best_fit_optim(
parameter,
process,
network,
net_size,
net_kind,
mechanism_kind,
resolution,
resolution_min,
resolution_max,
reps,
power_max,
connectance_max,
divergence_max,
mutation_max,
cores,
directed,
method,
cause_orientation,
DD_kind,
DD_weight,
max_norm,
best_fit_kind = "avg",
verbose = FALSE

)

Arguments

parameter The parameter being tested for its ability to generate networks alike the input
‘network‘.

process Name of mechanism. Currently only "ER", "PA", "DD", "DM" "SW", and
"NM" are supported. Future versions will accept user-defined network-generating

6 best_fit_optim

functions and associated parameters. ER = Erdos-Renyi random. PA = Prefer-
ential Attachment. DD = Duplication and Divergence. DM = Duplication and
Mutation. SW = Small World. NM = Niche Model.

network The network being compared to a hypothesized ‘process‘ with a given ‘parame-
ter‘ value.

net_size Number of nodes in the network.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list").

mechanism_kind Either "canonical" or "grow" can be used to simulate networks. If "grow" is
used, note that here it will only simulate pure mixtures made of a single mecha-
nism.

resolution The first step is to find the version of each process most similar to the target
network. This parameter sets the number of parameter values to search across.
Decrease to improve performance, but at the cost of accuracy.

resolution_min = The minimum parameter value to consider. Zero is not used because in many
processes it results in degenerate systems (e.g. entirely unconnected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process.

resolution_max The maximum parameter value to consider. One is not used because in many
processes it results in degenerate systems (e.g. entirely connected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process.

reps The number of networks to simulate for each parameter. More replicates in-
creases accuracy by making the estimation of the parameter that produces net-
works most similar to the target network less idiosyncratic.

power_max The maximum power of attachment in the Preferential Attachment process (PA).
connectance_max

The maximum connectance parameter for the Niche Model.

divergence_max The maximum divergence parameter for the Duplication and Divergence/Mutation
mechanisms.

mutation_max The maximum mutation parameter for the Duplication and Mutation mecha-
nism.

cores The number of cores to run the classification on. When set to 1 parallelization
will be ignored.

directed Whether the target network is directed.

method This determines the method used to compare networks at the heart of the clas-
sification. Currently "DD" (Degree Distribution) and "align" (the align function
which compares networks by the entropy of diffusion on them) are supported.
Future versions will allow user-defined methods.

cause_orientation

The orientation of directed adjacency matrices.

DD_kind A vector of network properties to be used to compare networks.

DD_weight Weights of each network property in DD_kind. Defaults to 1, which is equal
weighting for each property.

best_fit_optim 7

max_norm Binary variable indicating if each network property should be normalized so its
max value (if a node-level property) is one.

best_fit_kind How to aggregate the stochastic replicates of the process + parameter combina-
tion.

verbose Defaults to TRUE. Whether to print all messages.

Details

Note: Currently each process is assumed to have a single governing parameter.

Value

A number measuring how different the input network is from the parameter + process combination.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

Adjacency matrix
size <- 10
network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)

Calculate how similar the input network is to Small-World networks with
a rewiring probability of 0.28.
best_fit_optim(

parameter = 0.28,
process = "SW",
network = network,
net_size = 12,
net_kind = "matrix",
mechanism_kind = "grow",
resolution = 100,
resolution_min = 0.01,
resolution_max = 0.99,
reps = 3,
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
mutation_max = 0.5,
cores = 1,
directed = TRUE,
method = "DD",
cause_orientation = "row",
DD_kind = c(

"in", "out", "entropy_in", "entropy_out",

8 classify

"clustering_coefficient", "page_rank", "communities"
),
DD_weight = 1,
max_norm = FALSE,
verbose = FALSE

)

classify Mechanistic Network Classification

Description

Tests a network against hypothetical generating processes using a comparative network inference.

Usage

classify(
network,
directed,
method = "DD",
net_kind = "matrix",
mechanism_kind = "canonical",
DD_kind = c("in", "out", "entropy_in", "entropy_out", "clustering_coefficient",

"page_rank", "communities", "motifs_3", "motifs_4", "eq_in", "eq_out",
"eq_entropy_in", "eq_entropy_out", "eq_clustering_coefficient", "eq_page_rank",
"eq_communities", "eq_motifs_3", "eq_motifs_4"),

DD_weight = c(0.0735367966, 0.0739940162, 0.0714523761, 0.0708156931, 0.0601296752,
0.0448072016, 0.0249793608, 0.0733125084, 0.0697029389, 0.0504358835, 0.0004016029,
0.0563752664, 0.0561878218, 0.0540490099, 0.0504347104, 0.0558106667, 0.0568270319,
0.0567474398),

cause_orientation = "row",
max_norm = FALSE,
resolution = 100,
resolution_min = 0.01,
resolution_max = 0.99,
reps = 3,
processes = c("ER", "PA", "DM", "SW", "NM"),
test = "empirical",
best_fit_finder = "systematic",
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
mutation_max = 0.5,
null_reps = 50,
best_fit_kind = "avg",
best_fit_sd = 0,

classify 9

ks_dither = 0,
ks_alternative = "two.sided",
cores = 1,
size_different = FALSE,
null_dist_trim = 1,
verbose = FALSE

)

Arguments

network The network to be classified.

directed Whether the target network is directed. If missing this will be inferred by the
symmetry of the input network.

method This determines the method used to compare networks at the heart of the clas-
sification. Currently "DD" (Degree Distribution) and "align" (the align function
which compares networks by the entropy of diffusion on them) are supported.
Future versions will allow user-defined methods. Defaults to "DD".

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

mechanism_kind Either "canonical" or "grow" can be used to simulate networks. If "grow" is
used, note that here it will only simulate pure mixtures made of a single mecha-
nism. Defaults to "canonical".

DD_kind = A vector of network properties to be used to compare networks. Defaults to
"all", which is the average of the in- and out-degrees.

DD_weight = Weights of each network property in DD_kind. Defaults to 1, which is equal
weighting for each property.

cause_orientation

= The orientation of directed adjacency matrices. Defaults to "row".

max_norm Binary variable indicating if each network property should be normalized so its
max value (if a node-level property) is one. Defaults to FALSE.

resolution Defaults to 100. The first step is to find the version of each process most similar
to the target network. This parameter sets the number of parameter values to
search across. Decrease to improve performance, but at the cost of accuracy.

resolution_min Defaults to 0.01. The minimum parameter value to consider. Zero is not used
because in many processes it results in degenerate systems (e.g. entirely un-
connected networks). Currently process agnostic. Future versions will accept a
vector of values, one for each process.

resolution_max Defaults to 0.99. The maximum parameter value to consider. One is not used be-
cause in many processes it results in degenerate systems (e.g. entirely connected
networks). Currently process agnostic. Future versions will accept a vector of
values, one for each process.

reps Defaults to 3. The number of networks to simulate for each parameter. More
replicates increases accuracy by making the estimation of the parameter that
produces networks most similar to the target network less idiosyncratic.

10 classify

processes Defaults to c("ER", "PA", "DD", "SW", "NM"). Vector of process abbrevia-
tions. Currently only the default five are supported. Future versions will ac-
cept user-defined network-generating functions and associated parameters. ER
= Erdos-Renyi random. PA = Preferential Attachment. DD = Duplication and
Divergence. SW = Small World. NM = Niche Model.

test Defaults to "empirical". The test used to distinguish the null distribution of com-
parisons between the network being classified and the networks simulated ac-
cording to a hypothesized mechanism(s), with a particular best-fitting parameter.
"empirical" finds how many simulated networks were on average farther from
each other than the network being classified is. "KS" uses a KS test. "WMWU"
uses a Wilcoxon-Mann-Whitney-U test.

best_fit_finder

Defaults to "systematic". Determines how the best-fitting parameter of each
mechanism specified in processes is found. "systematic" tries every parameter
value from resolution_min to resolution_max with a step size of resolution_max
- resolution_min / resolution. "optim_L-BFGS-B" uses the L-BFGS-B opti-
mizer in the optimx package. "optim_GenSA" uses the GenSA optimizer in the
GenSA package.

power_max Defaults to 5. The maximum power of attachment in the Preferential Attachment
process (PA).

connectance_max

= Defaults to 0.5. The maximum connectance parameter for the Niche Model.

divergence_max = Defaults to 0.5. The maximum divergence parameter for the Duplication and
Divergence/Mutation mechanisms.

mutation_max = Defaults to 0.5. The maximum mutation parameter for the Duplication and
Mutation mechanism.

null_reps Defaults to 50. The number of best fit networks to simulate that will be used to
create a null distribution of distances between networks within the given process,
which will then be used to test if the target network appears unusually distant
from them and therefore likely not governed by that process.

