
Package ‘multilandr’
July 23, 2025

Title Landscape Analysis at Multiple Spatial Scales

Version 1.0.0

Maintainer Pablo Yair Huais <pablo.huais@unc.edu.ar>

Description Provides a tidy workflow for landscape-scale analysis. 'multilandr' offers tools to gener-
ate landscapes at multiple spatial scales and compute landscape metrics, primarily us-
ing the 'landscapemetrics' package. It also features utility functions for plotting and analyz-
ing multi-scale landscapes, exploring correlations between metrics, filtering land-
scapes based on specific conditions, generating landscape gradients for a given met-
ric, and preparing datasets for further statistical analysis. Documentation about 'multi-
landr' is provided in an introductory vignette included in this package and in the pa-
per by Huais (2024) <doi:10.1007/s10980-024-01930-z>; see citation(``multilandr'') for details.

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.1

Imports terra (>= 1.7-71), GGally (>= 2.2.1), ggplot2 (>= 3.5.1),
tidyterra (>= 0.6.0), gridExtra (>= 2.3), landscapemetrics (>=
2.1.1), sf (>= 1.0-16), methods (>= 4.3.0)

Depends R (>= 4.3.0)

LazyData true

Suggests knitr, parallel (>= 4.1.0), rmarkdown, testthat (>= 3.0.0)

Collate 'check_raster.R' 'classes.R' 'data.R' 'func_checks.R'
'generate_points.R' 'generate_points_checks.R' 'globals.R'
'methods.R' 'metrics_bind.R' 'metrics_corr.R'
'metrics_corr_checks.R' 'metrics_filter.R'
'metrics_filter_checks.R' 'metrics_gradient.R'
'metrics_gradient_checks.R' 'metrics_list.R' 'metrics_plots.R'
'metrics_scalogram.R' 'metrics_scalogram_checks.R' 'mland.R'
'mland_checks.R' 'mland_export_gis.R' 'mland_load.R'
'mland_metrics.R' 'mland_metrics_checks.R' 'mland_overlap.R'
'mland_overlap_checks.R' 'mland_plot.R' 'mland_plot_checks.R'
'mland_save.R' 'utils.R'

Config/testthat/edition 3

1

https://doi.org/10.1007/s10980-024-01930-z

2 Contents

VignetteBuilder knitr

URL https://github.com/phuais/multilandr

BugReports https://github.com/phuais/multilandr/issues

NeedsCompilation no

Author Pablo Yair Huais [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-4062-0779>)

Repository CRAN

Date/Publication 2025-02-14 14:50:10 UTC

Contents

check_raster . 3
conditions . 3
ed_metrics . 5
generate_points . 6
metrics_bind . 8
metrics_corr . 11
metrics_filter . 13
metrics_gradient . 15
metrics_list . 17
metrics_plots . 19
metrics_scalogram . 21
mland . 25
mland_export_gis . 29
mland_load . 30
mland_metrics . 31
mland_overlap . 35
mland_plot . 36
mland_save . 38
MultiLand-class . 40
MultiLandMetrics-class . 42
otf_metrics . 43
show,MultiLand-method . 44
show,MultiLandMetrics-method . 44

Index 45

https://github.com/phuais/multilandr
https://github.com/phuais/multilandr/issues
https://orcid.org/0000-0002-4062-0779

check_raster 3

check_raster Check input raster

Description

Checks the validity of raster layers to be inputted in mland(), intended to represent land cover. The
function directly calls landscapemetrics::check_landscape().

Usage

check_raster(raster, verbose = TRUE)

Arguments

raster An object of class ’RasterLayer’, ’RasterStack’, ’RasterBrick’, ’SpatRaster’, or
a list of raster objects (one of ’RasterLayer’ or ’SpatRaster’).

verbose Print warning messages in the console? Default is TRUE.

Details

Extracts basic information about the inputted raster: coordinate reference system (crs) - either "ge-
ographic", "projected", or NA, units of the coordinate reference system, class for the values of the
inputted raster and the number of classes found in the raster.

Value

A data frame with relevant information about the inputted raster.

conditions Define metric conditions

Description

Helper function to define patch conditions within generate_points() or metric conditions within
metrics_filter().

Usage

conditions(...)

Arguments

... Patch or metric conditions in the form of lists. See Details.

4 conditions

Details

Conditions must be defined as lists (one or more).

For patch conditions, within the environment of generate_points(), each element within the list
defines the condition that the patch must meet in relation to the value of certain patch-level metric,
as follows:

list(class, metric, minimum value, maximum value)

• class: the class (raster value) of the patch that must meet the defined conditions. More than
one class can be specified.

• metric: the patch-level metric whose values must meet the defined conditions. Only one metric
per condition can be defined. Available patch-level metrics can be found in metrics_list()
and in documentation of the package landscapemetrics.

• minimum value: the minimum value that the metric must have for the retained patches. If
equal to -Inf, and a maximum value is defined, patches whose values in the defined metric are
equal or lower to the maximum value will be retained.

• maximum value: the maximum value that the metric must have in the retained patches. If
equal to Inf, and a minimum value is defined, patches whose values in the defined metric are
equal or higher to the minimum value will be retained.

For metric conditions, within the environment of metrics_filter(), each element within the list
defines the required metric conditions, as follows:

list(rasterlayers, class, radii, metric, minimum value, maximum value)

• rasterlayers: the raster layers to be considered. If NA, all raster layers will be considered. If
an extra raster layer must be specified, the string "ext" must precede the raster layer number
(e.g. "ext1", "ext2").

• class: the classes to be considered, as numbers or strings with the names of the classes. If NA,
all classes of required raster layers will be considered. If NULL, the function will assume that
the metric to be considered is a landscape-level metric. Take into account that metrics from
extra calculations are considered as landscape-level metrics.

• radii: the radii to be considered. If NA, all radii will be considered.

• metrics: the name of the metric to be considered (as defined with its abbreviation by column
"metric" in metrics_list()). Only one metric per condition can be defined. Metrics as extra
calculations for extra raster layers must be provided as "fun_" + the name of the function (e.g.
"fun_mean").

• minimum value: the minimum value that the metric must have in the filtered landscapes. If
equal to -Inf, and a maximum value is defined, landscapes whose values in the defined metric
are equal or lower to the maximum value will be retained.

• maximum value: the maximum value that the metric must have in the filtered landscapes. If
equal to Inf, and a minimum value is defined, landscapes whose values in the defined metric
are equal or higher to the minimum value will be retained.

See the example sections of functions generate_points() and metrics_filter() for more de-
tails.

ed_metrics 5

Value

A list to be inputted within the argument patch_conditions in generate_points() or the argu-
ment conditions in metrics_filter().

ed_metrics ’MultiLandMetrics’ object

Description

An object of class ’MultiLandMetrics’ generated with mland_metrics(), for the purposes of pack-
age examples of the following functions: metrics_filter(), metrics_gradient(), metrics_corr(),
metrics_plots() and metrics_bind(). See ’MultiLand-class’ for general information about
these objects.

Usage

ed_metrics

Format

An object of class MultiLandMetrics of length 1.

Details

The main internal object is a data.frame (accesible through ed_metrics@data) with information
about the values of two landscape metrics: "pland" (percentage of landscape) and "ed" (edge den-
sity).

The object was created from the MultiLand object named "ernesdesign", which received two raster
layers from a small portion of the ecoregion "El Chaco" as main inputs. The main rasterlayer was
provided by the project "MapBiomas Chaco" for the year 2000. The extra rasterlayer contained the
NDVI values of cells within the same extent of the main rasterlayer, and was provided by Landsat.

References

Project MapBiomas Chaco – Collection 4.0 of annual land cover and land use maps, accessed during
July 2022 through the following link: MapBiomas Chaco

Landsat-5 image courtesy of the U.S. Geological Survey

See Also

See the examples sections of mland_metrics() and mland() for more context.

https://chaco.mapbiomas.org/

6 generate_points

generate_points Generates point coordinates

Description

Generates point coordinates over a rasterlayer extent.

Usage

generate_points(
raster,
approach = "grid",
n = NULL,
padding = 0,
try = NULL,
values = NULL,
patch_conditions = NULL,
trim = TRUE,
attempts = 10,
distance = NULL,
offset = FALSE,
closest_cell = FALSE,
parallel = FALSE,
cores = 1,
progress = TRUE

)

Arguments

raster An object of class ’SpatRaster’, ’RasterLayer’, ’RasterStack’ or ’RasterBrick’.

approach One of the following: "grid" to generate points through a grid, "random" to
generate points at random locations, or "patch" to generate points inside patches
that meet pre-defined conditions. See Details.

n Number of point to generate.

padding Numeric. Width (in meters) of the internal margin around the raster that will be
discarded from the analysis. See Details.

try Number of points to be generated in each turn. Only applies if approach =
"random". See Details.

values The values of the rasterlayer where points should be placed. Only applies if
approach = "random".

patch_conditions

The conditions that patches must meet to be included as the patches from which
points will be generated. Only applies if approach = "patch". See Details.

trim Logical. If TRUE (default) the number of final points will be trimmed to the
value defined in n.

generate_points 7

attempts Number of attempts to generate new random points given the total required
points (n) and the minimum distance required in distance. Only applies if
approach = "random". See Details.

distance Distance between points of the grid (if approach = "grid") or minimum dis-
tance between generated points (if approach = "random").

offset Logical. If TRUE, each point coordinates will be randomly displaced around
the area occupied by the raster cell size. If FALSE (default), each point will be
located at the center of a given raster cell. Only applies if approach = "random".

closest_cell Logical. If approach = "patch", whether to return the coordinates of each patch
centroid even if they fall outside the patch (FALSE, default) or to move the point
to the closest cell of the patch if this happens (TRUE).

parallel Logical. If TRUE, part of the processes will be parallelized. See Details.

cores Number of cores to use if parallel = TRUE.

progress Logical. If TRUE (default), progress of the analysis will be printed.

Details

If approach = "random", the user can restrict the locations of new generated points inside raster
cells with certain value or values, by defining them in values. Also a minimum distance be-
tween the generated points can be defined in distance (also applies for the resolution of the grid if
approach = "grid").

If approach = "random" and a minimum distance was defined, the function will generate new "ran-
dom" points in sequential passes. In each pass, the function will try to generate new points taking
into account the minimum distance between points, by randomly generating a number of points as
defined in try. The function will perform this task until the new generated points is equal or higher
than n. If try = NULL (default), try will equals n. If in each turn no new points were added (i.e.
new points were located at less than the minimum distance to other previously generated points),
the function will record this event. If this event happens more than the number of times defined
in attempts before the total generated points equals n, the function will terminate, and return the
points that were successfully generated given the required parameters. The user may try different
values for n, try and attempts to get a desirable result.

