
Package ‘missoNet’
July 22, 2025

Type Package

Title Missingness in Multi-Task Regression with Network Estimation

Version 1.2.0

Date 2023-07-18

Maintainer Yixiao Zeng <yixiao.zeng@mail.mcgill.ca>

Description Efficient procedures for fitting conditional graphical lasso
models that link a set of predictor variables to a set of response
variables (or tasks), even when the response data may contain missing
values. 'missoNet' simultaneously estimates the predictor
coefficients for all tasks by leveraging information from one another,
in order to provide more accurate predictions in comparison to
modeling them individually. Additionally, 'missoNet' estimates the
response network structure influenced by conditioning predictor
variables using a L1-regularized conditional Gaussian graphical model.
Unlike most penalized multi-task regression methods (e.g., MRCE),
'missoNet' is capable of obtaining estimates even when the response
data is corrupted by missing values. The method automatically enjoys
the theoretical and computational benefits of convexity, and returns
solutions that are comparable to the estimates obtained without
missingness.

License GPL-2

URL https://github.com/yixiao-zeng/missoNet

BugReports https://github.com/yixiao-zeng/missoNet/issues

Imports circlize (>= 0.4.14), ComplexHeatmap, glasso (>= 1.11),
mvtnorm (>= 1.1.3), pbapply (>= 1.5.0), Rcpp (>= 1.0.8.3),
scatterplot3d (>= 0.3.41)

Suggests knitr, rmarkdown

LinkingTo Rcpp, RcppArmadillo

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.2.3

1

https://github.com/yixiao-zeng/missoNet
https://github.com/yixiao-zeng/missoNet/issues

2 missoNet-package

NeedsCompilation yes

Author Yixiao Zeng [aut, cre, cph],
Celia Greenwood [ths, aut],
Archer Yang [ths, aut]

Repository CRAN

Date/Publication 2023-07-19 13:40:02 UTC

Contents
missoNet-package . 2
cv.missoNet . 3
generateData . 10
missoNet . 13
plot.cv.missoNet . 18
predict.cv.missoNet . 19

Index 21

missoNet-package Multi-task regression and conditional network estimation with missing
values in the tasks

Description

Package: missoNet
Type: Package
Version: 1.0.0
Date: 2022-10-01
License: GPL-2

missoNet functions

missoNet Fit a series of ‘missoNet’ models with user-supplied regularization parameter pairs for
the lasso penalties, {(λB , λΘ)}.

cv.missoNet Perform k-fold cross-validation for ‘missoNet’ over a grid of (auto-computed) regu-
larization parameter pairs.

plot S3 method for plotting the cross-validation errors from a fitted 'cv.missoNet' object.

predict S3 method for making predictions of response values from a fitted 'cv.missoNet' object.

generateData Quickly generate synthetic data for simulation studies.

cv.missoNet 3

cv.missoNet Cross-validation for missoNet

Description

This function performs k-fold cross-validation for ‘missoNet’. The regularization path is computed
for all possible combinations of values given in the two regularization parameter sequences, namely
λB and λΘ. ‘cv.missoNet’ will select the most suitable model among all cross-validated fits along
the path. See the details of ‘missoNet’ for the model definition. To help users, the ‘cv.missoNet’
function is designed to automatically determine the likely ranges of the regularization parameters
over which the cross-validation searches.

Usage

cv.missoNet(
X,
Y,
kfold = 5,
rho = NULL,
lambda.Beta = NULL,
lambda.Theta = NULL,
lamBeta.min.ratio = NULL,
lamTheta.min.ratio = NULL,
n.lamBeta = NULL,
n.lamTheta = NULL,
lamBeta.scale.factor = 1,
lamTheta.scale.factor = 1,
Beta.maxit = 1000,
Beta.thr = 1e-04,
eta = 0.8,
Theta.maxit = 1000,
Theta.thr = 1e-04,
eps = 1e-08,
penalize.diagonal = TRUE,
diag.penalty.factor = NULL,
standardize = TRUE,
standardize.response = TRUE,
fit.1se = FALSE,
fit.relax = FALSE,
permute = TRUE,
with.seed = NULL,
parallel = FALSE,
cl = NULL,
verbose = 1

)

4 cv.missoNet

Arguments

X Numeric predictor matrix (n × p): columns correspond to predictor variables
and rows correspond to samples. Missing values are not allowed. There is no
need for centering or scaling of the variables. 'X' should not include a column
of ones for an intercept.