best_fit_kind Defaults to "avg". If null_reps is more than 1, the fit of each parameter has to
be an aggregate statistic of the fit of all the null_reps networks. Must be ‘avg‘,
‘median‘, ‘min‘, or ‘max‘.

best_fit_sd Defaults to 0. Standard Deviation used to simulate networks with a similar but
not identical best fit parameter. This is important because simulating networks
with the identical parameter can artificially inflate the false negative rate by as-
suming the best fit parameter is the true parameter. For large resolution and reps
values this will become true, but can be computationally intractable for realisti-
cally large systems.

ks_dither Defaults to 0. The KS test cannot compute exact p-values when every pairwise
network distance is not unique. Adding small amounts of noise makes each
distance unique. We are not aware of a study on the impacts this has on accuracy
so it is set to zero by default.

ks_alternative Defaults to "two.sided". Governs the KS test. Assuming best_fit_sd is not too
large, this can be set to "greater" because the target network cannot be more

classify 11

alike identically simulated networks than they are to each other. In practice we
have found "greater" and "less" produce numerical errors. Only "two.sided",
"less", and "greater" are supported through stats::ks.test().

cores Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

size_different = If there is a difference in the size of the networks used in the null distribution.
Defaults to FALSE.

null_dist_trim = Number between zero and one that determines how much of each network
comparison distribution (unknown network compared to simulated networks,
simulated networks compared to each other) should be used. Prevents p-value
convergence with large sample sizes. Defaults to 1, which means all compar-
isons are used (no trimming).

verbose Defaults to FALSE. Whether to print all messages.

Details

Note: Currently each process is assumed to have a single governing parameter.

Value

A dataframe with 3 columns and as many rows as processes being tested (5 by default). The first
column lists the processes. The second lists the p-value on the null hypothesis that the target network
did come from that row’s process. The third column gives the estimated parameter for that particular
process.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

Adjacency matrix
size <- 10
network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)

Classify this network
This can take several minutes to run
classify(network, processes = c("ER", "PA", "DM", "SW", "NM"))

12 classify_Systematic

classify_Systematic Mechanistic Network Classification

Description

Tests a network against hypothetical generating processes using a comparative network inference.

Usage

classify_Systematic(
network,
directed = FALSE,
method = "DD",
net_kind = "matrix",
DD_kind = c("in", "out", "entropy_in", "entropy_out", "clustering_coefficient",

"page_rank", "communities", "motifs_3", "motifs_4", "eq_in", "eq_out",
"eq_entropy_in", "eq_entropy_out", "eq_clustering_coefficient", "eq_page_rank",
"eq_communities", "eq_motifs_3", "eq_motifs_4"),

DD_weight = c(0.0735367966, 0.0739940162, 0.0714523761, 0.0708156931, 0.0601296752,
0.0448072016, 0.0249793608, 0.0733125084, 0.0697029389, 0.0504358835, 0.0004016029,
0.0563752664, 0.0561878218, 0.0540490099, 0.0504347104, 0.0558106667, 0.0568270319,
0.0567474398),

cause_orientation = "row",
max_norm = FALSE,
resolution = 100,
resolution_min = 0.01,
resolution_max = 0.99,
reps = 3,
processes = c("ER", "PA", "DM", "SW", "NM"),
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
mutation_max = 0.5,
null_reps = 50,
best_fit_kind = "avg",
best_fit_sd = 0.01,
ks_dither = 0,
ks_alternative = "two.sided",
cores = 1,
size_different = FALSE,
null_dist_trim = 1,
verbose = TRUE

)

Arguments

network The network to be classified.

classify_Systematic 13

directed Defaults to TRUE. Whether the target network is directed.

method This determines the method used to compare networks at the heart of the clas-
sification. Currently "DD" (Degree Distribution) and "align" (the align function
which compares networks by the entropy of diffusion on them) are supported.
Future versions will allow user-defined methods. Defaults to "DD".

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

DD_kind = A vector of network properties to be used to compare networks. Defaults to
"all", which is the average of the in- and out-degrees.

DD_weight = Weights of each network property in DD_kind. Defaults to 1, which is equal
weighting for each property.

cause_orientation

= The orientation of directed adjacency matrices. Defaults to "row".

max_norm Binary variable indicating if each network property should be normalized so its
max value (if a node-level property) is one. Defaults to FALSE.

resolution Defaults to 100. The first step is to find the version of each process most similar
to the target network. This parameter sets the number of parameter values to
search across. Decrease to improve performance, but at the cost of accuracy.

resolution_min Defaults to 0.01. The minimum parameter value to consider. Zero is not used
because in many processes it results in degenerate systems (e.g. entirely un-
connected networks). Currently process agnostic. Future versions will accept a
vector of values, one for each process.

resolution_max Defaults to 0.99. The maximum parameter value to consider. One is not used be-
cause in many processes it results in degenerate systems (e.g. entirely connected
networks). Currently process agnostic. Future versions will accept a vector of
values, one for each process.

reps Defaults to 3. The number of networks to simulate for each parameter. More
replicates increases accuracy by making the estimation of the parameter that
produces networks most similar to the target network less idiosyncratic.

processes Defaults to c("ER", "PA", "DD", "SW", "NM"). Vector of process abbrevia-
tions. Currently only the default five are supported. Future versions will ac-
cept user-defined network-generating functions and associated parameters. ER
= Erdos-Renyi random. PA = Preferential Attachment. DD = Duplication and
Divergence. SW = Small World. NM = Niche Model.

power_max Defaults to 5. The maximum power of attachment in the Preferential Attachment
process (PA).

connectance_max

= Defaults to 0.5. The maximum connectance parameter for the Niche Model.

divergence_max = Defaults to 0.5. The maximum divergence parameter for the Duplication and
Divergence/Mutation mechanisms.

mutation_max = Defaults to 0.5. The maximum mutation parameter for the Duplication and
Mutation mechanism.

null_reps Defaults to 50. The number of best fit networks to simulate that will be used to
create a null distribution of distances between networks within the given process,

14 classify_Systematic

which will then be used to test if the target network appears unusually distant
from them and therefore likely not governed by that process.

best_fit_kind Defaults to "avg". If null_reps is more than 1, the fit of each parameter has to
be an aggregate statistic of the fit of all the null_reps networks. Must be ‘avg‘,
‘median‘, ‘min‘, or ‘max‘.

best_fit_sd Defaults to 0.01. Standard Deviation used to simulate networks with a simi-
lar but not identical best fit parameter. This is important because simulating
networks with the identical parameter artificially inflates the false negative rate
by assuming the best fit parameter is the true parameter. For large resolution
and reps values this will become true, but also computationally intractable for
realistically large systems.

ks_dither Defaults to 0. The KS test cannot compute exact p-values when every pairwise
network distance is not unique. Adding small amounts of noise makes each
distance unique. We are not aware of a study on the impacts this has on accuracy
so it is set to zero by default.

ks_alternative Defaults to "two.sided". Governs the KS test. Assuming best_fit_sd is not too
large, this can be set to "greater" because the target network cannot be more
alike identically simulated networks than they are to each other. In practice we
have found "greater" and "less" produce numerical errors. Only "two.sided",
"less", and "greater" are supported through stats::ks.test().

cores Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

size_different = If there is a difference in the size of the networks used in the null distribution.
Defaults to FALSE.

null_dist_trim = Number between zero and one that determines how much of each network
comparison distribution (unknown network compared to simulated networks,
simulated networks compared to each other) should be used. Prevents p-value
convergence with large sample sizes. Defaults to 1, which means all compar-
isons are used (no trimming).

verbose Defaults to TRUE. Whether to print all messages.

Details

Note: Currently each process is assumed to have a single governing parameter.

Value

A dataframe with 3 columns and as many rows as processes being tested (5 by default). The first
column lists the processes. The second lists the p-value on the null hypothesis that the target network
did come from that row’s process. The third column gives the estimated parameter for that particular
process.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

compare 15

Examples

Import netcom
library(netcom)

Adjacency matrix
size <- 10
network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)

Classify this network
This can take several minutes to run
classify(network, processes = c("ER", "PA", "DM", "SW", "NM"))

compare Compare Networks Many-to-Many

Description

Compares one network to a list of many networks.

Usage

compare(
networks,
net_kind = "matrix",
method = "DD",
cause_orientation = "row",
DD_kind = "all",
DD_weight = 1,
max_norm = FALSE,
size_different = FALSE,
cores = 1,
diffusion_sampling = 2,
diffusion_limit = 10,
verbose = FALSE

)

Arguments

networks The networks being compared to the target network

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

method This determines the method used to compare networks at the heart of the clas-
sification. Currently "DD" (Degree Distribution) and "align" (the align function
which compares networks by the entropy of diffusion on them) are supported.
Future versions will allow user-defined methods. Defaults to "DD".