If approach = "patch", the function will return as many points as patches that meet certain condi-
tions in relation to pre-defined metric values. Conditions can be defined in argument patch_conditions,
for which the helper function conditions() is available:

conditions(list(class, metric, minimum value, maximum value),
list(class, metric, minimum value, maximum value), ...)

• class: the class (raster value) of the patch that must meet the defined conditions. More than
one class can be specified.

• metric: the patch-level metric whose values must meet the defined conditions. Only one metric
per condition can be defined. Available patch-level metrics can be found in metrics_list()
and in documentation of the package landscapemetrics.

• minimum value: the minimum value that the metric must have for the retained patches. If
equal to -Inf, and a maximum value is defined, patches whose values in the defined metric are
equal or lower to the maximum value will be retained.

8 metrics_bind

• maximum value: the maximum value that the metric must have in the retained patches. If
equal to Inf, and a minimum value is defined, patches whose values in the defined metric are
equal or higher to the minimum value will be retained.

Retained patches will be those patches that meet all patch conditions at the same time. Returned
point’s coordinates will equal the centroid of each patch. If closest_cell = TRUE, the point’s
coordinates of the centroids that did not fall inside the patch will be moved to the closest cell
belonging to that patch.

To avoid generating points to close to the boundaries of the raster, the outer borders of the raster
can be discarded from the analysis, by considering the width inputted in padding.

If parallel = TRUE the function will parallelize part of the processes. Parallelization is done to
obtain the coordinates of the patches if approach = "patch". The number of cores must be declared
in cores (parallelization requires at least two cores). To use this functionality, package parallel
must be installed. So far, parallelization will run in LINUX and MAC, but not in Windows.

Value

An object of class ’SpatVector’ containing the coordinates of the generated points.

See Also

mland()

Examples

Loads raster
elchaco <- terra::rast(system.file("extdata", "elchaco.tif", package = "multilandr"))

Returns points at "random" locations, but inside cells of value equals to 1.
chaco_coords <- generate_points(elchaco, approach = "random", values = 1, n = 500)

The same but points must be separated by at least 300 m between each other. Also, each point
is randomly displaced inside the raster cell.
chaco_coords2 <- generate_points(elchaco, approach = "random", values = 1, n = 500,

try = 100, distance = 300, offset = TRUE)

Returns as many points as patches that meet the defined condition. This is
all patches of value equal to 1 of area between 9 and 11 hectares.
patch_sites <- generate_points(elchaco, approach = "patch",

patch_conditions = conditions(list(1, "area", 8, 12)),
padding = 2000)

metrics_bind Metric’s data preparation

Description

Merge data.frame with metric’s values with a data.frame with other data.

metrics_bind 9

Usage

metrics_bind(
x,
data,
raster = NULL,
classes = NULL,
radii = NULL,
c_level = NULL,
l_level = NULL,
ext_raster = NULL,
show_class_names = FALSE

)

Arguments

x An object of class ’MultiLandMetrics’ generated with mland_metrics().

data A data.frame with data from each sampling point/site. See Details.
raster, ext_raster, classes, radii, l_level, c_level

Parameters to subset data.frame containing the metrics values. See Details.
show_class_names

Logical. If TRUE, classes names will be returned as the names of the classes
previously provided (if so) when x was generated. Default FALSE.

Details

Merges data.frame with metrics values, contained in an object of class ’MultiLandMetrics’ (returned
by mland_metrics()) with a data.frame with other data for each site. In this way, the returned
data.frame will be prepared for later statistical or visual analyses. The data.frame provided in data
must have a column named "site" or "point_id", containing unique identifiers for each sampling site,
which must match with the identifiers present in the data.frame contained in x (i.e. data.frame with
metrics values for each site). If "site", the function will assume that the site names are provided as
identifiers. If "point_id", the function will assume that point ids are being provided. In any case,
these identifiers must match the site identifiers in x.

Argument raster, ext_raster, classes, radii, l_level and c_level can be defined to subset
the data.frame contained in x. In each one of these, an all-positive or an all-negative vector can
be passed, whether to include (all-postive) or exclude (all-negative) the elements to be taken into
account for the subsetting:

• rasterlayers: a numeric vector with the number of the raster layers to be included/excluded.
For example: c(1, 2, 4) to include raster layers 1, 2 and 4; c(-2, -3) to exclude raster layers
2 and 3.

• classes: must be a list with as many elements as defined raster layers in argument rasterlayers.
Each element of the list must be a numeric vector (classes identities) with the classes to be
included/excluded. If provided a character vector, metrics_bind() assumes that classes
names are provided. For example, for the case with 2 raster layers: list(c(3, 20, 35),
c("Forest", "Crops")) would include classes 3, 20 and 35 from rasterl ayer 1 and classes
"Forest" and "Crops" for raster layer 2. For the case of a unique rasterlayer, there is no need to

10 metrics_bind

input a list. For example, for the case of a unique raster layer and the exclusion of some classes:
c(-5, -10, -15) to exclude classes 5, 10 and 15 of the unique raster layer; c("-Forest",
"-Grassland") to exclude classes "Forest" and "Grassland". Note the "-" before each class
name to indicate the exclusion of the classes.

• radii: a numeric vector to include/exclude particular radii. For example: c(1000, 2000) to
include only radii of 1000 and 2000 m; c(-500, -1500) to exclude radii of 500 and 1500 m.

• c_level: character vector with the class-level metrics to be included/excluded from the analy-
sis. For example: c("np", "pland") will include only the metrics "number of patches" ("np")
and "percentage of the landscape" ("pland") in the analysis, whereas c("-np", "-pland")
will exclude them. Note the "-" before each metric name to indicate the exclusion of the
metrics.

• l_level: character vector with the landscape-level metrics to be included/excluded from the
analysis. Extra calculations for extra raster layers are considered as landscape-level metrics,
and must be provided as "fun_" + the name of the function.

Value

A data.frame equal to sampling data provided in data but with additional columns containing the
values of the metrics for each sampling site.

See Also

mland_metrics()

Examples

Get sites names from ed_metrics and creates ad-hoc data.frame with random values of
"richness" (the response variable). Only for the purpose of this example
sites <- ed_metrics@points$name
sampling_data <- data.frame(site = rep(sites, each = 10),

richness = sample(1:500, 150))

With no filters, all columns with all metrics at all spatial scales are added to
the sampling data
new_data <- metrics_bind(ed_metrics, sampling_data)

Subset for metrics of class "Forest", radius 5000 and metric "pland"
new_data <- metrics_bind(ed_metrics, sampling_data, show_class_names = TRUE,

classes = "Forest", radii = 3000, c_level = "pland")

In this format, the data.frame can be passed to a fitting model
fit <- lm(richness ~ r1_Forest_pland_3000, data = new_data)

metrics_corr 11

metrics_corr Pairwise metric correlations

Description

Calculates pairwise correlations between landscape metrics.

Usage

metrics_corr(
x,
method = "pearson",
fun = NULL,
raster = NULL,
classes = NULL,
radii = NULL,
c_level = NULL,
l_level = NULL,
ext_raster = NULL,
show_class_names = FALSE,
display = "radii",
...

)

Arguments

x An object of class ’MultiLandMetrics’ generated with mland_metrics().

method The method to be used to calculate pair correlations: "pearson" (default), "spear-
man" or "kendall".

fun A user-defined function to calculate correlations. See Details.
raster, ext_raster, classes, radii, l_level, c_level

Parameters to subset calculations of correlations. See Details.
show_class_names

Logical. If TRUE, row and column of returned matrices will be identified with
the names of the classes, if available in x. Default FALSE.

display Defines how correlations are presented: "radii" (default), "rl" or "both". See
Details.

... Other arguments passed to function cor() or to the user-defined function pro-
vided in fun.

Details

Correlations are calculated, by default, through the function cor(), by specifying the method
through the argument method. Alternatively, a user-defined function can be provided in the argu-
ment fun. If not NULL, the function will assume that a user-defined function have been provided.
This must be a function already loaded in the environment, and must take at least two arguments.

12 metrics_corr

These initial pair of arguments should be capable of receiving two numeric vectors (one in each
argument), process them in some way, and return a numeric value (i.e. the supposed correlation).

Arguments raster, ext_raster, classes, radii, c_level and l_level can be defined to subset
the calculations of pair correlations. In each one of these, an all-positive or an all-negative vector
can be passed, whether to include (all-positive) or exclude (all-negative) the elements to be taken
into account for the subsetting:

• raster: a numeric vector with the number of the raster layers to be included/excluded. For
example: c(1, 2, 4) to include raster layers 1, 2 and 4; c(-2, -3) to exclude raster layers 2
and 3.

• ext_raster: a numeric vector with the number of the extra raster layers to be included/excluded,
as in the raster slot.

• classes: must be a list with as many elements as defined raster layers in argument raster.
Each element of the list must be a numeric vector (classes identities) with the classes to
be included/excluded. If provided a character vector, metrics_corr() assumes that classes
names are provided. For example, for the case with 2 raster layers: list(c(3, 20, 35),
c("Forest", "Crops")) would include classes 3, 20 and 35 from raster layer 1 and classes
"Forest" and "Crops" for raster layer 2. For the case of a unique raster layer, there is no need to
input a list. For example, for the case of a unique raster layer and the exclusion of some classes:
c(-5, -10, -15) to exclude classes 5, 10 and 15 of the unique raster layer; c("-Forest",
"-Grassland") to exclude classes "Forest" and "Grassland". Note the "-" before each class
name to indicate the exclusion of the classes.

• radii: a numeric vector to include/exclude particular radii. For example: c(1000, 2000) to
include only radii of 1000 and 2000 m; c(-500, -1500) to exclude radii of 500 and 1500 m.

• c_level: character vector with the class-level metrics to be included/excluded from the analy-
sis. For example: c("np", "pland") will include only the metrics "number of patches" ("np")
and "percentage of the landscape" ("pland") in the analysis, whereas c("-np", "-pland")
will exclude them. Note the "-" before each metric name to indicate the exclusion of the
metrics.

• l_level: character vector with the landscape-level metrics to be included/excluded from the
analysis. Other calculations for extra raster layers are considered as landscape-level metrics,
and must be provided as "fun_" + the name of the function (e.g. "fun_mean").

Names of the available metrics of the ’MultiLandMetrics’ object provided in x can be accessed with
x@metrics and x@ext_calc.

Note that patch-level metrics, if exists in x metric’s data.frame, are excluded from calculations, as
this function works at a landscape scale.

Argument display defines how correlation values will be presented. If equals to "radii" (default),
correlation values are disaggregated by radii. If "rl", correlation values are disaggregated by raster-
layer: correlations between different radii will be presented. If "both", correlation values are firstly
disaggregated by rasterlayer, and by radii secondly. Disaggregations by raster layers only make
sense for ’MultiLandMetrics’ objects with more than one raster layer.