Y Numeric response matrix (n×q): columns correspond to response variables and
rows correspond to samples. Missing values should be coded as either 'NA's or
'NaN's. There is no need for centering or scaling of the variables.

kfold Number of folds for cross-validation – the default is '5'.

rho (Optional) A scalar or a numeric vector of length q: the elements are user-
supplied probabilities of missingness for the response variables. The default
is 'rho = NULL' and the program will compute the empirical missing rates for
each of the columns of 'Y' and use them as the working missing probabilities.
The default setting should suffice in most cases; misspecified missing probabil-
ities would introduce biases into the model.

lambda.Beta (Optional) Numeric vector: a user-supplied sequence of non-negative values
for {λB} penalizing the elements of the coefficient matrix B among which
the cross-validation procedure searches. The default is 'lambda.Beta = NULL',
in which case the program computes an appropriate range of λB values using
'n.lamBeta' and 'lamBeta.min.ratio'. Supplying a vector overrides this de-
fault. Note that the supplied sequence will be automatically arranged, internally,
in a descending order.

lambda.Theta (Optional) Numeric vector: a user-supplied sequence of non-negative values for
{λΘ} penalizing the (off-diagonal) elements of the precision matrix Θ among
which the cross-validation procedure searches. The default is 'lambda.Theta =
NULL', in which case the program computes an appropriate range of λΘ values
using 'n.lamTheta' and 'lamTheta.min.ratio'. Supplying a vector over-
rides this default. Note that the supplied sequence will be automatically ar-
ranged, internally, in a descending order.

lamBeta.min.ratio

The smallest value of λB is calculated as the data-derived max(λB) multiplied
by 'lamBeta.min.ratio'. The default depends on the sample size, n, relative
to the number of predictors, p. If n > p, the default is '1.0E-4', otherwise it
is '1.0E-3'. A very small value of 'lamBeta.min.ratio' may significantly
increase runtime and lead to a saturated fit in the n ≤ p case. This is only needed
when 'lambda.Beta = NULL'.

lamTheta.min.ratio

The smallest value of λΘ is calculated as the data-derived max(λΘ) multiplied
by 'lamTheta.min.ratio'. The default depends on the sample size, n, relative
to the number of responses, q. If n > q, the default is '1.0E-4', otherwise it
is '1.0E-3'. A very small value of 'lamTheta.min.ratio' may significantly
increase runtime and lead to a saturated fit in the n ≤ q case. This is only needed
when 'lambda.Theta = NULL'.

n.lamBeta The number of λB values. If n > p, the default is '40', otherwise it is
'30'. Avoid supplying an excessively large number since the program will

cv.missoNet 5

fit ('n.lamBeta' * 'n.lamTheta') models in total for each fold of the cross-
validation. Typically we suggest 'n.lamBeta' = -log10('lamBeta.min.ratio')
* c, where c ∈ [10, 20]. This is only needed when 'lambda.Beta = NULL'.

n.lamTheta The number of λΘ values. If n > q, the default is '40', otherwise it is '30'.
Avoid supplying an excessively large number since the program will fit ('n.lamBeta'
* 'n.lamTheta') models in total for each fold of the cross-validation. Typically
we suggest 'n.lamTheta' = -log10('lamTheta.min.ratio') * c, where c ∈
[10, 20]. This is only needed when 'lambda.Theta = NULL'.

lamBeta.scale.factor

A positive multiplication factor for scaling the entire λB sequence; the default
is '1'. A typical usage is when the magnitudes of the auto-computed λB values
are inappropriate. For example, this factor would be needed if the optimal value
of λB selected by the cross-validation (i.e. λBmin with the minimum cross-
validated error) approaches either boundary of the search range. This is only
needed when 'lambda.Beta = NULL'.

lamTheta.scale.factor

A positive multiplication factor for scaling the entire λΘ sequence; the default
is '1'. A typical usage is when the magnitudes of the auto-computed λΘ values
are inappropriate. For example, this factor would be needed if the optimal value
of λΘ selected by the cross-validation (i.e. λΘmin with the minimum cross-
validated error) approaches either boundary of the search range. This is only
needed when 'lambda.Theta = NULL'.