16 compare

cause_orientation

= The orientation of directed adjacency matrices. Defaults to "row".

DD_kind = A vector of network properties to be used to compare networks. Defaults to
"all", which is the average of the in- and out-degrees.

DD_weight = Weights of each network property in DD_kind. Defaults to 1, which is equal
weighting for each property.

max_norm Binary variable indicating if each network property should be normalized so its
max value (if a node-level property) is one. Defaults to FALSE.

size_different Defaults to FALSE. If TRUE, will ensure the node-level properties being com-
pared are vectors of the same length, which is accomplished using splines.

cores Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

diffusion_sampling

Base of the power to use to nonlinearly sample the diffusion kernels if method
= "align". Defaults to 2.

diffusion_limit

Number of markov steps in the diffusion kernels if method = "align". Defaults
to 10.

verbose Defaults to TRUE. Whether to print all messages.

Details

Note: Currently each process is assumed to have a single governing parameter.

Value

A square matrix with dimensions equal to the number of networks being compared, where the ij
element is the comparison of networks i and j.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

Adjacency matrix
size <- 10
comparisons <- 50
networks <- list()
for (net in 1:comparisons) {

networks[[net]] = matrix(
sample(

c(0,1),
size = size^2,

compare_Target 17

replace = TRUE),
nrow = size,
ncol = size)

}
compare(networks = networks)

compare_Target Compare Networks One-to-Many

Description

Compares one network to a list of many networks.

Usage

compare_Target(
target,
networks,
net_size,
net_kind = "matrix",
method = "DD",
cause_orientation = "row",
DD_kind = "all",
DD_weight = 1,
max_norm = FALSE,
cores = 1,
verbose = FALSE

)

Arguments

target The network be compared.

networks The networks being compared to the target network

net_size Size

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

method This determines the method used to compare networks at the heart of the clas-
sification. Currently "DD" (Degree Distribution) and "align" (the align function
which compares networks by the entropy of diffusion on them) are supported.
Future versions will allow user-defined methods. Defaults to "DD".

cause_orientation

= The orientation of directed adjacency matrices. Defaults to "row".

DD_kind = A vector of network properties to be used to compare networks. Defaults to
"all", which is the average of the in- and out-degrees.

18 compare_Target

DD_weight = Weights of each network property in DD_kind. Defaults to 1, which is equal
weighting for each property.

max_norm Binary variable indicating if each network property should be normalized so its
max value (if a node-level property) is one. Defaults to FALSE.

cores Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

verbose Defaults to TRUE. Whether to print all messages.

Details

Note: Currently each process is assumed to have a single governing parameter.

Value

A pseudo-distance vector where the i-element is the comparison between the target network and the
ith network being compared to.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

Adjacency matrix
size <- 10
comparisons <- 50
network_target <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
network_others <- list()
for (net in 1:comparisons) {

network_others[[net]] = matrix(
sample(

c(0,1),
size = size^2,
replace = TRUE),

nrow = size,
ncol = size)

}
compare_Target(target = network_target, networks = network_others, net_size = size, method = "DD")

gini 19

gini Gini coefficient

Description

Takes a matrix and returns the Gini coefficient of each column.

Usage

gini(input, byrow = FALSE)

Arguments

input A matrix where the Gini coefficient will be calculated on each column. Note
that vector data must be converted to a single-column matrix.

byrow Defaults to FALSE. Set to TRUE to calculate the Gini coefficient of each row.

Value

A vector of the Gini coefficients of each column.

References

Gini, C. (1912). Variabilita e mutabilita. Reprinted in Memorie di metodologica statistica (Ed.
Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi.

Examples

Vectors are not supported. First convert to a single-column matrix.
sample_data <- runif(20, 0, 1)
gini(matrix(sample_data, ncol = 1))

Multiple Gini coefficients can be calculated simultaneously
gini(matrix(sample_data, ncol = 2))

grow_DD Grow a Duplication and Divergence Network

Description

Grows an already existing network by adding a node according to the Duplication and Divergence
mechanism. Nodes can only attach to previously grown nodes.

20 grow_DD

Usage

grow_DD(
matrix,
x,
divergence,
link = 0,
connected = FALSE,
retcon = FALSE,
directed = TRUE

)

Arguments

matrix Existing network to experience growth.

x The ID of the node to be grown.

divergence Probability that the new node loses edges associated with the node it duplicates.
Needs to be between zero and one.

link Probability that the new node attaches to the node it duplicates. Defaults to 0.

connected Binary argument determining if the newly grown node has to be connected to the
existing network. Defaults to FALSE, to prevent rare computational slow-downs
when it is unlikely to create a connected network. Defaults to FALSE.

retcon Binary variable determining if already existing nodes can attach to new nodes.
Defaults to FALSE.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix. Defaults to TRUE.

Details

Different from Duplication & Mutation models in that edges can only be lost.

Value

An adjacency matrix.

References

Ispolatov, I., Krapivsky, P. L., & Yuryev, A. (2005). Duplication-divergence model of protein inter-
action network. Physical review E, 71(6), 061911.

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network

grow_DM 21

new_network <- grow_DD(matrix = new_network_prep, x = size + 1, divergence = 0.5)

grow_DM Grow a Duplication and Mutation Network

Description

Grows an already existing network by adding a node according to the Duplication and Mutation
mechanism. Nodes can only attach to previously grown nodes.

Usage

grow_DM(
matrix,
x,
divergence,
mutation = 0,
link = 0,
connected = FALSE,
retcon = FALSE,
directed = TRUE

)

Arguments

matrix Existing network to experience growth.

x The ID of the node to be grown.

divergence Probability that the new node loses edges associated with the node it duplicates.
Needs to be between zero and one.

mutation Probability that the new node gains edges not associated with the node it dupli-
cates. Needs to be between zero and one.

link Probability that the new node attaches to the node it duplicates. Defaults to 0.

connected Binary argument determining if the newly grown node has to be connected to the
existing network. Defaults to FALSE, to prevent rare computational slow-downs
when it is unlikely to create a connected network. Defaults to FALSE.

retcon Binary variable determining if already existing nodes can attach to new nodes.
Defaults to FALSE.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix. Defaults to TRUE.

Details

Different from Duplication & Mutation models in that edges can only be lost.

22 grow_ER

Value

An adjacency matrix.

References

Ispolatov, I., Krapivsky, P. L., & Yuryev, A. (2005). Duplication-divergence model of protein inter-
action network. Physical review E, 71(6), 061911.

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- grow_DM(matrix = new_network_prep, x = size + 1, divergence = 0.5)

grow_ER Grow an Erdos-Renyi Random Network

Description

Grows an already existing network by adding a node according to the Erdos-Renyi random mecha-
nism. Nodes can only attach to previously grown nodes.

Usage

grow_ER(matrix, x, p, retcon = FALSE, directed = TRUE)

Arguments

matrix Existing network to experience growth.

x The ID of the node to be grown.

p Probability possible edges exist. Needs to be between zero and one.

retcon Binary variable determining if already existing nodes can attach to new nodes.
Defaults to FALSE.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix. Defaults to TRUE.

Details

Different from Duplication & Mutation models in that edges can only be lost.

grow_NM 23

Value

An adjacency matrix.

References

Erdos, P. and Renyi, A., On random graphs, Publicationes Mathematicae 6, 290–297 (1959).

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- grow_ER(matrix = new_network_prep, x = size + 1, p = 0.5)

grow_NM Grow a Niche Model Network

Description

Grows an already existing network by adding a node according to the Niche Model mechanism.
Nodes can only attach to previously grown nodes.

Usage

grow_NM(matrix, x, niches, connectance = 0.2, directed = TRUE, retcon = FALSE)

Arguments

matrix Existing network to experience growth.

x The ID of the node to be grown.

niches Vector of length x, with values between zero and one corresponding to each
node’s niche.

connectance Niche Model parameter specifying the expected connectivity of the network,
which determines for a given node the niche space window within which it at-
taches to every other node. Defaults to 0.2.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix. Defaults to TRUE.

retcon Binary variable determining if already existing nodes can attach to new nodes.
Defaults to FALSE.

24 grow_PA

Details

Stirs a node in a Niche Model network.

Value

An adjacency matrix.

References

Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food webs. Nature,
404(6774), 180-183.

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- grow_NM(matrix = new_network_prep, x = size + 1, niches = stats::runif(size))

grow_PA Grow a Preferential Attachment Network

Description

Grows an already existing network by adding a node according to the Preferential Attachment
mechanism. Nodes can only attach to previously grown nodes.