Value

A list with matrices containing correlation values between pair of metrics. Matrices are disag-
gregated by radius if display = "radii", by rasterlayer if display = "rl" or by rasterlayer and

metrics_filter 13

radii if display = "both". Metrics names are presented as row and column names of the matrices,
with the following format: "level""metric_name""radius". For a landscape-level metric, a plausible
metric name could be "l_np_1500" indicating a landscape-level metric, which is "np" ("number of
patches") at a scale (radius) of 1500 m. For a class-level metric a plausible metric name could
be "c4_pland_1000", indicating a class-level metric of class 4 (the value of the raster), which is
"pland" ("percentage of landscape") at a scale (radius) of 1000 m. If more that one raster layer is
being analyzed, the prefix "r1", "r2", "r3", ..., "rn" (referring to raster layer 1, 2, 3, ..., n) is added to
the metric name.

See Also

mland_metrics(), metrics_plots()

Examples

Calculates pearson correlations between metrics of a MultiLandMetrics object
metrics_corr(ed_metrics)

Only for radius 5000 m and with classes names rather than classes values
metrics_corr(ed_metrics, radii = 5000, show_class_names = TRUE)

Only selecting the metric "pland"
metrics_corr(ed_metrics, radii = 5000, show_class_names = TRUE, c_level = "pland")

Excluding the metric "pland"
metrics_corr(ed_metrics, radii = 5000, show_class_names = TRUE, c_level = "-pland")

Excluding the metric radii of 4000 and 5000 m
metrics_corr(ed_metrics, radii = c(-4000, -5000), show_class_names = TRUE)

Correlations of metric "pland" between classes 1 to 3, and between radii
1000 and 5000 m, disaggregating by rasterlayer.
metrics_corr(ed_metrics, radii = c(1000, 5000), classes = 1:3,

c_level = "pland", display = "rl")

metrics_filter Filters metrics

Description

Selects landscapes that meet certain pre-defined conditions in relation to its metrics from a ’Multi-
LandMetrics’ object.

Usage

metrics_filter(x, conditions, output = "MLM")

14 metrics_filter

Arguments

x An object of class ’MultiLandMetrics’ generated with mland_metrics().

conditions List. Conditions to be met by the landscapes. See Details.

output One of the following: "MLM" to return an updated version of the ’MultiLand-
Metrics’ object provided in x (default), "spatial" to return a ’SpatVector’ with the
points of the selected landscapes, "data" to return a data.frame with the metric
values information or "coords" to return a data.frame with geographical infor-
mation of the filtered points.

Details

Selects landscapes that meet certain conditions in relation to the values of their landscape metrics.
The function will retain those points associated with the landscapes that meet all the defined con-
ditions at the same time. Conditions must be provided through a list, for which the helper function
conditions() is available:

conditions(list(rasterlayers, class, radii, metric, minimum value, maximum value),
list(rasterlayers, class, radii, metric, minimum value, maximum value),

...)

• rasterlayers: the raster layers to be considered. If NA, all raster layers will be considered. If
an extra raster layer must be specified, the string "ext" must precede the raster layer number
(e.g. "ext1", "ext2").

• class: the classes to be considered, as numbers or strings with the names of the classes. If NA,
all classes of required raster layers will be considered. If NULL, the function will assume that
the metric to be considered is a landscape-level metric. Take into account that metrics from
extra calculations are considered as landscape-level metrics.

• radii: the radii to be considered. If NA, all radii will be considered.

• metrics: the name of the metric to be considered (as defined with its abbreviation by column
"metric" in metrics_list()). Only one metric per condition can be defined. Metrics as extra
calculations for extra raster layers must be provided as "fun_" + the name of the function (e.g.
"fun_mean").

• minimum value: the minimum value that the metric must have in the filtered landscapes. If
equal to -Inf, and a maximum value is defined, landscapes whose values in the defined metric
are equal or lower to the maximum value will be retained.

• maximum value: the maximum value that the metric must have in the filtered landscapes. If
equal to Inf, and a minimum value is defined, landscapes whose values in the defined metric
are equal or higher to the minimum value will be retained.

A plausible list of conditions could be the following:

conditions(list(1, 2, 1000, "pland", 20, 30),
list(1, 4, 1000, "np", 1, 15),
list("ext1", NULL, 1000, "fun_mean", 70, 80))

metrics_gradient 15

And it would indicate that landscapes of radius equal to 1000 m should present values of "pland"
(percentage of the landscape) for class 2 from raster layer 1, between 20 and 30%. At the same
time, landscapes of radius equal to 1000 m should present values of "np" (number of patches) for
class 4 from rasterlayer 1, between 1 and 15 patches. Finally, all selected landscapes of radius equal
to 1000 m should present values for "fun_mean" (applied to extra raster layer "ext1") between 70
and 80. Note that the slot for "class" is NULL, as extra raster layers do not hold classes.

Value

A ’MultiLandMetrics’ if output = "MLM", a ’SpatVector’ if output = "spatial", a data.frame if
output = "data" or a data.frame with geographical information of the points if output = "coords".

See Also

metrics_gradient()

Examples

Filter landscapes that have between 20 and 30% of forest at a radius of 2000 m
and output the data.frame with metrics values
conds <- conditions(list(NA, "Forest", 2000, "pland", 20, 30))
otf_subset <- metrics_filter(otf_metrics,

conditions = conds,
output = "data")

The same but returning a data.frame with information of the retained points
conds <- conditions(list(NA, "Forest", 2000, "pland", 20, 30))
otf_subset_points <- metrics_filter(otf_metrics,

conditions = conds,
output = "coords")

Filter landscapes that have between 20 and 30% of forest at a radius of 2000 m
and a maximum of 60% of Crops.
conds <- conditions(list(NA, "Forest", 2000, "pland", 20, 30),

list(NA, "Crops", 2000, "pland", -Inf, 60))
otf_subset2 <- metrics_filter(otf_metrics,

conditions = conds,
output = "data")

metrics_gradient Generates optimized metrics gradient

Description

Selects a set of points whose associated landscapes comprise an optimized gradient for a given
landscape metric.

16 metrics_gradient

Usage

metrics_gradient(
x,
rasterlayer = NULL,
class = NULL,
radius = NULL,
metric = NULL,
n,
cutpoints = NULL,
breaks = NULL,
random = FALSE,
output = "MLM"

)

Arguments

x An object of class ’MultiLandMetrics’ generated with mland_metrics().
rasterlayer The raster layer to be considered. If an extra raster layer must be specified, the

string "ext" must precede the raster layer number (e.g. "ext1", "ext2")
class The class to be considered, as a number or as a string with the name of the class.
radius The radius to be considered.
metric The metric to be considered. Metrics as extra calculations for extra raster layers

must be provided as "fun_" + the name of the function.
n The number of points that will comprise the gradient. See Details.
cutpoints A sequence of numbers that will serve as numeric approximations to select the

points that will comprise the gradient. See Details.
breaks A unique number with the number of breaks that will generate the cutpoints for

the specified metric values. Default is 10. See Details.
random Logical. If TRUE, random points will be selected.
output One of the following: "MLM" to return an updated version of the ’MultiLand-

Metrics’ object provided in x (default), "spatial" to return a ’SpatVector’ with the
points of the selected landscapes, "data" to return a data.frame with the metric
values information or "coords" to return a data.frame with geographical infor-
mation of the selected points.

Details

Selects a subset of landscapes that overall will generate an optimized gradient of values for a given
landscape metric of a specified raster layer, class and radius. One can define a gradient as optimized
if its values fulfill to cover a good range of values between a minimum and a maximum value.
The final gradient will comprise the number of points specified in argument n. Note that only one
landscape metric can be specified at a time.

The algorithm will select those points whose associated landscapes present values for the specified
landscape metric that are the most close to the specified cutpoints. Alternatively, the user can
provide a number of breaks from which the sequence of cutpoints will be generated. If both argu-
ments are specified, the function will consider the values inputted in cutpoints. If both arguments
are NULL, the algorithm will simply select n random points.

metrics_list 17

Value

A ’MultiLandMetrics’ if output = "MLM", a ’SpatVector’ if output = "spatial", a data.frame if
output = "data" or a data.frame with geographical information of the points if output = "coords".

See Also

metrics_filter()

Examples

Generates an optimized gradient for the landscape metric "pland", for the class "Forest".
pland_gradient <- metrics_gradient(otf_metrics, rasterlayer = 1, class = "Forest",

radius = 2000, metric = "pland", n = 15, breaks = 10)
Note that, in this case, specifications for the rasterlayer and the radius are
redundant, and could be simply ignored and left as default, asthe object otf_metrics
only comprises a unique rasterlayer and radius.

By default, the output is an updated version of the object otf_metrics. In order to
inspect the returned values, let's select only the dataframe containing the
metric's values.
foo <- subset(pland_gradient@data, metric == "pland" & classname == "Forest",

select = value)

Next, we output the range of values we have obtained, note there are 15 points, as
previously specified in the function definition in the argument 'n'
round(sort(foo$value), digits = 2)

1.15 1.57 8.17 8.19 15.24 22.32 29.27 36.32 43.17 43.20 49.79 50.25 55.44 57.62 64.53

Alternatively, we can define specific cutpoints around the landscapes will be selected
in termsof its numeric closeness.
pland_gradient <- metrics_gradient(otf_metrics, rasterlayer = 1, class = "Forest",

radius = 2000,metric = "pland", n = 15,
cutpoints = seq(1, 60, 5))

Again, we inspect the dataframe with the metric values to see our results.
foo <- subset(pland_gradient@data, metric == "pland" & classname == "Forest",

select = value)

round(sort(foo$value), digits = 2)

1.15 6.02 6.03 10.99 15.97 20.99 26.01 31.02 35.95 41.14 41.34 45.93 51.41 54.56 55.44

Both alternatives generated a wide-ranged gradient of values for the forest metric "pland"

metrics_list Metrics list

18 metrics_list

Description

List of available landscape metrics provided by package landscapemetrics to be calculated with
mland_metrics(). It simply calls landscapemetrics::list_lsm(). For more information re-
garding the definition and equations of metrics, please check the user manual of landscapemetrics.

Usage

metrics_list(
level = NULL,
metric = NULL,
name = NULL,
type = NULL,
what = NULL

)

Arguments

level Character vector. Level of metrics. Either "patch", "class" or "landscape" (or a
vector with a combination of these). Default NULL considers all levels.

metric Abbreviation of metrics (e.g. "area").

name Full name of metrics (e.g. "core area").

type Character vector. Type according to FRAGSTATS grouping. One or more of the
following: "area and edge", "core area", "shape", "aggregation", "complexity",
and or "diversity". Default NULL considers all types.

what Selected level of metrics: either "patch", "class" or "landscape". It is also pos-
sible to specify functions as a vector of strings, e.g. what = c("lsm_c_ca",
"lsm_l_ta").