Beta.maxit The maximum number of iterations of the fast iterative shrinkage-thresholding
algorithm (FISTA) for updating B̂. The default is 'Beta.maxit = 1000'.

Beta.thr The convergence threshold of the FISTA algorithm for updating B̂; the default
is 'Beta.thr = 1.0E-4'. Iterations stop when the absolute parameter change is
less than ('Beta.thr' * sum(abs(B̂))).

eta The backtracking line search shrinkage factor; the default is 'eta = 0.8'. Most
users will be able to use the default value, some experienced users may want to
tune 'eta' according to the properties of a specific dataset for a faster conver-
gence of the FISTA algorithm. Note that 'eta' must be in (0, 1).

Theta.maxit The maximum number of iterations of the ‘glasso’ algorithm for updating Θ̂.
The default is 'Theta.maxit = 1000'.

Theta.thr The convergence threshold of the ‘glasso’ algorithm for updating Θ̂; the de-
fault is 'Theta.thr = 1.0E-4'. Iterations stop when the average absolute pa-
rameter change is less than ('Theta.thr' * ave(abs(offdiag(Σ̂)))), where
Σ̂ denotes the empirical working covariance matrix.

eps A numeric tolerance level for the L1 projection of the empirical covariance ma-
trix; the default is 'eps = 1.0E-8'. The empirical covariance matrix will be
projected onto a L1 ball to have min(eigen(Σ̂)$value) == 'eps', if any of
the eigenvalues is less than the specified tolerance. Most users will be able to
use the default value.

penalize.diagonal

Logical: should the diagonal elements of Θ be penalized? The default is 'TRUE'.
diag.penalty.factor

Numeric: a separate penalty multiplication factor for the diagonal elements of Θ
when 'penalize.diagonal = TRUE'. λΘ is multiplied by this number to allow

6 cv.missoNet

a differential shrinkage of the diagonal elements. The default is 'NULL' and the
program will guess a value based on an initial estimate of Θ. This factor could
be '0' for no shrinkage (equivalent to 'penalize.diagonal = FALSE') or '1'
for an equal shrinkage.

standardize Logical: should the columns of 'X' be standardized so each has unit variance?
The default is 'TRUE'. The estimated results will always be returned on the
original scale. ‘cv.missoNet’ computes appropriate λ sequences relying on
standardization, if 'X' has been standardized prior to fitting the model, you
might not wish to standardize it inside the algorithm.

standardize.response

Logical: should the columns of 'Y' be standardized so each has unit variance?
The default is 'TRUE'. The estimated results will always be returned on the
original scale. ‘cv.missoNet’ computes appropriate λ sequences relying on
standardization, if 'Y' has been standardized prior to fitting the model, you
might not wish to standardize it inside the algorithm.

fit.1se Logical: the default is 'FALSE'. If 'TRUE', two additional models will be fitted
with the largest values of λB and λΘ respectively at which the cross-validated
error is within one standard error of the minimum.

fit.relax Logical: the default is 'FALSE'. If 'TRUE', the program will re-estimate the
edges in the active set (i.e. nonzero off-diagonal elements) of the network struc-
ture Θ̂ without penalization (λΘ = 0). This debiased estimate of Θ could be
useful for some interdependency analyses. WARNING: there may be conver-
gence issues if the empirical covariance matrix is not of full rank (e.g. n < q)).

permute Logical: should the subject indices for the cross-validation be permuted? The
default is 'TRUE'.

with.seed A random number seed for the permutation.

parallel Logical: the default is 'FALSE'. If 'TRUE', the program uses clusters to compute
the cross-validation folds in parallel. Must register parallel clusters beforehand,
see examples below.

cl A cluster object created by ‘parallel::makeCluster’ for parallel evaluations.
This is only needed when 'parallel = TRUE'.

verbose Value of '0', '1' or '2'. 'verbose = 0' – silent; 'verbose = 1' (the default)
– limited tracing with progress bars; 'verbose = 2' – detailed tracing. Note
that displaying the progress bars slightly increases the computation overhead
compared to the silent mode. The detailed tracing should be used for monitoring
progress only when the program runs extremely slowly, and it is not supported
under 'parallel = TRUE'.