Usage

grow_PA(
matrix,
x,
power,
sum_v_max = "sum",
nascent_help = TRUE,
retcon = FALSE,
directed = TRUE

)

grow_PA 25

Arguments

matrix Existing network to experience growth.

x The ID of the node to be grown.

power Power of attachment, which determines how much new nodes prefer to attach to
nodes that have many edges compared to few. Needs to be positive.

sum_v_max Degree distributions must be normalized, either by their "max" or "sum". De-
faults to "max".

nascent_help Should a single edge be added to the degree distribution of all nodes so that
nodes with a zero in-degree can still have a chance of being attached to by new
nodes. Defaults to TRUE.

retcon Binary variable determining if already existing nodes can attach to new nodes.
Defaults to FALSE.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix. Defaults to TRUE.

Details

Adds a node in a network according to the Preferential Attachment mechanism.

Value

An adjacency matrix.

References

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439),
509-512.

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- grow_PA(matrix = new_network_prep, x = size + 1, power = 2.15)

26 grow_SW

grow_SW Grow a Small-World Network

Description

Grows an already existing network by adding a node according to the Small-World mechanism.
Nodes can only attach to previously grown nodes.

Usage

grow_SW(matrix, x, rewire, connected = FALSE, retcon = FALSE, directed = TRUE)

Arguments

matrix Existing network to experience growth.

x The ID of the node to be grown.

rewire Small-World parameter specifying the probability each edge is randomly rewired,
allowing for the possiblity of bridges between connected communities.

connected Binary argument determining if the newly grown node has to be connected to the
existing network. Defaults to FALSE, to prevent rare computational slow-downs
when it is unlikely to create a connected network. Defaults to False.

retcon Binary variable determining if already existing nodes can attach to new nodes.
Defaults to FALSE.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix. Defaults to TRUE.

Details

Grows a node in a network according to the Small-World mechanism.

Value

An adjacency matrix.

References

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature,
393(6684), 440-442.

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)

ics 27

new_network_prep[1:size, 1:size] = existing_network
new_network <- grow_SW(matrix = new_network_prep, x = size + 1, rewire = 0.213)

ics Induced Conserved Structure (ICS)

Description

Calculates the Induced Conserved Structure proposed by Patro and Kingsford (2012) of an align-
ment between two networks.

Usage

ics(network_1_input, network_2_input, alignment, flip = FALSE)

Arguments

network_1_input

The first network being aligned, which must be in matrix form. If the two net-
works are of different sizes, it will be easier to interpret the output if this is the
smaller one.

network_2_input

The second network, which also must be a matrix.

alignment A matrix, such as is output by the function NetCom, where the first two columns
contain corresponding node IDs for the two networks that were aligned.

flip Defaults to FALSE. Set to TRUE if the first network is larger than the second.
This is necessary because ICS is not a symmetric measure of alignment quality.

Value

A number ranging between 0 and 1. If the Induced Conserved Structure is 1, the two networks are
isomorphic (identical) under the given alignment.

References

Patro, R., & Kingsford, C. (2012). Global network alignment using multiscale spectral signatures.
Bioinformatics, 28(23), 3105-3114.

Examples

Note that ICS is only defined on unweighted networks.
net_one <- round(matrix(runif(25,0,1), nrow=5, ncol=5))
net_two <- round(matrix(runif(25,0,1), nrow=5, ncol=5))

ics(net_two, net_two, align(net_one, net_two)$alignment)

28 make_DD

make_DD Makes a Duplication and Divergence Network

Description

Makes a network according to the Duplication and Divergence mechanism.

Usage

make_DD(size, net_kind, divergence, directed = TRUE)

Arguments

size Number of nodes in the network.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list").

divergence Probability that the new node loses edges associated with the node it duplicates.
Needs to be between zero and one.

directed Whether the target network is directed. Defaults to TRUE.

Details

Different from Duplication & Mutation models in that edges can only be lost.

Value

An adjacency matrix.

References

Ispolatov, I., Krapivsky, P. L., & Yuryev, A. (2005). Duplication-divergence model of protein inter-
action network. Physical review E, 71(6), 061911.

Examples

Import netcom
library(netcom)

Network size (number of nodes)
size <- 10

Divergence parameter
divergence <- 0.237

Make network according to the Duplication & Divergence mechanism
make_DD(size = size, net_kind = "matrix", divergence = divergence)

make_DM 29

make_DM Make a Duplication and Mutation Network

Description

Make an already existing network according to the Duplication and Mutation mechanism.

Usage

make_DM(size, net_kind, divergence, mutation, directed = FALSE)

Arguments

size Number of nodes in the network.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list").

divergence Probability that the new node loses edges associated with the node it duplicates.
Needs to be between zero and one.

mutation Probability that the new node gains edges not associated with the node it dupli-
cates. Needs to be between zero and one.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix. Defaults to TRUE.

Details

Different from Duplication & Mutation models in that edges can only be lost.

Value

An adjacency matrix.

References

Ispolatov, I., Krapivsky, P. L., & Yuryev, A. (2005). Duplication-divergence model of protein inter-
action network. Physical review E, 71(6), 061911.

Examples

Import netcom
library(netcom)

Network size (number of nodes)
size <- 10

Divergence parameter
divergence <- 0.237

Mutation parameter

30 make_Mixture

mutation <- 0.1

Make network according to the Duplication & Mutation mechanism
make_DM(size = size, net_kind = "matrix", divergence = divergence, mutation = mutation)

make_Mixture Make a Mixture Mechanism Network

Description

Creates a network by iteratively adding or rewiring nodes, each capable of attaching to existing
nodes according to a user-specified mechanism.

Usage

make_Mixture(
mechanism,
directed,
parameter,
kind,
size,
niches,
retcon = FALSE,
link_DD = 0,
link_DM = 0,
force_connected = FALSE

)

Arguments

mechanism A vector of mechanism names corresponding to the mechanisms each node acts
in accordance with. Note that the first two mechanisms are irrelevant because
the first two nodes default to connecting to each other. Currently supported
mechanisms: "ER" (Erdos-Renyi random), "PA", (Preferential Attachment),
"DD", (Duplication and Divergence), "DM" (Duplication and Mutation), "SW",
(Small-World), and "NM" (Niche Model).

directed A binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix. Either a single value or a vector of values
the same length as the mechanism input vector.

parameter Parameter of each node’s mechanism. Either a single value or a vector of values
the same length as the mechanism input vector.

kind Either ‘grow‘ or ‘rewire‘, and determines if the nodes specified in the mecha-
nism input vector are to be rewired or grown. Either a single value or a vector
of values the same length as the mechanism input vector. The number of ‘grow‘
nodes, excluding the first two which are always a pair of bidirectionally con-
nected nodes, is the size of the final network.

make_Mixture 31

size Typically not specified. The size of the network depends on how many ‘grow‘
events are part of the ‘kind‘ input sequence. This should only be used when all
four components of the network evolution (‘mechanism‘, ‘kind‘, ‘parameter‘,
and ‘directed‘) are single name inputs instead of vectors.

niches Used by the Niche Model to determine which nodes interact. Needs to be a
vector of the same length as the number of nodes, and range between zero and
one.

retcon Binary variable determining if already existing nodes can attach to new nodes.
Defaults to FALSE.

link_DD Defaults to 0. A second parameter in the DD (Duplication & Divergence). Cur-
rently only one parameter per mechanism can be specified.

link_DM Defaults to 0. A second parameter in the DM (Duplication & Mutation). Cur-
rently only one parameter per mechanism can be specified.

force_connected

Defaults to FALSE. Determines if nodes can be added to the growing network
that are disconnected. If TRUE, this is prevented by re-determining the offend-
ing node’s edges until the network is connected.

Details

This function grows, one node at a time, a mixture mechanism network. As each node is added
to the growing network it can attach to existing nodes by its own node-specific mechanism. A
sequence of mechanism names must be provided. Note: Currently each mechanism is assumed to
have a single governing parameter.

Value

An unweighted mixture mechanism adjacency matrix.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

Start by creating a sequence of network evolutions.
There are four components to this sequence that can each be defined for every step
in the network's evolution. Or, you can also specify a component once which will
be used for every step in the newtwork's evolution.

mechanism <- c(
rep("ER", 7),
rep("PA", 2),
rep("ER", 3)

)

32 make_NM

kind <- c(
rep("grow", 7),
rep("rewire", 2),
rep("grow", 3)

)

parameter <- c(
rep(0.3, 7),
rep(2, 2),
rep(0.3, 3)

)
directed <- c(

rep(TRUE, 7),
rep(FALSE, 2),
rep(TRUE, 3)

)

Simulate a network according to the rules of this system evolution.
network <- make_Mixture(

mechanism = mechanism,
kind = kind,
parameter = parameter,
directed = directed

)

make_NM Make a Niche Model network

Description

Creates a single network according to the Niche Model. Can be directed or undirected, but is always
unweighted.