Value

A data.frame with the list of available landscape metrics, including information regarding the level,
type, metric, name and function name provided by package landscapemetrics.

References

Hesselbarth, M.H.K., Sciaini, M., With, K.A., Wiegand, K., Nowosad, J. 2019. landscapemetrics:
an open-source R tool to calculate landscape metrics. - Ecography 42:1648-1657(ver. 0).

McGarigal, K., SA Cushman, and E Ene. 2012. FRAGSTATS v4: Spatial Pattern Analysis Program
for Categorical and Continuous Maps. Computer software program produced by the authors at the
University of Massachusetts, Amherst.
Available at the following web site: https://www.umass.edu/landeco/

metrics_plots 19

metrics_plots Pairwise metric plots

Description

Plots pair of metric values in two-dimensional plots.

Usage

metrics_plots(
x,
raster = NULL,
classes = NULL,
radii = NULL,
c_level = NULL,
l_level = NULL,
ext_raster = NULL,
show_class_names = FALSE,
upper = TRUE,
diag = TRUE,
smooth = TRUE,
method = "loess",
se = FALSE,
st_points = list(shape = 21, size = 2, col = "black", fill = "white", alpha = 1),
st_lines = list(lty = 1, lwd = 1, col = "black", alpha = 0.6),
...

)

Arguments

x An object of class ’Multiland’ generated with mland().
raster, ext_raster, classes, radii, l_level, c_level

Parameters to subset plots. See Details.
show_class_names

logical. Whether to show classes with its previously defined names (if defined)
when generating the ’MultiLand’ object (TRUE), or not (FALSE, default).

upper logical. Whether to plot upper-diagonal plots or not. Default TRUE

diag logical. Whether to plot diagonal density plots or not. Default TRUE.

smooth logical. If TRUE (default) a pattern between the pair of metric values is plotted,
with a smoothing method as defined in method.

method Smoothing method (function) to use, as in ggplot2::geom_smooth(). It ac-
cepts "loess" (default), "lm", "gam", among others. See ?ggplot2::geom_smooth()
for more details.

se logical. Whether to show (TRUE) or not (FALSE) confidence intervals when
smooth = TRUE.

20 metrics_plots

st_points List of aesthetic arguments for points plotting: shape for points shape, size for
points size, col for points border color, fill for points fill color and alpha for
point transparency.

st_lines List of aesthetic arguments for lines plotting (if smooth = TRUE): lty for line-
type, lwd for linewidth, col for line color and alpha for line transparency.

... Other parameters to be passed to ggplot2::geom_smooth(), if smooth = TRUE.

Details

metrics_plots() mainly relies on GGally::ggpairs() to generate pair plots between metrics
values. Arguments upper and diag are specific arguments of GGally::ggpairs(), here adapted
to the context of continuous values only.

Argument raster, classes, radii, l_level and c_level can be defined to subset the plots. In
each one of these, an all-positive or an all-negative vector can be passed, whether to include (all-
positive) or exclude (all-negative) the elements to be taken into account for the subsetting:

• rasterlayers: a numeric vector with the number of the raster layers to be included/excluded.
For example: c(1, 2, 4) to include raster layers 1, 2 and 4; c(-2, -3) to exclude raster layers
2 and 3.

• classes: must be a list with as many elements as defined raster layers in argument raster.
Each element of the list must be a numeric vector (classes identities) with the classes to
be included/excluded. If provided a character vector, metrics_corr() assumes that classes
names are provided. For example, for the case with 2 raster layers: list(c(3, 20, 35),
c("Forest", "Crops")) would include classes 3, 20 and 35 from raster layer 1 and classes
"Forest" and "Crops" for raster layer 2. For the case of a unique raster layer, there is no need to
input a list. For example, for the case of a unique raster layer and the exclusion of some classes:
c(-5, -10, -15) to exclude classes 5, 10 and 15 of the unique raster layer; c("-Forest",
"-Grassland") to exclude classes "Forest" and "Grassland". Note the "-" before each class
name to indicate the exclusion of the classes.

• radii: a numeric vector to include/exclude particular radii. For example: c(1000, 2000) to
include only radii of 1000 and 2000 m; c(-500, -1500) to exclude radii of 500 and 1500 m.

• c_level: character vector with the class-level metrics to be included/excluded from the analy-
sis. For example: c("np", "pland") will include only the metrics "number of patches" ("np")
and "percentage of the landscape" ("pland") in the analysis, whereas c("-np", "-pland")
will exclude them. Note the "-" before each metric name to indicate the exclusion of the
metrics.

• l_level: character vector with the landscape-level metrics to be included/excluded from the
analysis. Other calculations for extra raster layers are considered as landscape-level metrics,
and must be provided as "fun_" + the name of the function (e.g. "fun_mean").

Names of the available metrics of the ’MultiLandMetrics’ object provided in x can be accessed with
x@metrics and x@ext_calc.

Note that patch-level metrics, if exists in x metric’s data.frame, are excluded from calculations, as
this function works at a landscape scale.

metrics_scalogram 21

Value

A panel with several plots returned by GGally::ggpairs() relating pair of metrics values. Met-
rics names are presented at the top and right of the panel (strips), with the following format:
"level""metric_name""radius". For a landscape-level metric, a plausible metric name could be
"l_np_1500" indicating a landscape-level metric, which is "np" ("number of patches") at a scale
(radius) of 1500 m. For a class-level metric a plausible metric name could be "c4_pland_1000",
indicating a class-level metric of class 4 (the value of the raster), which is "pland" ("percentage of
landscape") at a scale (radius) of 1000 m. If more that one rasterlayer is being analyzed, the prefix
"r1", "r2", "r3", ..., "rn" (referring to rasterlayer 1, 2, 3, ..., n) is added to the metric name.

See Also

mland_metrics(), metrics_corr()

Examples

Pair plots between metrics "pland" of classes 1 to 4, for radius 3000 m
metrics_plots(ed_metrics, classes = 1:4, radii = 3000, show_class_names = TRUE,

c_level = "pland")

Without smooth pattern
metrics_plots(ed_metrics, classes = 1:4, radii = 3000, show_class_names = TRUE,

c_level = "pland", smooth = FALSE)

Changing aesthetics
metrics_plots(ed_metrics, classes = 1:4, radii = 3000, show_class_names = TRUE,

c_level = "pland", smooth = FALSE, size = 1.5, shape = 21,
fill = "red", alpha = 0.4)

Assessing two radii values at the same time
metrics_plots(ed_metrics, classes = 1:4, radii = c(1000, 5000),

show_class_names = TRUE, c_level = "pland", smooth = FALSE,
size = 1.5, shape = 21, fill = "red", alpha = 0.4)

An example with hundreds of points
metrics_plots(otf_metrics, classes = c("Forest", "Crops"))

Plots can be combined with ggplot2::theme
metrics_plots(otf_metrics, classes = c("Forest", "Crops")) +

ggplot2::theme_bw()

metrics_scalogram Scalograms

Description

Plots the value of metrics across different spatial scales (radius)

22 metrics_scalogram

Usage

metrics_scalogram(
x,
raster = NULL,
points = NULL,
classes = NULL,
radii = NULL,
c_level = NULL,
l_level = NULL,
ext_raster = NULL,
show_class_names = FALSE,
aggregation = FALSE,
fun = "mean",
...

)

Arguments

x An object of class ’MultiLandMetrics’ generated with mland_metrics().
raster, ext_raster, classes, radii, l_level, c_level

Parameters to select what to plot. See Details.

points Numeric or character vector of points to be considered. See Details.
show_class_names

Logical. If TRUE, raster classes will be identified with the names of the classes,
if available in x. Default FALSE.

aggregation Logical. Should data be aggregated by site? See Details.

fun Function to apply during aggregation. Default is "mean". See Details.

... Parameters passed to ggplot2::geom_line().

Details

metrics_scalogram() generates scalograms. In these plots, the value of a landscape metric is
plotted in relation to different spatial scales (which in this context are defined by the radii of buffers)
(Wu, 2004). Curves are disaggregated by raster classes (if applies), and a label named "landscape"
is provided for those landscape-level metrics.

If argument points is a character vector, metrics_scalogram() will assume that the ’MultiLand-
Metrics’ object inputted in argument x contains the identification names of each site/point. There-
fore, the inputted values in argument points will be taken as these identification names. Otherwise,
if a numeric vector is inputted, these values will be taken as point ids.

Arguments raster, ext_raster, classes, radii, c_level and l_level can be defined to select
what metrics, classes, raster layers and radii will be considered for plotting. In each one of these,
an all-positive or an all-negative vector can be passed, whether to include (all-positive) or exclude
(all-negative) the elements to be taken into account for the selection:

• raster: a numeric vector with the number of the raster layers to be included/excluded. For
example: c(1, 2, 4) to include raster layers 1, 2 and 4; c(-2, -3) to exclude raster layers 2
and 3.

metrics_scalogram 23

• ext_raster: a numeric vector with the number of the extra raster layers to be included/excluded,
as in the raster slot.

• classes: must be a list with as many elements as defined raster layers in argument raster.
Each element of the list must be a numeric vector (classes identities) with the classes to be in-
cluded/excluded. If provided a character vector, metrics_scalogram() assumes that classes
names are provided. For example, for the case with 2 raster layers: list(c(3, 20, 35),
c("Forest", "Crops")) would include classes 3, 20 and 35 from raster layer 1 and classes
"Forest" and "Crops" for raster layer 2. For the case of a unique raster layer, there is no need to
input a list. For example, for the case of a unique raster layer and the exclusion of some classes:
c(-5, -10, -15) to exclude classes 5, 10 and 15 of the unique raster layer; c("-Forest",
"-Grassland") to exclude classes "Forest" and "Grassland". Note the "-" before each class
name to indicate the exclusion of the classes.

• radii: a numeric vector to include/exclude particular radii. For example: c(1000, 2000) to
include only radii of 1000 and 2000 m; c(-500, -1500) to exclude radii of 500 and 1500 m.

• c_level: character vector with the class-level metrics to be included/excluded from the analy-
sis. For example: c("np", "pland") will include only the metrics "number of patches" ("np")
and "percentage of the landscape" ("pland") in the analysis, whereas c("-np", "-pland")
will exclude them. Note the "-" before each metric name to indicate the exclusion of the
metrics.

• l_level: character vector with the landscape-level metrics to be included/excluded from the
analysis. Other calculations for extra raster layers are considered as landscape-level metrics,
and must be provided as "fun_" + the name of the function (e.g. "fun_mean").

Names of the available metrics of the ’MultiLandMetrics’ object provided in x can be accessed with
x@metrics and x@ext_calc.