Details

The ‘cv.missoNet’ function fits ‘missoNet’ models ('kfold' * 'n.lamBeta' * 'n.lamTheta')
times in the whole cross-validation process. That is, for the kth-fold (k = 1, ...,K) computation,
the models are fitted at each of the all ('n.lamBeta' * 'n.lamTheta') possible combinations of
the regularization parameters (λB , λΘ), with the kth fold of the training data omitted. The errors
are accumulated, and the averaged errors as well as the standard deviations are computed over all
folds. Note that the results of ‘cv.missoNet’ are random, since the samples are randomly split

cv.missoNet 7

into k-folds. Users can eliminate this randomness by setting 'permute = FALSE', or by explicitly
assigning a seed to the permutation of samples.

A user-supplied sequence for {λB} and/or {λΘ} is permitted, otherwise the program computes
an appropriate range of values for the regularization parameters using other control arguments.
Note that ‘cv.missoNet’ standardizes 'X' and 'Y' to have unit variances before computing its λ
sequences (and then unstandardizes the resulting coefficients); if you wish to reproduce/compare
results with those of other softwares, it is best to supply pre-standardized 'X' and 'Y'. If the algo-
rithm is running slowly, track its progress with 'verbose = 2'. In most cases, choosing a sparser
grid for the regularization parameters (e.g. smaller 'n.lamBeta' and/or 'n.lamTheta') or setting
'Beta.thr = 1.0E-3' (or even bigger) allows the algorithm to make faster progress.

After cross-validation, the regression coefficient matrix B and the precision matrix Θ can be esti-
mated at three special λ pairs, by reapplying ‘missoNet’ to the entire training dataset:

1. "lambda.min" := (λBmin, λΘmin), at which the minimum mean cross-validated error is achieved;

2. "lambda.1se.Beta" := (λB1se, λΘmin), where λB1se is the largest λB at which the mean
cross-validated error is within one standard error of the minimum;

3. "lambda.1se.Theta" := (λBmin, λΘ1se), where λΘ1se is the largest λΘ at which the mean
cross-validated error is within one standard error of the minimum.

The corresponding estimates, along with the λ values, are stored in three separate lists inside the re-
turned object: 'est.min', 'est.1se.B' and 'est.1se.Tht' ('est.1se.B' and 'est.1se.Tht'
are 'NULL' unless the argument 'fit.1se = TRUE' when calling ‘cv.missoNet’).

The ‘cv.missoNet’ function returns an R object of S3 class 'cv.missoNet' for which there are
a set of accessory functions available. The plotting function ‘plot.cv.missoNet’ can be used to
graphically identify the optimal pair of the regularization parameters, and the prediction function
‘predict.cv.missoNet’ can be used to make predictions of response values given new input 'X'.
See the vignette for examples.

Value

This function returns a 'cv.missoNet' object containing a named 'list' with all the ingredients
of the cross-validated fit:

est.min A 'list' of results estimated at "lambda.min" := (λBmin, λΘmin) that gives the
minimum mean cross-validated error. It consists of the following components:

• Beta: the penalized estimate of the regression coefficient matrix B̂ (p× q).
• Theta: the penalized estimate of the precision matrix Θ̂ (q × q).
• mu: a vector of length q storing the model intercept µ̂.
• lambda.Beta: the value of λB (i.e. λBmin) used to fit the model.
• lambda.Theta: the value of λΘ (i.e. λΘmin) used to fit the model.
• relax.net: the relaxed (debiased) estimate of the conditional network

structure Θ̂rlx (q×q) if 'fit.relax = TRUE' when calling ‘cv.missoNet’.

est.1se.B A 'list' of results estimated at "lambda.1se.Beta" := (λB1se, λΘmin) if 'fit.1se
= TRUE' when calling ‘cv.missoNet’. "lambda.1se.Beta" refers to the largest
λB at which the mean cross-validated error is within one standard error of the
minimum, by fixing λΘ at λΘmin. This 'list' consists of the same components
as 'est.min'.