Usage

make_NM(
size,
niches,
net_kind = "matrix",
connectance = 0.1,
directed = TRUE,
grow = FALSE

)

Arguments

size The number of nodes in the network. Must be a positive integer.

make_Null 33

niches A vector of numbers specifying the niche of each member of the system (node).
Each niche value must be element of [0,1].

net_kind The format of the network. Currently must be either ‘matrix‘ or ‘list‘.

connectance Defaults to 0.5. The ratio of actual interactions to possible interactions. Effects
the beta distributed width of niche values each member of the system (node)
interacts with.

directed If FALSE all interactions will be made symmetric. Note that the process of
creating interactions is unaffected by this choice. Defaults to TRUE.

grow Binary argument that determines if the network should be made in a growing
fashion, where nodes’ edges are added in order of their niches and can only
attach to previously considered nodes. Defaults to FALSE.

Value

An interaction matrix format of a Niche Model network.

References

Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food webs. Nature,
404(6774), 180-183.

Examples

Import netcom
library(netcom)

Network size (number of nodes)
size <- 10

Create niche values for each member of the system (node)
niches <- stats::runif(n = size)

Make network according to the Niche Model
make_NM(size = size, niches = niches)

make_Null Mechanism Null Distributions

Description

Creates a null distribution for a mechanism and parameter combination.

34 make_Null

Usage

make_Null(
input_network,
net_kind,
mechanism_kind,
process,
parameter,
net_size,
iters,
method,
neighborhood,
DD_kind,
DD_weight,
directed,
resolution_min = 0.01,
resolution_max = 0.99,
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
best_fit_sd = 0,
cores = 1,
size_different = FALSE,
cause_orientation = "row",
max_norm = FALSE,
verbose = FALSE

)

Arguments

input_network The network for which to create a null distribution.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

mechanism_kind Either "canonical" or "grow" can be used to simulate networks. If "grow" is
used, note that here it will only simulate pure mixtures made of a single mecha-
nism.

process Name of mechanism. Currently only "ER", "PA", "DD", "DM" "SW", and
"NM" are supported. Future versions will accept user-defined network-generating
functions and associated parameters. ER = Erdos-Renyi random. PA = Prefer-
ential Attachment. DD = Duplication and Divergence. DM = Duplication and
Mutation. SW = Small World. NM = Niche Model.

parameter Parameter in the governing mechanism.

net_size Number of nodes in the network.

iters Number of replicates in the null distribution. Note that length(null_dist) =
((iters^2)-iters)/2.

method This determines the method used to compare networks at the heart of the clas-
sification. Currently "DD" (Degree Distribution) and "align" (the align function

make_Null 35

which compares networks by the entropy of diffusion on them) are supported.
Future versions will allow user-defined methods.

neighborhood The range of nodes that form connected communities. Note: This implementa-
tion results in overlap of communities.

DD_kind = A vector of network properties to be used to compare networks.
DD_weight = A vector of weights for the relative importance of the network properties

in DD_kind being used to compare networks. Should be the same length as
DD_kind.

directed Whether the target network is directed.
resolution_min The minimum parameter value to consider. Zero is not used because in many

processes it results in degenerate systems (e.g. entirely unconnected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.01.

resolution_max The maximum parameter value to consider. One is not used because in many
processes it results in degenerate systems (e.g. entirely connected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.99.

power_max Defaults to 5. The maximum power of attachment in the Preferential Attachment
process (PA).

connectance_max

Defaults to 0.5. The maximum connectance parameter for the Niche Model.
divergence_max Defaults to 0.5. The maximum divergence parameter for the Duplication and

Divergence/Mutation mechanisms.
best_fit_sd Defaults to 0.01. Standard Deviation used to simulate networks with a simi-

lar but not identical best fit parameter. This is important because simulating
networks with the identical parameter artificially inflates the false negative rate
by assuming the best fit parameter is the true parameter. For large resolution
and reps values this will become true, but also computationally intractable for
realistically large systems.

cores Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

size_different If there is a difference in the size of the networks used in the null distribution.
Defaults to FALSE.

cause_orientation

The orientation of directed adjacency matrices. Defaults to "row".
max_norm Binary variable indicating if each network property should be normalized so its

max value (if a node-level property) is one. Defaults to FALSE.
verbose Defaults to FALSE. Whether to print all messages.

Details

Produces ground-truthing network data.

Value

A list. The first element contains the networks. The second contains their corresponding parameters.

36 make_Null_canonical

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

make_Systematic(net_size = 10)

make_Null_canonical Mechanism Null Distributions

Description

Creates a null distribution for a mechanism and parameter combination.

Usage

make_Null_canonical(
input_network,
net_kind,
process,
parameter,
net_size,
iters,
method,
neighborhood,
DD_kind,
DD_weight,
directed,
resolution_min = 0.01,
resolution_max = 0.99,
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
best_fit_sd = 0,
cores = 1,
size_different = FALSE,
cause_orientation = "row",
max_norm = FALSE,
verbose = FALSE

)

make_Null_canonical 37

Arguments

input_network The network for which to create a null distribution.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

process Name of mechanism. Currently only "ER", "PA", "DD", "DM" "SW", and
"NM" are supported. Future versions will accept user-defined network-generating
functions and associated parameters. ER = Erdos-Renyi random. PA = Prefer-
ential Attachment. DD = Duplication and Divergence. DM = Duplication and
Mutation. SW = Small World. NM = Niche Model.

parameter Parameter in the governing mechanism.

net_size Number of nodes in the network.

iters Number of replicates in the null distribution. Note that length(null_dist) =
((iters^2)-iters)/2.

method This determines the method used to compare networks at the heart of the clas-
sification. Currently "DD" (Degree Distribution) and "align" (the align function
which compares networks by the entropy of diffusion on them) are supported.
Future versions will allow user-defined methods.

neighborhood The range of nodes that form connected communities. Note: This implementa-
tion results in overlap of communities.

DD_kind A vector of network properties to be used to compare networks.

DD_weight A vector of weights for the relative importance of the network properties in
DD_kind being used to compare networks. Should be the same length as DD_kind.

directed Whether the target network is directed.

resolution_min The minimum parameter value to consider. Zero is not used because in many
processes it results in degenerate systems (e.g. entirely unconnected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.01.

resolution_max The maximum parameter value to consider. One is not used because in many
processes it results in degenerate systems (e.g. entirely connected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.99.

power_max Defaults to 5. The maximum power of attachment in the Preferential Attachment
process (PA).

connectance_max

Defaults to 0.5. The maximum connectance parameter for the Niche Model.

divergence_max Defaults to 0.5. The maximum divergence parameter for the Duplication and
Divergence/Mutation mechanisms.

best_fit_sd Defaults to 0.01. Standard Deviation used to simulate networks with a simi-
lar but not identical best fit parameter. This is important because simulating
networks with the identical parameter artificially inflates the false negative rate
by assuming the best fit parameter is the true parameter. For large resolution
and reps values this will become true, but also computationally intractable for
realistically large systems.

38 make_Null_mixture

cores Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

size_different If there is a difference in the size of the networks used in the null distribution.
Defaults to FALSE.

cause_orientation

The orientation of directed adjacency matrices. Defaults to "row".

max_norm Binary variable indicating if each network property should be normalized so its
max value (if a node-level property) is one. Defaults to FALSE.

verbose Defaults to FALSE. Whether to print all messages.

Details

Produces ground-truthing network data.

Value

A list. The first element contains the networks. The second contains their corresponding parameters.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

make_Systematic(net_size = 10)

make_Null_mixture Mechanism Null Distributions

Description

Creates a null distribution for a mechanism and parameter combination.

Usage

make_Null_mixture(
input_network,
net_kind,
process,
parameter,
net_size,
iters,

make_Null_mixture 39

method,
neighborhood,
DD_kind,
DD_weight,
directed,
resolution_min = 0.01,
resolution_max = 0.99,
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
best_fit_sd = 0,
cores = 1,
size_different = FALSE,
cause_orientation = "row",
max_norm = FALSE,
verbose = FALSE

)

Arguments

input_network The network for which to create a null distribution.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

process Name of mechanism. Currently only "ER", "PA", "DD", "DM" "SW", and
"NM" are supported. Future versions will accept user-defined network-generating
functions and associated parameters. ER = Erdos-Renyi random. PA = Prefer-
ential Attachment. DD = Duplication and Divergence. DM = Duplication and
Mutation. SW = Small World. NM = Niche Model.

parameter Parameter in the governing mechanism.

net_size Number of nodes in the network.

iters Number of replicates in the null distribution. Note that length(null_dist) =
((iters^2)-iters)/2.

method This determines the method used to compare networks at the heart of the clas-
sification. Currently "DD" (Degree Distribution) and "align" (the align function
which compares networks by the entropy of diffusion on them) are supported.
Future versions will allow user-defined methods.

neighborhood The range of nodes that form connected communities. Note: This implementa-
tion results in overlap of communities.