Note that patch-level metrics, if exists in x metric’s data.frame, are excluded from calculations, as
this function works at a landscape scale.

If aggregation is TRUE, the values of the selected metrics for different sites will be aggregated.
By default, for each spatial scale and raster layer, metrics_scalogram() will calculate the mean
value from the values of all available sites/points. A different function (could be user-defined) can
be provided in argument fun.

Value

A panel with ggplot2 facet plots relating the value of the provided metrics and the radii. Plots are

References

Wu, J. (2004). Effects of changing scale on landscape pattern analysis: scaling relations. Landscape
ecology, 19, 125-138.

Examples

We will generate a 'MultiLand' obejct with several radii. The objective is
evaluate metrics across a wide range of spatial scales

Loads main raster with land covers
elchaco <- terra::rast(system.file("extdata", "elchaco.tif", package = "multilandr"))

24 metrics_scalogram

Loads extra raster with NDVI values
elchaco_ndvi <- terra::rast(system.file("extdata", "elchaco_ndvi.tif", package = "multilandr"))

Classes names
cl_names <- c(1, "Forest",

2, "Grassland",
3, "Crops",
4, "Pastures",
5, "Water",
6, "Urban")

Loads points
elchaco_sites <- terra::vect(system.file("extdata", "elchaco_sites.gpkg", package = "multilandr"))

Creates 'MultiLand' object by loading main raster, an extra raster and points.
ernesdesign1 <- mland(points_layer = elchaco_sites,

rast_layer = elchaco,
radii = seq(500, 5000, 100),
class_names = list(cl_names),
site_ref = "name",
ext_rast_layer = elchaco_ndvi,
rast_names = c("landcover", "NDVI"),
segs = 20)

Now, we calculate two metrics: the number of patches for each class
and the total edge considering all classes (i.e. a landscape-level class)
ed_metrics5 <- mland_metrics(ernesdesign1,

what = c("lsm_c_np", "lsm_l_te"),
ext_calc = list(c(1, "mean")))

Plots scalogram for 3 different sites/landscapes, for raster layer "landcover"
and metric "np"
metrics_scalogram(ed_metrics5, points = c("Algarrobo", "Peje", "Itin"),

raster = "landcover", c_level = "np",
aggregation = FALSE, show_class_names = TRUE)

Scalogram with aggregation across sites. By default, a mean value among all
considered sites is calculated.
metrics_scalogram(ed_metrics5, raster = 1,

aggregation = TRUE, show_class_names = TRUE)

Here, we only plot those metrics calculated for the extra raster layer
named "NDVI", which in this case is only one metric
metrics_scalogram(ed_metrics5, points = c("Algarrobo", "Peje", "Itin"),

ext_raster = "NDVI",
aggregation = FALSE, show_class_names = TRUE)

Scalogram with aggregation across three sites. By default, a mean value among
the three considered sites is calculated.
metrics_scalogram(ed_metrics5, ext_raster = 1,

points = c("Yuchan", "Coco", "Tala"),
aggregation = FALSE, show_class_names = TRUE)

mland 25

The output can be customized as every ggplot object
library(ggplot2)
metrics_scalogram(ed_metrics5, points = c("Algarrobo", "Peje", "Itin"), raster = 1,

c_level = "np",
aggregation = FALSE, show_class_names = TRUE, lwd = 1) +

scale_color_brewer(type = "div", palette = 1) +
theme_bw() +
theme(aspect.ratio = 1, legend.title = element_blank())

mland Generates object of class ’MultiLand’

Description

Creates an object of class ’MultiLand’, which is the main object to be used by other functions of
the package to generate plots, calculate landscape metrics and perform other relevant analyses.

Usage

mland(
points_layer,
rast_layer = NULL,
radii,
class_names = NULL,
site_ref = NULL,
bufftype = "round",
segs = 20,
ext_rast_layer = NULL,
rast_names = NULL,
on_the_fly = FALSE,
progress = TRUE

)

Arguments

points_layer An object of class ’SpatVector’, ’SpatialPoints’, ’SpatialPointsDataFrame’ or
’sf’, or a string with the path to a vector file.

rast_layer, ext_rast_layer
An object of class ’SpatRaster’, ’RasterLayer’, ’RasterStack’, ’RasterBrick’, or
a list of raster objects (any of ’RasterLayer’ or ’SpatRaster’).

radii A numeric vector with the radii (in meters) from which buffers will be created.

class_names A list matching each raster value with a class name. See Details.

site_ref A string with the name of the column containing the identity of the sites in points
layer data (argument points_layer). See Details.

bufftype Type of buffer to be created: "round" for circular buffers (default) or "square".

26 mland

segs Number of line segments to use to approximate a quarter circle during buffer
generation. Only valid when bufftype = "round". Default is 20.

rast_names A character vector with the names of the raster layers provided in rast_layer
and ext_rast_layer. See Details.

on_the_fly Logical. If FALSE (default) intersections between buffers and raster layers will
be calculated. If TRUE, only buffers will be generated. See Details.

progress Logical. If TRUE (default), progress of the analysis will be printed.

Details

mland() is the primary function of the package. It creates an object of class ’MultiLand’ that holds
relevant objects and information about points, buffers and intersections between buffers and raster
layers.

The function firstly creates buffers with center in the sites defined in points_layer, and size de-
fined by the values of radii. If each point defined in points_layer has an associated name or id
for ulterior identification, the user should provide the name of the attribute inside points_layer
containing this information, by passing this string through the argument site_ref.

Argument rast_layer must be provided with raster layers with discrete values from which differ-
ent landscape metrics (provided by package landscapemetrics) could be calculated. Extra raster
layers can be provided in ext_rast_layer, from which other metrics can be calculated. For in-
stance, an extra raster layer could be one depicting continuous values of slope, from which a mean
value per landscape may be calculated. Raster layers should be in a coordinate reference system
with meters as the unit, and all raster and vector layers must be in the same coordinate reference
system. The user may check the validity of the raster layer with check_raster().

The extent of the provided points layer should not exceed the limits of the extent of the provided
raster layers. In addition, the difference between the outer borders of provided points layer and
raster layers should not be less than the maximum provided radius in radii. The purpose is to avoid
generating total or partially "empty landscapes" due to the existence of non-overlapping regions
between the buffers (generated around each point given a provided radius) and the raster layers. If
any of this happens, a warning will be returned.

If on_the_fly = FALSE (default), intersections between buffers and raster layers defined in rast_layer
and/or ext_rast_layer will be generated. Otherwise, if on_the_fly = TRUE, only buffers will be
generated. The latter approach may be particularly useful for ’MultiLand’ objects with numerous
points (hundreds or thousands), in order to avoid returning an object excessively heavy for memory.
If this is the case, intersections between buffers and raster layers will be generated when required
("on the fly"). For instance, to calculate metrics with mland_metrics().

The names of the provided raster layers can be defined in rast_names. If so, this must be a char-
acter vector with as many names (strings) as provided raster layers in arguments rast_layer and
ext_rast_layer, in the mentioned order. If there is no need of a name for a particular raster
layer, the given element in the vector should be NA. Definition of these names could be useful
when applying other functions of the package to the object generated here. For instance, to get the
name of the raster layer of a particular row of the data.frame with landscape metrics exported by
mland_metrics().

Classes names can be associated with each value of the raster layers defined in rast_layer, for a
easier future identification. If so, the user must provide a list with as many elements as raster layers
defined in rast_layer. If a ’SpatRaster’ with multiple layers, a ’RasterStack’ or a ’RasterBrick’

mland 27

is provided, the number of raster layers are extracted from these objects. Each element of the list
must be a vector built from concatenated pairs of values, with the value of the raster (the class) in
the first place and the associated class name in the second place. For example, in the case only
one rasterlayer is provided (with four unique values: 1, 2, 3 and 4), a plausible definition for the
argument class_names could be the following:

list(c(1, "Forest", 2, "Crops", 3, "Urban", 4, "Grassland"))

If, for instance, two raster layers are provided (with four unique values for the first layer, and two
unique values for the second one), a plausible definition would be:

list(c(1, "Forest", 2, "Crops", 3, "Urban", 4, "Grassland"),
c(1, "Burnt Areas", 2, "Non-burnt Areas"))

Value

An object of class ’MultiLand’. This object can be used to generate useful plots with mland_plot(),
calculate metrics with mland_metrics() and calculate buffer’s overlapping with mland_overlap().
See ?MultiLand for more details on the content of this object.

See Also

mland_plot(), mland_metrics(), mland_overlap(), generate_points()

Examples

Loads main raster with land covers
elchaco <- terra::rast(system.file("extdata", "elchaco.tif", package = "multilandr"))

Main raster should have discrete values (e.g. land covers). This can be
checked with the function check_raster():

check_raster(elchaco)

Loads extra raster with NDVI values
elchaco_ndvi <- terra::rast(system.file("extdata", "elchaco_ndvi.tif", package = "multilandr"))

Classes names
cl_names <- c(1, "Forest",

2, "Grassland",
3, "Crops",
4, "Pastures",
5, "Water",
6, "Urban")

Loads points
elchaco_sites <- terra::vect(system.file("extdata", "elchaco_sites.gpkg", package = "multilandr"))

Creates 'MultiLand' object by loading main raster, an extra raster and points.
ernesdesign <- mland(points_layer = elchaco_sites,

rast_layer = elchaco,

28 mland

radii = seq(1000, 5000, 1000),
class_names = list(cl_names),
site_ref = "name",
ext_rast_layer = elchaco_ndvi,
rast_names = c("landcover", "NDVI"),
segs = 20)

Returns basic information about the object
ernesdesign

Returns the classes of each rasterlayer and its names, if initially provided
ernesdesign@classes

Loads another main raster. Same classes as "elchaco", but a different year.
elchaco2 <- terra::rast(system.file("extdata", "elchaco2.tif", package = "multilandr"))

Creates 'MultiLand' with two raster layers.
ernesdesign2 <- mland(points_layer = elchaco_sites,

rast_layer = list(elchaco, elchaco2),
radii = seq(1000, 5000, 1000),
class_names = list(cl_names, cl_names),
site_ref = "name")

Creates the same object but with "on_the_fly = TRUE". Intersections between
buffers and rasters will not be generated in this step
ernesdesign3 <- mland(points_layer = elchaco_sites,

rast_layer = list(elchaco, elchaco2),
radii = seq(1000, 5000, 1000),
class_names = list(cl_names, cl_names),
site_ref = "name",
on_the_fly = TRUE)

Creates a MultiLand object with hundreds of points. In this case, these
points were generated with generate_points(), another function from this
package. Also, "on_the_fly = TRUE" assures that no intersections between buffers
and the raster are created in this step.