8 cv.missoNet

est.1se.Tht A 'list' of results estimated at "lambda.1se.Theta" := (λBmin, λΘ1se) if
'fit.1se = TRUE' when calling ‘cv.missoNet’. "lambda.1se.Theta" refers
to the largest λΘ at which the mean cross-validated error is within one standard
error of the minimum, by fixing λB at λBmin. This 'list' consists of the same
components as 'est.min'.

rho A vector of length q storing the working missing probabilities for the q response
variables.

fold.index The subject indices identifying which fold each observation is in.
lambda.Beta.vec

A flattened vector of length ('n.lamBeta' * 'n.lamTheta') storing the λB

values along the regularization path. More specifically, 'lambda.Beta.vec' =
rep('lambda.Beta', each = 'n.lamTheta').

lambda.Theta.vec

A flattened vector of length ('n.lamBeta' * 'n.lamTheta') storing the λΘ

values along the regularization path. More specifically, 'lambda.Theta.vec' =
rep('lambda.Theta', times = 'n.lamBeta').

cvm A flattened vector of length ('n.lamBeta' * 'n.lamTheta') storing the (stan-
dardized) mean cross-validated errors along the regularization path.

cvup Upper cross-validated errors.

cvlo Lower cross-validated errors.
penalize.diagonal

Logical: whether the diagonal elements of Θ were penalized.
diag.penalty.factor

The additional penalty multiplication factor for the diagonal elements of Θ
when 'penalize.diagonal' was returned as 'TRUE'.

Author(s)

Yixiao Zeng <yixiao.zeng@mail.mcgill.ca>, Celia M.T. Greenwood and Archer Yi Yang.

Examples

Simulate a dataset with response values missing completely at random (MCAR),
the overall missing rate is around 10%.
set.seed(123) # reproducibility
sim.dat <- generateData(n = 300, p = 50, q = 20, rho = 0.1, missing.type = "MCAR")
tr <- 1:240 # training set indices
tst <- 241:300 # test set indices
X.tr <- sim.dat$X[tr,] # predictor matrix
Y.tr <- sim.dat$Z[tr,] # corrupted response matrix

Perform a five-fold cross-validation WITH specified 'lambda.Beta' and 'lambda.Theta'.
'standardize' and 'standardize.response' are 'TRUE' by default.
lamB.vec <- 10^(seq(from = 0, to = -1, length.out = 5))
lamTht.vec <- 10^(seq(from = 0, to = -1, length.out = 5))
cvfit <- cv.missoNet(X = X.tr, Y = Y.tr, kfold = 5,

lambda.Beta = lamB.vec, lambda.Theta = lamTht.vec)

cv.missoNet 9

Perform a five-fold cross-validation WITHOUT specified 'lambda.Beta' and 'lambda.Theta'.
In this case, a grid of 'lambda.Beta' and 'lambda.Theta' values in a (hopefully) reasonable
range will be computed and used by the program.
##
< This simplest command should be a good start for most analyses. >
cvfit <- cv.missoNet(X = X.tr, Y = Y.tr, kfold = 5)

Alternatively, compute the cross-validation folds in parallel on a cluster with 2 cores.
##
'fit.1se = TRUE' tells the program to make additional estimations of the parameters at the
largest value of 'lambda.Beta' / 'lambda.Theta' that gives the most regularized model such
that the cross-validated error is within one standard error of the minimum.
cl <- parallel::makeCluster(min(parallel::detectCores()-1, 2))
cvfit <- cv.missoNet(X = X.tr, Y = Y.tr, kfold = 5, fit.1se = TRUE,

parallel = TRUE, cl = cl,
permute = TRUE, with.seed = 486) # permute with seed for reproducibility

parallel::stopCluster(cl)

Use PRE-STANDARDIZED training data if you wish to compare the results with other softwares.
X.tr.std <- scale(X.tr, center = TRUE, scale = TRUE)
Y.tr.std <- scale(Y.tr, center = TRUE, scale = TRUE)
cvfit.std <- cv.missoNet(X = X.tr.std, Y = Y.tr.std, kfold = 5,

standardize = FALSE, standardize.response = FALSE)

Plot the (standardized) mean cross-validated errors in a heatmap.
plot(cvfit, type = "cv.heatmap")

Plot the (standardized) mean cross-validated errors in a 3D scatterplot.
plot(cvfit, type = "cv.scatter", plt.surf = TRUE)

Extract the estimates at "lambda.min".
Beta.hat1 <- cvfit$est.min$Beta
Theta.hat1 <- cvfit$est.min$Theta