DD_kind A vector of network properties to be used to compare networks.

DD_weight A vector of weights for the relative importance of the network properties in
DD_kind being used to compare networks. Should be the same length as DD_kind.

directed Whether the target network is directed.

resolution_min The minimum parameter value to consider. Zero is not used because in many
processes it results in degenerate systems (e.g. entirely unconnected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.01.

40 make_Null_mixture

resolution_max The maximum parameter value to consider. One is not used because in many
processes it results in degenerate systems (e.g. entirely connected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.99.

power_max Defaults to 5. The maximum power of attachment in the Preferential Attachment
process (PA).

connectance_max

Defaults to 0.5. The maximum connectance parameter for the Niche Model.

divergence_max Defaults to 0.5. The maximum divergence parameter for the Duplication and
Divergence/Mutation mechanisms.

best_fit_sd Defaults to 0.01. Standard Deviation used to simulate networks with a simi-
lar but not identical best fit parameter. This is important because simulating
networks with the identical parameter artificially inflates the false negative rate
by assuming the best fit parameter is the true parameter. For large resolution
and reps values this will become true, but also computationally intractable for
realistically large systems.

cores Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

size_different If there is a difference in the size of the networks used in the null distribution.
Defaults to FALSE.

cause_orientation

The orientation of directed adjacency matrices. Defaults to "row".

max_norm Binary variable indicating if each network property should be normalized so its
max value (if a node-level property) is one. Defaults to FALSE.

verbose Defaults to FALSE. Whether to print all messages.

Details

Produces ground-truthing network data.

Value

A list. The first element contains the networks. The second contains their corresponding parameters.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

make_Systematic(net_size = 10)

make_SW 41

make_SW Makes a Small-World Network

Description

Make an already existing network according to the Small-World mechanism.

Usage

make_SW(size, rewire, neighborhood, net_kind = "matrix", directed = FALSE)

Arguments

size The number of nodes in the network. Must be a positive integer.
rewire Small-World parameter specifying the probability each edge is randomly rewired,

allowing for the possiblity of bridges between connected communities.
neighborhood The range of nodes that form connected communities. Note: This implementa-

tion results in overlap of communities.
net_kind The format of the network. Currently must be either ‘matrix‘ or ‘list‘.x
directed Binary variable determining if the network is directed, resulting in off-diagonal

asymmetry in the adjacency matrix. Defaults to TRUE.

Details

Rewires a node in a network according to the Small-World mechanism.

Value

An adjacency matrix.

References

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature,
393(6684), 440-442.

Examples

Import netcom
library(netcom)

Network size (number of nodes)
size <- 10

Rewiring parameter
rewire <- 0.2

Make network according to the Small-World mechanism
make_SW(size = size, net_kind = "matrix", rewire = rewire)

42 make_Systematic

make_Systematic Systematically Make Networks

Description

Creates a list of networks that systematically spans mechanisms and their respective parameters.

Usage

make_Systematic(
net_size,
neighborhood,
directed = TRUE,
net_kind = "matrix",
mechanism_kind = "canonical",
resolution = 100,
resolution_min = 0.01,
resolution_max = 0.99,
reps = 3,
processes = c("ER", "PA", "DM", "SW", "NM"),
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
mutation_max = 0.5,
canonical = FALSE,
cores = 1,
verbose = TRUE

)

Arguments

net_size Number of nodes in the network.

neighborhood The range of nodes that form connected communities. Note: This implementa-
tion results in overlap of communities.

directed Whether the target network is directed. Defaults to TRUE.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

mechanism_kind Either "canonical" or "grow" can be used to simulate networks. If "grow" is
used, note that here it will only simulate pure mixtures made of a single mecha-
nism. Defaults to "canonical".

resolution The first step is to find the version of each process most similar to the target
network. This parameter sets the number of parameter values to search across.
Decrease to improve performance, but at the cost of accuracy. Defaults to 100.

make_Systematic 43

resolution_min = The minimum parameter value to consider. Zero is not used because in many
processes it results in degenerate systems (e.g. entirely unconnected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.01.

resolution_max The maximum parameter value to consider. One is not used because in many
processes it results in degenerate systems (e.g. entirely connected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.99.

reps Defaults to 3. The number of networks to simulate for each parameter. More
replicates increases accuracy by making the estimation of the parameter that
produces networks most similar to the target network less idiosyncratic.

processes Defaults to c("ER", "PA", "DD", "SW", "NM"). Vector of process abbrevia-
tions. Currently only the default five are supported. Future versions will ac-
cept user-defined network-generating functions and associated parameters. ER
= Erdos-Renyi random. PA = Preferential Attachment. DD = Duplication and
Divergence. SW = Small World. NM = Niche Model.

power_max Defaults to 5. The maximum power of attachment in the Preferential Attachment
process (PA).

connectance_max

Defaults to 0.5. The maximum connectance parameter for the Niche Model.

divergence_max Defaults to 0.5. The maximum divergence parameter for the Duplication and
Divergence/Mutation mechanisms.

mutation_max Defaults to 0.5. The maximum mutation parameter for the Duplication and Mu-
tation mechanism.

canonical Defautls to FALSE. If TRUE the mechanisms are directed or undirected in ac-
cordance with their canonical forms. This negates the value of ‘directed‘.

cores Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

verbose Defaults to TRUE. Whether to print all messages.

Details

Produces ground-truthing network data.

Value

A list. The first element contains the networks. The second contains their corresponding parameters.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

44 make_Systematic_canonical

Examples

Import netcom
library(netcom)

make_Systematic(net_size = 10)

make_Systematic_canonical

Systematically Make Networks

Description

Creates a list of networks that systematically spans mechanisms and their respective parameters.

Usage

make_Systematic_canonical(
net_size,
neighborhood,
directed = TRUE,
net_kind = "matrix",
resolution = 100,
resolution_min = 0.01,
resolution_max = 0.99,
reps = 3,
processes = c("ER", "PA", "DM", "SW", "NM"),
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
mutation_max = 0.5,
cores = 1,
verbose = TRUE

)

Arguments

net_size Number of nodes in the network.

neighborhood The range of nodes that form connected communities. Note: This implementa-
tion results in overlap of communities.

directed Whether the target network is directed. Defaults to TRUE.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

resolution The first step is to find the version of each process most similar to the target
network. This parameter sets the number of parameter values to search across.
Decrease to improve performance, but at the cost of accuracy. Defaults to 100.

make_Systematic_canonical 45

resolution_min = The minimum parameter value to consider. Zero is not used because in many
processes it results in degenerate systems (e.g. entirely unconnected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.01.

resolution_max The maximum parameter value to consider. One is not used because in many
processes it results in degenerate systems (e.g. entirely connected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.99.

reps Defaults to 3. The number of networks to simulate for each parameter. More
replicates increases accuracy by making the estimation of the parameter that
produces networks most similar to the target network less idiosyncratic.

processes Defaults to c("ER", "PA", "DD", "SW", "NM"). Vector of process abbrevia-
tions. Currently only the default five are supported. Future versions will ac-
cept user-defined network-generating functions and associated parameters. ER
= Erdos-Renyi random. PA = Preferential Attachment. DD = Duplication and
Divergence. SW = Small World. NM = Niche Model.

power_max = Defaults to 5. The maximum power of attachment in the Preferential Attach-
ment process (PA).

connectance_max

= Defaults to 0.5. The maximum connectance parameter for the Niche Model.
divergence_max = Defaults to 0.5. The maximum divergence parameter for the Duplication and

Divergence/Mutation mechanisms.
mutation_max = Defaults to 0.5. The maximum mutation parameter for the Duplication and

Mutation mechanism.
cores = Defaults to 1. The number of cores to run the classification on. When set to 1

parallelization will be ignored.
verbose = Defaults to TRUE. Whether to print all messages.

Details

Produces ground-truthing network data.

Value

A list. The first element contains the networks. The second contains their corresponding parameters.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

make_Systematic(net_size = 10)

46 make_Systematic_directedCanonicalLike

make_Systematic_directedCanonicalLike

Systematically Make Networks

Description

Creates a list of networks that systematically spans mechanisms and their respective parameters.