Loads points
otf_sites <- terra::vect(system.file("extdata", "otf_sites.gpkg", package = "multilandr"))

Creates MultiLand object
otf_design <- mland(points_layer = otf_sites,

rast_layer = elchaco,
radii = 2000,
class_names = list(c(1, "Forest",

2, "Grassland",
3, "Crops",
4, "Pastures",
5, "Water",
6, "Urban")),

on_the_fly = TRUE)

mland_export_gis 29

mland_export_gis Exports a ’MultiLand’ object as GIS data

Description

Exports points, buffers and intersections between buffers and raster layers, as vector and raster files.

Usage

mland_export_gis(
x,
raster = NULL,
points = NULL,
radii = NULL,
ext_raster = NULL,
name = NULL,
gdal = c("COMPRESS=DEFLATE", "PREDICTOR=2", "ZLEVEL=9"),
dir = NULL,
verbose = TRUE,
...

)

Arguments

x An object of class ’MultiLand’ generated with mland().
raster, ext_raster

Numeric. The raster layers to be exported.
points Numeric or character vector of points to be processed. See Details.
radii Numeric vector of radii to be processed.
name Character. Name of the zip file where files will be exported.
gdal GeoTiff creation options for rasters (GeoTiff file format). mland_export_gis()

uses the following compression options: c("COMPRESS=DEFLATE", "PRE-
DICTOR=2", "ZLEVEL=9").

dir Path to the export directory. This must be specified explicitly. To export to
the current directory, use dir = getwd(). Otherwise, provide a valid path to an
existing directory, ensuring it does not end with "/".

verbose Print messages in the console? Default is TRUE.
... Other arguments passed to terra::writeRaster.

Details

If argument points is a character vector, mland_export_gis() will assume that the ’MultiLand’
object inputted in argument x was created with site_ref = TRUE. This is, there is an attribute in
points layer data with the names for each individual point. Therefore, the inputted values in argu-
ment points will be taken as these identification names. Otherwise, if a numeric vector is declared,
the inputted values will be taken as the automatically generated point ids (created when running
mland()).

https://gdal.org/en/stable/drivers/raster/gtiff.html

30 mland_load

Value

GIS data from a ’MultiLand’ object is exported through a zip file.

See Also

mland(), mland_save(), mland_load()

Examples

Loads a 'MultiLand' object
ernesdesign <- system.file("extdata", "ernesdesign.zip", package = "multilandr")
ernesdesign <- mland_load(ernesdesign)

Exports as GIS data, in temporary directory for this example and with a given name
mland_export_gis(ernesdesign, dir = tempdir(), name = "mland-GIS_example")

Remove file for this example
unlink(file.path(tempdir(), "mland-GIS_example.zip"))

mland_load Load ’MultiLand’ or ’MultiLandMetrics’ object

Description

Imports a zip file into an object of class ’MultiLand’ that was previously saved with mland_save().
Alternatively, loads to the environment an RDS object depicting a ’MultiLandMetrics’ object.

Usage

mland_load(path, ...)

Arguments

path A string depicting the path to a zip file, to load objects of class ’MultiLand’, or
to a RDS file to load objects of class ’MultiLandMetrics’.

... Other parameters passed to readRDS() when trying to load an object of class
’MultiLandMetrics’.

Value

A ’MultiLand’ or a ’MultiLandMetrics’ object.

See Also

mland_save(), mland(), mland_metrics()

mland_metrics 31

Examples

Loads mland object from a zip file, previously created with mland_save()
mland_obj <- system.file("extdata", "ernesdesign.zip", package = "multilandr")
ernesdesign <- mland_load(mland_obj)

Loads a MultiLandMetrics object previously generated with mland_metrics() and
exported as a RDS object with mland_save() or saveRDS()

mlm_obj <- system.file("extdata", "ed_metrics.rds", package = "multilandr")
ed_metrics <- mland_load(mlm_obj)

mland_metrics Calculates landscape metrics

Description

Calculates landscape metrics of patch, class and/or landscape level via the package landscapemetrics
and user-defined functions from an object of class ’MultiLand’.

Usage

mland_metrics(
x,
raster = NULL,
points = NULL,
radii = NULL,
classes = NULL,
level = NULL,
metric = NULL,
name = NULL,
type = NULL,
what = NULL,
report_absences = TRUE,
absence_values = NULL,
ext_calc = NULL,
na.exclude = TRUE,
coords = FALSE,
update = NULL,
output = "MLM",
progress = TRUE,
...

)

Arguments

x An object of class ’Multiland’ generated with mland().

32 mland_metrics

raster Vector depicting the raster layers of x from which metrics will be calculated. It
can be a numeric vector, for rasterlayer numbers, or a character vector, for raster
layer names (if provided during the generation of x). If NULL, all raster layers
will be considered.

points Numeric or character vector with the points from which metrics will be calcu-
lated. If NULL, all points will be considered. See Details.

radii Numeric vector depicting the radii from which metrics will be calculated. If
NULL, all radii will be considered.

classes List containing the classes or classes names from which metrics will be calcu-
lated. If NULL, all classes will be considered. See Details.

level, metric, name, type, what
Arguments passed to landscapemetrics::calculate_lsm(), which define which
metrics will be calculated. See Details.

report_absences

Logical. If TRUE (default), intersections with absences of particular classes will
be returned in the final data.frame. See Details.

absence_values A list depicting which value for each class-level metric should be printed if
report_absences = TRUE. See Details.

ext_calc A list containing vectors, each one of length equal to 2 or more: the first element
of the vector with the identification number of the extra raster layer defined in
x, and next elements with a string with the name of the function to be applied to
the defined raster. See Details.

na.exclude Logical. Whether to exclude (default) or not the NA values when performing
extra calculations to extra raster layers. Only applies if ext_calc is not NULL.
See Details.

coords Logical. If TRUE, the coordinates of the points will be returned in the data.frame
containing the values of the required metrics. Default FALSE.

update An object of class ’MultiLandMetrics’, if it is intended to be updated with new
or updated metrics data. See Details.

output Either "MLM" (default) to output an object of class ’MultiLandMetrics’ or
"data" to output only the data.frame with metric values.

progress Logical. If TRUE (default), progress of calculations will be printed.

... Other arguments passed to landscapemetrics::calculate_lsm(). See De-
tails.

Details

Calculates landscape metrics from an object of class MultiLand created with mland(). The func-
tion allows to define which metrics will be calculated in the form defined by the function landscapemetrics::calculate_lsm()
from package landscapemetrics, by specifying one or more of the following arguments:

• level: level of metrics. Either "patch", "class" or "landscape" (or vector with combination).

• metric: abbreviation of metrics (e.g. "area").

• name: full name of metrics (e.g. "core area").

• type: type according to FRAGSTATS grouping (e.g. "aggregation metrics").

mland_metrics 33

• what: selected level of metrics: either "patch", "class" or "landscape". It is also possible to
specify functions as a vector of strings, e.g. what = c("lsm_c_ca", "lsm_l_ta").

Available metrics can be seen in metrics_list() and in the associated documentation of package
landscapemetrics.

mland_metrics() also allows to define some other parameters that filter how metrics are calculated,
by defining the raster layers, points, radii and classes to be taken into account.

If report_absences = TRUE (default), the function will print values of class-level metrics from
classes that are not present in particular landscapes, as a distinct row in the final data.frame. This
is particularly useful for certain class-level metrics in which the absence of the class should be
acknowledged, for instance, the percentage of landscape (’pland’) for a forest class. For this metric,
a value of 0 (zero) should be printed for those landscapes where the class forest is not present. By
default, if report_absences = TRUE, the function will consider NA as the value to be declared in the
case that the class is absent in the landscape. To declare a different value for a particular class-level
metric, this can be declared inside argument absence_values. If not NULL, this must be a list
with the value that one ore more class-level metric should have in the case of an absence of a class.
For example, in the case of "pland", the argument should be defined as follows: absence_values
= list("pland" = 0). Note that the metric must be identified with its abbreviation. You can see
abbreviations for all available metrics in metrics_list(), under the column "metric".

If argument points is a character vector, mland_metrics() assumes that the ’MultiLand’ object
inputted in argument x was created with site_ref = TRUE. This is, there is an column/attribute in
the points layer with the names for each distinct point. Therefore, the inputted values in argument
points will be taken as these identification names. Otherwise, if a numeric vector is inputted, these
values will be taken as the automatically generated point ids (created when running mland()).

The user may specify which classes will be considered when calculating the metrics, by passing
this information in the argument classes. Of course, this information only applies for class-level
metrics. The argument must be a list with as many elements as raster layers to be considered
(defined in argument raster, in ascending order: 1, 2, 3, ...). Each element must be a numeric
vector with the classes values (raster values) to be considered, or a character vector with the names
of the classes (if provided when generating x).

Other arguments can be passed to function landscapemetrics::calculate_lsm() through ar-
gument These include specific arguments relative to the calculation of particular landscape
metrics. See the documentation of this function for more information.

Extra calculations can be performed through ext_calc. The functions defined here will take the
values of the extra raster layers defined in x as input. For instance, a plausible definition could
be ext_calc = list(1, "mean"), which will take the values from the extra raster layer 1, and
calculate its mean for each landscape. If na.exclude = TRUE (default), NA values will be excluded
from this task.

A previously generated ’MultiLandMetrics’ object can be updated with new information regarding
other metrics, probably from other points, radii, raster layers, etc, that haven´t been calculated in the
previous time (or not). In this way, the returned object will be the object provided in this argument,
plus the additions of information about new metrics, and changes to previously metric calculations.
Note that if a particular metric is calculated for a given raster layer, points, radii and or class,
that were previously generated in the object provided in update, the information of these metrics
from the latter will be overwritten. Also note that if in the previous ’MultiLandMetrics’ object
report_absences was TRUE for a given set of metrics and other parameters (e.g. points, radii, raster
layers, etc.), and in the new call report_absences is FALSE (for the same set of other parameters),

34 mland_metrics

the rows depicting landscapes with empty classes from the previous call will be mantained. If the
intention is the removal of these rows, the user should create a fresh new ’MultiLandMetrics’ from
scratch.

Value

If output = "MLM", an object of class ’MultiLandMetrics’ will be returned. This object can then be
passed to functions metrics_corr(), metrics_plots, metrics_filter(), metrics_gradient()
and metrics_bind(). See ?MultiLandMetrics for more information regarding the content of this
object. Otherwise, if output = "data", only a data.frame with the calculated metrics will be re-
turned.