Usage

make_Systematic_directedCanonicalLike(
net_size,
directed = TRUE,
net_kind = "matrix",
resolution = 100,
resolution_min = 0.01,
resolution_max = 0.99,
reps = 3,
processes = c("ER", "PA", "DM", "SW", "NM"),
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
mutation_max = 0.5,
cores = 1,
verbose = TRUE

)

Arguments

net_size Number of nodes in the network.

directed Whether the target network is directed. Defaults to TRUE.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

resolution The first step is to find the version of each process most similar to the target
network. This parameter sets the number of parameter values to search across.
Decrease to improve performance, but at the cost of accuracy. Defaults to 100.

resolution_min = The minimum parameter value to consider. Zero is not used because in many
processes it results in degenerate systems (e.g. entirely unconnected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.01.

resolution_max The maximum parameter value to consider. One is not used because in many
processes it results in degenerate systems (e.g. entirely connected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.99.

make_Systematic_directedCanonicalLike 47

reps Defaults to 3. The number of networks to simulate for each parameter. More
replicates increases accuracy by making the estimation of the parameter that
produces networks most similar to the target network less idiosyncratic.

processes Defaults to c("ER", "PA", "DD", "SW", "NM"). Vector of process abbrevia-
tions. Currently only the default five are supported. Future versions will ac-
cept user-defined network-generating functions and associated parameters. ER
= Erdos-Renyi random. PA = Preferential Attachment. DD = Duplication and
Divergence. SW = Small World. NM = Niche Model.

power_max = Defaults to 5. The maximum power of attachment in the Preferential Attach-
ment process (PA).

connectance_max

= Defaults to 0.5. The maximum connectance parameter for the Niche Model.

divergence_max = Defaults to 0.5. The maximum divergence parameter for the Duplication and
Divergence/Mutation mechanisms.

mutation_max = Defaults to 0.5. The maximum mutation parameter for the Duplication and
Mutation mechanism.

cores = Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

verbose = Defaults to TRUE. Whether to print all messages.

Details

Produces ground-truthing network data.

Value

A list. The first element contains the networks. The second contains their corresponding parameters.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

make_Systematic(net_size = 10)

48 make_Systematic_mixture

make_Systematic_mixture

Systematically Make Networks

Description

Creates a list of networks that systematically spans mechanisms and their respective parameters.

Usage

make_Systematic_mixture(
net_size,
neighborhood,
directed = TRUE,
net_kind = "matrix",
resolution = 100,
resolution_min = 0.01,
resolution_max = 0.99,
reps = 3,
processes = c("ER", "PA", "DM", "SW", "NM"),
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
mutation_max = 0.5,
canonical = FALSE,
cores = 1,
verbose = TRUE

)

Arguments

net_size Number of nodes in the network.

neighborhood The range of nodes that form connected communities. Note: This implementa-
tion results in overlap of communities.

directed Whether the target network is directed. Defaults to TRUE.

net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list"). Defaults
to "matrix".

resolution The first step is to find the version of each process most similar to the target
network. This parameter sets the number of parameter values to search across.
Decrease to improve performance, but at the cost of accuracy. Defaults to 100.

resolution_min = The minimum parameter value to consider. Zero is not used because in many
processes it results in degenerate systems (e.g. entirely unconnected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.01.

make_Systematic_mixture 49

resolution_max The maximum parameter value to consider. One is not used because in many
processes it results in degenerate systems (e.g. entirely connected networks).
Currently process agnostic. Future versions will accept a vector of values, one
for each process. Defaults to 0.99.

reps Defaults to 3. The number of networks to simulate for each parameter. More
replicates increases accuracy by making the estimation of the parameter that
produces networks most similar to the target network less idiosyncratic.

processes Defaults to c("ER", "PA", "DD", "SW", "NM"). Vector of process abbrevia-
tions. Currently only the default five are supported. Future versions will ac-
cept user-defined network-generating functions and associated parameters. ER
= Erdos-Renyi random. PA = Preferential Attachment. DD = Duplication and
Divergence. SW = Small World. NM = Niche Model.

power_max Defaults to 5. The maximum power of attachment in the Preferential Attachment
process (PA).

connectance_max

Defaults to 0.5. The maximum connectance parameter for the Niche Model.

divergence_max Defaults to 0.5. The maximum divergence parameter for the Duplication and
Divergence/Mutation mechanisms.

mutation_max Defaults to 0.5. The maximum mutation parameter for the Duplication and Mu-
tation mechanism.

canonical Defautls to FALSE. If TRUE the mechanisms are directed or undirected in ac-
cordance with their canonical forms. This negates the value of ‘directed‘.

cores = Defaults to 1. The number of cores to run the classification on. When set to 1
parallelization will be ignored.

verbose = Defaults to TRUE. Whether to print all messages.

Details

Produces ground-truthing network data.

Value

A list. The first element contains the networks. The second contains their corresponding parameters.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

make_Systematic(net_size = 10)

50 null_fit_optim

null_fit_optim Empirical parameterization via null distributions

Description

Helper function to find the best fitting version of a mechanism by searching across the null distri-
butions associated with a process + parameter combination.

Usage

null_fit_optim(
parameter,
process,
network,
net_size,
iters,
neighborhood,
directed,
DD_kind,
DD_weight,
net_kind,
mechanism_kind,
method,
size_different,
power_max,
connectance_max,
divergence_max,
best_fit_sd,
max_norm,
cause_orientation,
cores,
null_dist_trim,
ks_dither,
ks_alternative,
verbose = FALSE

)

Arguments

parameter The parameter being tested for its ability to generate networks alike the input
‘network‘.

process Name of mechanism. Currently only "ER", "PA", "DD", "DM" "SW", and
"NM" are supported. Future versions will accept user-defined network-generating
functions and associated parameters. ER = Erdos-Renyi random. PA = Prefer-
ential Attachment. DD = Duplication and Divergence. DM = Duplication and
Mutation. SW = Small World. NM = Niche Model.

null_fit_optim 51

network The network being compared to a hypothesized ‘process‘ with a given ‘parame-
ter‘ value.

net_size Number of nodes in the network.
iters Number of replicates in the null distribution. Note that length(null_dist) =

((iters^2)-iters)/2.
neighborhood The range of nodes that form connected communities. Note: This implementa-

tion results in overlap of communities.
directed Whether the target network is directed.
DD_kind A vector of network properties to be used to compare networks.
DD_weight A vector of weights for the relative importance of the network properties in

DD_kind being used to compare networks. Should be the same length as DD_kind.
net_kind If the network is an adjacency matrix ("matrix") or an edge list ("list").
mechanism_kind Either "canonical" or "grow" can be used to simulate networks. If "grow" is

used, note that here it will only simulate pure mixtures made of a single mecha-
nism.

method This determines the method used to compare networks at the heart of the clas-
sification. Currently "DD" (Degree Distribution) and "align" (the align function
which compares networks by the entropy of diffusion on them) are supported.
Future versions will allow user-defined methods.

size_different If there is a difference in the size of the networks used in the null distribution.
power_max The maximum power of attachment in the Preferential Attachment process (PA).
connectance_max

The maximum connectance parameter for the Niche Model.
divergence_max The maximum divergence parameter for the Duplication and Divergence/Mutation

mechanisms.
best_fit_sd Standard Deviation used to simulate networks with a similar but not identical

best fit parameter. This is important because simulating networks with the iden-
tical parameter artificially inflates the false negative rate by assuming the best
fit parameter is the true parameter. For large resolution and reps values this will
become true, but also computationally intractable for realistically large systems.

max_norm Binary variable indicating if each network property should be normalized so its
max value (if a node-level property) is one.

cause_orientation

The orientation of directed adjacency matrices.
cores The number of cores to run the classification on. When set to 1 parallelization

will be ignored.
null_dist_trim = Number between zero and one that determines how much of each network

comparison distribution (unknown network compared to simulated networks,
simulated networks compared to each other) should be used. Prevents p-value
convergence with large sample sizes. Defaults to 1, which means all compar-
isons are used (no trimming).

ks_dither The KS test cannot compute exact p-values when every pairwise network dis-
tance is not unique. Adding small amounts of noise makes each distance unique.
We are not aware of a study on the impacts this has on accuracy so it is set to
zero by default.

52 null_fit_optim

ks_alternative Governs the KS test. Assuming best_fit_sd is not too large, this can be set to
"greater" because the target network cannot be more alike identically simulated
networks than they are to each other. In practice we have found "greater" and
"less" produce numerical errors. Only "two.sided", "less", and "greater" are
supported through stats::ks.test().

verbose Defaults to TRUE. Whether to print all messages.

Details

Note: Currently each process is assumed to have a single governing parameter.

Value

A number measuring how different the input network is from the parameter + process combination.

References

Langendorf, R. E., & Burgess, M. G. (2020). Empirically Classifying Network Mechanisms. arXiv
preprint arXiv:2012.15863.

Examples

Import netcom
library(netcom)

Adjacency matrix
size <- 10
network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)

Calculate how similar the input network is to Small-World networks with
a rewiring probability of 0.28.
null_fit_optim(

parameter = 0.28,
process = "SW",
network = network,
net_size = 12,
iters = 20,
neighborhood = max(1, round(0.1 * net_size)),
net_kind = "matrix",
mechanism_kind = "grow",
power_max = 5,
connectance_max = 0.5,
divergence_max = 0.5,
cores = 1,
directed = TRUE,
method = "DD",
size_different = FALSE,
cause_orientation = "row",
DD_kind = c(

"in", "out", "entropy_in", "entropy_out",
"clustering_coefficient", "page_rank", "communities"

),

stir_DD 53

DD_weight = 1,
best_fit_sd = 0,
max_norm = FALSE,
null_dist_trim = 0,
ks_dither = 0,
ks_alternative = "two.sided",
verbose = FALSE

)

stir_DD Sitrs a Duplication and Divergence Network

Description

Stirs an already existing network by rewiring a node according to the Duplication and Divergence
mechanism.

Usage

stir_DD(
matrix,
x,
divergence,
directed = TRUE,
link = 0,
force_connected = FALSE

)

Arguments

matrix Existing network to be rewired (stirred).

x The ID of the node to be grown.

divergence Probability that the new node loses edges associated with the node it duplicates.
Needs to be between zero and one.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix.

link Probability that the new node attaches to the node it duplicates. Defaults to 0.
force_connected

Binary argument determining if the newly grown node has to be connected to the
existing network. Defaults to FALSE, to prevent rare computational slow-downs
when it is unlikely to create a connected network. Defaults to FALSE.

Details

Different from Duplication & Mutation models in that edges can only be lost.

54 stir_DM

Value

An adjacency matrix.

References

Ispolatov, I., Krapivsky, P. L., & Yuryev, A. (2005). Duplication-divergence model of protein inter-
action network. Physical review E, 71(6), 061911.

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- stir_DD(matrix = new_network_prep, x = size + 1, divergence = 0.5)

stir_DM Stirs a Duplication and Mutation Network

Description

Stirs an already existing network by rewiring a node according to the Duplication and Mutation
mechanism.

Usage

stir_DM(
matrix,
x,
divergence,
mutation,
directed = TRUE,
link = 0,
force_connected = FALSE

)

Arguments

matrix Existing network to experience growth.

x The ID of the node to be rewired (stirred).

divergence Probability that the new node loses edges associated with the node it duplicates.
Needs to be between zero and one.

stir_ER 55

mutation Probability that the new node gains edges not associated with the node it dupli-
cates. Needs to be between zero and one.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix.

link Probability that the new node attaches to the node it duplicates. Defaults to 0.
force_connected

Binary argument determining if the newly grown node has to be connected to the
existing network. Defaults to FALSE, to prevent rare computational slow-downs
when it is unlikely to create a connected network. Defaults to FALSE.

Details

Different from Duplication & Mutation models in that edges can only be lost.

Value

An adjacency matrix.

References

Ispolatov, I., Krapivsky, P. L., & Yuryev, A. (2005). Duplication-divergence model of protein inter-
action network. Physical review E, 71(6), 061911.

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- stir_DM(matrix = new_network_prep, x = size + 1, divergence = 0.5, mutation = 0.21)

stir_ER Stir an Erdos-Renyi Random Network

Description

Stirs an already existing network by rewiring a node according to the Erdos-Renyi random mecha-
nism.

Usage

stir_ER(matrix, x, p, directed = TRUE, retcon = FALSE)

56 stir_NM

Arguments

matrix Existing network to experience growth.

x The ID of the node to be rewired (stirred).

p Probability possible edges exist. Needs to be between zero and one.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix.

retcon Binary variable determining if already existing nodes can attach to new nodes.
Defaults to FALSE.

Details

Different from Duplication & Mutation models in that edges can only be lost.

Value

An adjacency matrix.

References

Erdos, P. and Renyi, A., On random graphs, Publicationes Mathematicae 6, 290–297 (1959).

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- stir_ER(matrix = new_network_prep, x = size + 1, p = 0.5)

stir_NM Stirs a Niche Model Network

Description

Stirs an already existing network by rewiring a node according to the Niche Model mechanism.

Usage

stir_NM(matrix, x, niches, directed = TRUE, connectance = 0.2)

stir_NM 57

Arguments

matrix Existing network to experience rewiring (stirring).

x The ID of the node to be grown.

niches Vector of length x, with values between zero and one corresponding to each
node’s niche.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix. Defaults to TRUE.

connectance Niche Model parameter specifying the expected connectivity of the network,
which determines for a given node the niche space window within which it at-
taches to every other node. Defaults to 0.2.

Details

Stirs a node in a Niche Model network.

Value

An adjacency matrix.

References

Williams, R. J., & Martinez, N. D. (2000). Simple rules yield complex food webs. Nature,
404(6774), 180-183.

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- stir_NM(

matrix = new_network_prep,
x = size + 1,
connectance = 0.1,
niches = runif(size + 1)

)

58 stir_PA

stir_PA Stirs a Preferential Attachment Network

Description

Stirs an already existing network by rewiring a node according to the Preferential Attachment mech-
anism.

Usage

stir_PA(
matrix,
x,
power,
directed = TRUE,
retcon = FALSE,
sum_v_max = "max",
nascent_help = TRUE

)

Arguments

matrix Existing network to experience growth.

x The ID of the node to be rewired (stirred).

power Power of attachment, which determines how much new nodes prefer to attach to
nodes that have many edges compared to few. Needs to be positive.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix.

retcon Binary variable determining if already existing nodes can attach to new nodes.
Defaults to FALSE.

sum_v_max Degree distributions must be normalized, either by their "max" or "sum". De-
faults to "max".

nascent_help Should a single edge be added to the degree distribution of all nodes so that
nodes with a zero in-degree can still have a chance of being attached to by new
nodes. Defaults to TRUE.

Details

Rewires a node in a network according to the Preferential Attachment mechanism.

Value

An adjacency matrix.

stir_SW 59

References

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. science, 286(5439),
509-512.

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- stir_PA(matrix = new_network_prep, x = size + 1, power = 2.15)

stir_SW Stirs a Small-World Network

Description

Stirs an already existing network by rewiring a node according to the Small-World mechanism.

Usage

stir_SW(matrix, x, rewire, directed = TRUE)

Arguments

matrix Existing network to experience growth.

x The ID of the node to be grown.

rewire Small-World parameter specifying the probability each edge is randomly rewired,
allowing for the possiblity of bridges between connected communities.

directed Binary variable determining if the network is directed, resulting in off-diagonal
asymmetry in the adjacency matrix.

Details

Rewires a node in a network according to the Small-World mechanism.

Value

An adjacency matrix.

References

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature,
393(6684), 440-442.

60 stir_SW

Examples

Import netcom
library(netcom)

size <- 10
existing_network <- matrix(sample(c(0,1), size = size^2, replace = TRUE), nrow = size, ncol = size)
new_network_prep <- matrix(0, nrow = size + 1, ncol = size + 1)
new_network_prep[1:size, 1:size] = existing_network
new_network <- stir_SW(matrix = new_network_prep, x = size + 1, rewire = 0.213)

Index

align, 2

best_fit_optim, 5

classify, 8
classify_Systematic, 12
compare, 15
compare_Target, 17

gini, 19
grow_DD, 19
grow_DM, 21
grow_ER, 22
grow_NM, 23
grow_PA, 24
grow_SW, 26

ics, 27

make_DD, 28
make_DM, 29
make_Mixture, 30
make_NM, 32
make_Null, 33
make_Null_canonical, 36
make_Null_mixture, 38
make_SW, 41
make_Systematic, 42
make_Systematic_canonical, 44
make_Systematic_directedCanonicalLike,

46
make_Systematic_mixture, 48

null_fit_optim, 50

stir_DD, 53
stir_DM, 54
stir_ER, 55
stir_NM, 56
stir_PA, 58
stir_SW, 59

61

	align
	best_fit_optim
	classify
	classify_Systematic
	compare
	compare_Target
	gini
	grow_DD
	grow_DM
	grow_ER
	grow_NM
	grow_PA
	grow_SW
	ics
	make_DD
	make_DM
	make_Mixture
	make_NM
	make_Null
	make_Null_canonical
	make_Null_mixture
	make_SW
	make_Systematic
	make_Systematic_canonical
	make_Systematic_directedCanonicalLike
	make_Systematic_mixture
	null_fit_optim
	stir_DD
	stir_DM
	stir_ER
	stir_NM
	stir_PA
	stir_SW
	Index