See Also

metrics_corr(), metrics_plots(), metrics_filter(), metrics_gradient(), metrics_bind()

Examples

Loads a 'MultiLand' object
ernesdesign <- system.file("extdata", "ernesdesign.zip", package = "multilandr")
ernesdesign <- mland_load(ernesdesign)

Creates a 'MultiLandMetrics' object. It will calculate the "percentage of landscape"
("pland") and "edge density" ("ed") for all classes. Note that an absence value
for each metric is declared, as the absence of a class for these metrics should be
acknowledged as a 0 (percentage of zero and zero patches).
ed_metrics <- mland_metrics(ernesdesign, level = "class", metric = c("pland", "ed"),

absence_values = list("pland" = 0))

Returns data.frame with the values of all metrics for each landscape
head(ed_metrics@data)

Shows which metrics were calculated and are contained in the data.frame
ed_metrics@metrics

If output = "data", only the data.frame will be returned
data <- mland_metrics(ernesdesign, level = "class", metric = "pland",

classes = c("Forest", "Crops"),
absence_values = list("pland" = 0),
output = "data")

Calculate landscape metrics plus extra calculations for extra rasterlayer 1,
the mean value, and a user defined function, which is the mean divided
standard deviation.

User-defined function
mean_sd <- function(x){ mean(x)/sd(x) }

ed_metrics2 <- mland_metrics(ernesdesign, level = "class",
metric = c("pland", "ed"),
absence_values = list("pland" = 0),
ext_calc = list(c(1, "mean"), c(1, "mean_sd")))

mland_overlap 35

We can calculate metrics for extra raster layers only
ed_metrics3 <- mland_metrics(ernesdesign, ext_calc = list(c(1, "mean", "mean_sd")))

If metrics of different levels must be calculated, a better approach is to declare
them inside the argument 'what', by naming the function associated with the metric.
Also in this case, only the landscapes with a radius of 5000 m are considered.
A list of available metrics with its names, abbreviations and function names can
be seen in metrics_list() and in the documentation of the package landscapemetrics.
ed_metrics4 <- mland_metrics(ernesdesign,

what = c("lsm_c_area_mn", "lsm_l_ed", "lsm_l_shdi"),
radii = 5000)

Calculates patch-level metrics of a particular landscape
ed_patchs <- mland_metrics(ernesdesign, points = "Algarrobo",

level = "patch", class = "Forest",
radii = 1000)

mland_overlap Buffers overlapping

Description

Returns matrices informing the degree of overlapped area between buffers of a ’MultiLand’ object.

Usage

mland_overlap(
x,
points = NULL,
radii = NULL,
digits = 2,
perc = TRUE,
title = "id"

)

Arguments

x An object of class ’Multiland’ generated with mland().
points Numeric or character vector depicting the points to be considered. If NULL, all

points will be taken into account. See Details.
radii Numeric vector depicting the radii to be considered. If NULL, all radii will be

taken into account.
digits Numeric. Number of digits for the values of overlapped areas. Default is 2.
perc Logical. If TRUE (default) the degree of overlapped areas will be presented as

percentages. If FALSE, proportions will be outputted.
title One of the following: "id" to output each point with its id (default), or "site-

name" to output each point with its pre-defined point name in x.

36 mland_plot

Details

If argument points is a character vector, mland_overlap() will assume that the ’MultiLand’ object
inputted in argument x was created with site_ref = TRUE. This is, there is a column/attribute in the
points layer with the names for each distinct point. Therefore, the inputted values in argument
points will be taken as these identification names. Otherwise, if a numeric vector is declared,
the inputted values will be taken as the automatically generated point ids (created when executing
mland()).

Value

A list with as many elements as different radius in x. Each element contains a matrix with the
percentages (or proportions if perc = FALSE) of overlapping of buffer areas.

Examples

Loads a 'MultiLand' object
ernesdesign <- system.file("extdata", "ernesdesign.zip", package = "multilandr")
ernesdesign <- mland_load(ernesdesign)

Returns a matrix with the percentage of overlapping between buffers of each radii
mland_overlap(ernesdesign)

Selects only one radius and return the site names rather than the ids
mland_overlap(ernesdesign, radii = 5000, title = "sitename")

mland_plot Plots landscapes from ’MultiLand’ objects

Description

Returns multiple plots for each landscape generated from each point and buffer, with their radii
and classes, defined by the user through a ’MultiLand’ object (generated by mland()). Aesthetic
parameters of plots can be customized.

Usage

mland_plot(
x,
raster = NULL,
points = NULL,
radii = NULL,
ext_raster = NULL,
title = "id",
ncol = NULL,
nrow = NULL,
st_points = list(shape = 21, size = 2, col = "black", fill = "white", alpha = 1),
st_buffers = list(lty = 1, lwd = 1, col = "black", alpha = 0.6),

mland_plot 37

st_classes = list(palette = "Spectral", fill = NULL, alpha = NULL, na_value =
c("white", 1)),

st_ext = c("chartreuse", "firebrick1")
)

Arguments

x An object of class ’MultiLand’ generated with mland().
raster, ext_raster

Numeric. The rasterlayer to be plotted. Only one rasterlayer can be plotted at
the same time, either defined in raster or ext_raster.

points Numeric or character vector of points to be plotted. See Details.

radii Numeric vector of radii to be plotted.

title One of the following: "id" to plot titles as each point id (default), or "sitename"
to plot titles as each pre-defined point name in x. See Details.

ncol, nrow Number of columns and rows wherein individual plots will be arranged.

st_points List of aesthetic arguments for points plotting: shape for points shape, size for
points size, col for points border color, fill for points fill color and alpha for
point transparency.

st_buffers List of aesthetic arguments for buffers plotting: lty for buffers linetype, lwd
for buffers linewidth, col for buffers border color and alpha for border trans-
parency.

st_classes List of aesthetic arguments for classes plotting: palette, for classes color
palette, fill a vector of fill colors for classes, alpha, a vector of alpha values
for classes, and na_value for the color of NA values. See Details.

st_ext Character vector of length 2, depicting the color for the minimum and maximum
values of the raster defined in ext_raster.

Details

If argument points is a character vector, mland_plot() will assume that the ’MultiLand’ object
inputted in argument x was created with site_ref = TRUE. This is, there is a column/attribute in
points layer data with the names for each distinct point. Therefore, the inputted values in argument
points will be taken as these identification names. Otherwise, if a numeric vector is inputted, these
values will be taken as the automatically generated point ids (created when running mland()).

If title = "sitename", the title of individual plots will be the names of each point. For this, the
names of the points in x must had been defined when the object was created with mland() (i.e.
x@site_ref = TRUE). Otherwise, the argument will be ignored and the titles will be the ids of the
points.

A pre-defined palette can be chosen to differentiate classes inside palette = "palette_name", in-
side the list defined in st_classes. Any palette from hcl.pals() can be chosen. Otherwise, the
user can define specific colors for each class, inside fill. This must be a vector built with concate-
nated pair of values, the first value being the class (or class name, if defined during x generation),
and the second value the color (either the name of the color or the hex code of the color). For ex-
ample, in the case the rasterlayer has four unique values: (1, 2, 3 and 4), a plausible color definition
could be the following:

38 mland_save

list(c(1, "green", 2, "red", 3, "black", 4, "yellow"))

Value

Multiple plots (in a unique plotting device) of landscapes around defined points, radii and classes
of a MultiLand object.

Examples

Loads a 'MultiLand' object
ernesdesign <- system.file("extdata", "ernesdesign.zip", package = "multilandr")
ernesdesign <- mland_load(ernesdesign)

Plots all points and radii
mland_plot(ernesdesign)

Plots points 1 to 3 and only radius 3000 m
mland_plot(ernesdesign, points = 1:3, radii = 3000)

Plot with pre-defined colors, and specifying other arguments
cols <- c(1, "forestgreen",

2, "darkolivegreen2",
3, "firebrick3",
4, "goldenrod1",
5, "deepskyblue3",
6, "black")

mland_plot(ernesdesign, points = 9:11, radii = c(1000, 2000, 3000),
title = "sitename", nrow = 1,
st_points = list(shape = 9),
st_buffers = list(lty = "dashed"),
st_classes = list(fill = cols))

Plot a unique landscape by calling it with its name
mland_plot(ernesdesign, points = "Peje", title = "sitename",

st_points = list(shape = 15, col = "red"),
st_classes = list(palette = "Hawaii"))

Plot extra rasterlaer
mland_plot(ernesdesign, radii = 3000, ext_raster = 1, title = "sitename")

Plot extra rasterlater with customized colors
mland_plot(ernesdesign, radii = 3000, ext_raster = 1, title = "sitename",

st_ext = c("blue", "red"))

mland_save Saves a ’MultiLand’ or ’MultiLandMetrics’ object

mland_save 39

Description

Exports an object of class ’MultiLand’ to be read in the future with mland_load(), or an object of
class ’MultiLandMetrics’ as if it was saved with saveRDS().

Usage

mland_save(
x,
name = NULL,
gdal = c("COMPRESS=DEFLATE", "PREDICTOR=2", "ZLEVEL=9"),
dir = NULL,
verbose = TRUE,
...

)

Arguments

x Object of class ’MultiLand’ or ’MultiLandMetrics’.

name If x is an object of class ’MultiLand’, the name of the zip file where files will
be saved (without the ’.zip’). If x is an object of class ’MultiLandMetrics’, the
name of the R file (.rds). If NULL (default), the name will be ’mland_’ or
’mlandmetrics_’ + a large random number.

gdal GeoTiff creation options for rasters (GeoTiff file format). mland_save() uses
the following compression options: c("COMPRESS=DEFLATE", "PREDIC-
TOR=2", "ZLEVEL=9"). Only relevant if x is an object of class ’MultiLand’.

dir Path to the export directory. This must be specified explicitly. To export to
the current directory, use dir = getwd(). Otherwise, provide a valid path to an
existing directory, ensuring it does not end with "/".

verbose Print messages in the console? Default is TRUE.

... If x is an object of class ’MultiLand’, ... should depict other arguments passed
to terra::writeRaster, the function to write raster layers (from intersections and
plain raster layers). Otherwise, if x is an object of class ’MultiLandMetrics’,
... should depict other arguments passed to save(). See Details.

Details

’MultiLand’ objects should be exported with this function rather than exporting as an external rep-
resentation of R objects with saveRDS(). This is because objects of classes ’SpatVector’ and ’Spa-
tRaster’ (from package terra) contained inside a ’MultiLand’ object cannot be exported as regular
R objects. The exported object will be a zip file, and can be loaded again into an R session with
mland_load().

Relevant arguments can be passed to the function terra::writeRaster, which is used to write raster
layers from a ’MultiLand’ object. Particularly, in the argument gdal one can specify relevant op-
tions regarding raster compression. This may reduce raster sizes significantly. Definition of some
other arguments inside terra::writeRaster may affect exportation of raster layer objects, in the con-
text of a ’MultiLand’ object.

https://gdal.org/en/stable/drivers/raster/gtiff.html

40 MultiLand-class

Objects of class ’MultiLandMetrics’, instead, do not contain ’SpatVector’ or ’SpatRaster’ objects
and can be exported as regular R objects with saveRDS(). The user may use saveRDS() or
mland_save(), and the outcome will be identical.

Value

If x is an object of class ’MultiLand’, a zip file or a directory containing all information regarding
the ’MultiLand’ object provided in ’x’. Otherwise, if x is an object of class ’MultiLandMetrics’,
the function will export the R object as if it was exported as a regular R object with saveRDS().

See Also

mland_load(), mland(), mland_metrics()

Examples

Load MultiLand object
mland_obj <- system.file("extdata", "ernesdesign.zip", package = "multilandr")
ernesdesign2 <- mland_load(mland_obj)

Save it again, in temporary directory for this example and with a given name
mland_save(ernesdesign2, name = "mland_example", dir = tempdir())

Remove file for this example
unlink(file.path(tempdir(), "mland_example.zip"))

Save it again but defining a higher compression for raster layers
mland_save(ernesdesign2, gdal = "COMPRESS=DEFLATE", name = "mland_example", dir = tempdir())

Remove file for this example
unlink(file.path(tempdir(), "mland_example.zip"))

Loads a MultiLandMetrics object previously generated with mland_metrics()
mlm_obj <- system.file("extdata", "ed_metrics.rds", package = "multilandr")
ed_metrics2 <- mland_load(mlm_obj)

Save it again. In this case, mland_save() is the same as using saveRDS()
mland_save(ed_metrics2, dir = tempdir(), name = "mlandmetrics_example")

unlink(file.path(tempdir(), "mlandmetrics_example.rds"))

MultiLand-class Class "MultiLand"

Description

Objects of class ’MultiLand’ are created with the function mland(), and holds relevant objects and
information to be passed to other functions of the package. The slot @buffers holds an object of
class ’SpatVector’ with the buffers for each point contained in the slot @points and each radius

MultiLand-class 41

defined in slot @radii. The slot @buffers@data holds a data.frame with the identification of each
buffer (individualized by a point id and a radius value).

Details

If the slot @on_the_fly equals FALSE, the slot @landscapes holds the intersections (objects of class
’SpatRaster’) between buffers and the raster layers inputted by the user when running mland().
Intersections between buffers and raster layers with discrete values (inputted in argument raster
in mland()) are contained inside a list named ’lsm_rasters’, whereas intersections between extra
raster layers (inputted in argument ext_rast_layer in mland()) and buffers are contained inside
a list named ’ext_rasters’. Each list (’lsm_rasters’ and ’ext_rasters’) contains a list with as many
elements as previously inputted raster layers. Additionally, each element of this latter list holds
an additional internal list, with as many elements as intersections (i.e. rasters generated by the
intersections between buffers defined by each point and radius, and the raster layer). The name
of each element of each internal list reveals the information related to a given intersection, with
the following coding: "RasterLayerL-P-R" or "ExtRasterLayerL-P-R", where L is the given raster
layer, P is the id of the point and R is the radius. For example, a plausible intersection may be named
as "RasterLayer1-5-1500", indicating that this element holds a raster layer which is the result of the
intersection between RasterLayer1 and the buffer around point 5 and radius 1500 m.

If slot @on_the_fly equals FALSE, the slot @landscapes holds a list containing two named lists as
’lsm_rasters’ and ’ext_rasters’. Each one contains a list with as many raster layers were initially
inputted by the user when running mland() in arguments rast_layer and ext_rast_layer. This
means that no intersections were made when creating the ’MultiLand’ object. Intersections will be
created "on the fly" when other functions of the package requires them.

Slots

call The call when function mland() was called.

idkey A unique identification id for the ’MultiLand’ object.

crs_proj A string depicting the CRS of points layer.

points An object of class ’SpatVector’. Holds the points inputted by the user.

buffers An object of class ’SpatVector’. Holds the buffers layers.

site_ref String holding the name of the attribute that the user defined as the one that identifies
individual points and is contained inside the layer of points.

radii Vector of numbers containing the radii that defined the creation of buffers.

n_layers Number of raster layers (defined in argument raster in mland()) from which i ntersec-
tions between were created (or will be if slot @on_the_fly = TRUE).

n_classes A numeric vector depicting the number of classes (raster values) per raster layer (de-
fined in argument raster in mland()).

classes A data.frame depicting the classes (and classes names) for each rasterlayer (defined in
argument raster in mland()).

on_the_fly A logical value indicating whether intersections between buffers and raster layers
were created (FALSE) or not (TRUE).

landscapes If on_the_fly = FALSE, this slot holds the intersections between buffers and raster
layers. Otherwise, if on_the_fly = TRUE, it holds the raw raster layers.

42 MultiLandMetrics-class

l_ref A data.frame relating each point and radius with a "row_id", equal to the position of its
buffer in the slot @buffers and to the position of the intersection for each point/radius in the
slot @landscapes (if on_the_fly = TRUE).

rast_names A list containing two data.frame with the names assigned by the user for the main
raster layers and extra raster layers defined in argument rast_layer and ext_rast_layer in
mland().

Examples

Shows information of object 'MultiLand'
ernesdesign <- system.file("extdata", "ernesdesign.zip", package = "multilandr")
ernesdesign <- mland_load(ernesdesign)
ernesdesign

MultiLandMetrics-class

Class ’MultiLandMetrics’

Description

Objects of class MultiLandMetrics are returned by mland_metrics(). It holds all the infor-
mation relative to the metrics that were calculated by the parameters inputted by the user. This
object class can be passed to functions metrics_corr(), metrics_plots(), metrics_filter(),
metrics_gradient() and metrics_bind() for further analyses.

Slots

call The call when function mland_metrics() was called.
idkey A unique identification id for the ’MultiLandMetrics’ object.
crs_proj A string depicting the CRS of points layer.
n_layers Number of raster layers from which metrics were calculated.
rast_names A list with dataframes containing the names of the raster layers of the ’MultiLand’

object the function mland_metrics() worked with.
classes A data.frame depicting the raster layers, classes and classes names from which metrics

were calculated.
n_classes Numeric vector depicting the number of distinct classes per raster layer from which

metrics were calculated.
points A data.frame containing points coordinates and other attributes.
n_points Number of points from which metrics were calculated.
site_names Logical. Whether points have associated site names or not.
radii Distinct radii from which metrics were calculated.
metrics A data.frame depicting the metrics that were calculated, classified by level.
data Main data.frame with the values of the metrics that were calculated for each point, radius,

raster layers and other parameters pre-defined by the user.
ext_calcs A data.frame depicting the extra calculations that were made in given extra raster lay-

ers.

otf_metrics 43

Examples

Shows information of object 'MultiLandMetrics'
ed_metrics
otf_metrics

otf_metrics ’MultiLandMetrics’ object

Description

An object of class ’MultiLandMetrics’ generated with mland_metrics(), for the purposes of pack-
age examples of the following functions: metrics_filter(), metrics_gradient(), metrics_corr(),
metrics_plots() and metrics_bind(). See ’MultiLand-class’ for general information about
these objects.

Usage

otf_metrics

Format

An object of class MultiLandMetrics of length 1.

Details

The main internal object is a data.frame (accesible through otf_metrics@data) with information
about the values of two landscape metrics: "pland" (percentage of landscape) and "np" (number of
patches).

The object was created from the MultiLand object named "otf_design", which received a raster
layer from a small portion of the ecoregion "El Chaco" as main input. The rasterlayer was provided
by the project "MapBiomas Chaco" for the year 2000.

See Also

See the examples sections of mland_metrics() and mland() for more context.

#’ @references Project MapBiomas Chaco – Collection 4.0 of annual land cover and land use maps,
accessed during July 2022 through the following link: MapBiomas Chaco

https://chaco.mapbiomas.org/

44 show,MultiLandMetrics-method

show,MultiLand-method Show ’MultiLand’ object

Description

Show ’MultiLand’ object

Usage

S4 method for signature 'MultiLand'
show(object)

Arguments

object Prints relevant information about a ’MultiLand’ object.

Value

No return value, called for side effects.

show,MultiLandMetrics-method

Show ’MultiLandMetrics’ object

Description

Show ’MultiLandMetrics’ object

Usage

S4 method for signature 'MultiLandMetrics'
show(object)

Arguments

object Prints relevant information about a ’MultiLandMetrics’ object.

Value

No return value, called for side effects.

Index

∗ datasets
ed_metrics, 5
otf_metrics, 43

check_raster, 3
check_raster(), 26
conditions, 3
conditions(), 7, 14
cor(), 11

ed_metrics, 5

generate_points, 6
generate_points(), 3–5, 27
GGally::ggpairs(), 20, 21
ggplot2::geom_smooth(), 19, 20

hcl.pals(), 37

landscapemetrics::calculate_lsm(), 32,
33

landscapemetrics::check_landscape(), 3
landscapemetrics::list_lsm(), 18

metrics_bind, 8
metrics_bind(), 5, 9, 34, 42, 43
metrics_corr, 11
metrics_corr(), 5, 12, 20, 21, 34, 42, 43
metrics_filter, 13
metrics_filter(), 3–5, 17, 34, 42, 43
metrics_gradient, 15
metrics_gradient(), 5, 15, 34, 42, 43
metrics_list, 17
metrics_list(), 4, 7, 14, 33
metrics_plots, 19, 34
metrics_plots(), 5, 13, 20, 34, 42, 43
metrics_scalogram, 21
metrics_scalogram(), 22, 23
mland, 25
mland(), 3, 5, 8, 19, 29–33, 35–37, 40–43
mland_export_gis, 29

mland_export_gis(), 29
mland_load, 30
mland_load(), 30, 39, 40
mland_metrics, 31
mland_metrics(), 5, 9–11, 13, 14, 16, 18, 21,

22, 26, 27, 30, 33, 40, 42, 43
mland_overlap, 35
mland_overlap(), 27, 36
mland_plot, 36
mland_plot(), 27, 37
mland_save, 38
mland_save(), 30, 39, 40
MultiLand-class, 40
MultiLandMetrics-class, 42

otf_metrics, 43

readRDS(), 30

save(), 39
saveRDS(), 39, 40
show,MultiLand-method, 44
show,MultiLandMetrics-method, 44

terra::writeRaster, 29, 39

45

	check_raster
	conditions
	ed_metrics
	generate_points
	metrics_bind
	metrics_corr
	metrics_filter
	metrics_gradient
	metrics_list
	metrics_plots
	metrics_scalogram
	mland
	mland_export_gis
	mland_load
	mland_metrics
	mland_overlap
	mland_plot
	mland_save
	MultiLand-class
	MultiLandMetrics-class
	otf_metrics
	show,MultiLand-method
	show,MultiLandMetrics-method
	Index