Extract the estimates at "lambda.1se.Beta" (if 'fit.1se' = TRUE).
Beta.hat2 <- cvfit$est.1se.B$Beta
Theta.hat2 <- cvfit$est.1se.B$Theta

Extract the estimates at "lambda.1se.Theta" (if 'fit.1se' = TRUE).
Beta.hat3 <- cvfit$est.1se.Tht$Beta
Theta.hat3 <- cvfit$est.1se.Tht$Theta

Make predictions of response values on the test set.
newy1 <- predict(cvfit, newx = sim.dat$X[tst,], s = "lambda.min")
newy2 <- predict(cvfit, newx = sim.dat$X[tst,], s = "lambda.1se.Beta") # 'fit.1se' = TRUE
newy3 <- predict(cvfit, newx = sim.dat$X[tst,], s = "lambda.1se.Theta") # 'fit.1se' = TRUE

10 generateData

generateData Quickly generate synthetic data for simulation studies

Description

The ‘generateData’ function is used to readily produce synthetic data with randomly/systematically-
missing values from a conditional Gaussian graphical model. This function supports three types of
missing mechanisms that can be specified by users – missing completely at random (MCAR), miss-
ing at random (MAR) and missing not at random (MNAR).

Usage

generateData(
X = NULL,
Beta = NULL,
E = NULL,
Theta = NULL,
Sigma.X = NULL,
n,
p,
q,
rho,
missing.type = "MCAR",
Beta.row.sparsity = 0.2,
Beta.elm.sparsity = 0.2,
with.seed = NULL

)

Arguments

X (Optional) a user-supplied predictor matrix (n × p). The default is 'NULL' and
the program simulates the rows of 'X' independently from MVN (0p, ΣX).
A user-supplied matrix overrides this default, and the argument 'Sigma.X' for
ΣX will be ignored.

Beta (Optional) a user-supplied regression coefficient matrix B (p×q). The default is
'NULL' and the program will generate a sparse B in which the nonzero elements
are independently drawn from N (0, 1); the row sparsity and element sparsity of
B are controlled by the arguments 'Beta.row.sparsity' and 'Beta.elm.sparsity',
respectively. A user-supplied matrix overrides this default, and 'Beta.row.sparsity'
and 'Beta.elm.sparsity' will be ignored.

E (Optional) a user-supplied error matrix (n × q). The default is 'NULL' and the
program simulates the rows of 'E' independently from MVN (0q , Θ−1). A
response matrix 'Y' without missing values is given by 'Y = X %*% Beta + E'.
A user-supplied matrix overrides this default, and the argument 'Theta' for Θ
will be ignored.

generateData 11

Theta (Optional) a user-supplied positive definite precision (inverse covariance) matrix
Θ (q × q) for the response variables. The default is 'NULL' and the program
will generate a block-structured matrix having four blocks corresponding to four
types of network structures: independent, weak graph, strong graph and chain.
This is only needed when 'E = NULL'.

Sigma.X (Optional) A user-supplied positive definite covariance matrix ΣX (p × p) for
the predictor variables. The samples of 'X' are independently drawn from a
multivariate Gaussian distribution MVN (0p, ΣX). If 'Sigma.X = NULL' (de-
fault), the program uses an AR(1) covariance with 0.7 autocorrelation (i.e.,
[ΣX]jk = 0.7|j−k|). This is only needed when 'X = NULL'.

n Sample size.

p The dimensionality of the predictors.

q The dimensionality of the responses.

rho A scalar or a numeric vector of length q specifying the approximate proportion
of missing values in each column of the response matrix.

missing.type Character string: can be "MCAR" (default), "MAR" or "MNAR".
Beta.row.sparsity

A Bernoulli parameter between 0 and 1 controlling the approximate propor-
tion of rows where at least one element could be nonzero in B; the default is
'Beta.row.sparsity = 0.2'. This is only needed when 'Beta = NULL'.

Beta.elm.sparsity

A Bernoulli parameter between 0 and 1 controlling the approximate proportion
of nonzero elements among the rows of B where not all elements are zeros;
the default is 'Beta.elm.sparsity = 0.2'. This is only needed when 'Beta =
NULL'.

with.seed A random number seed for the generative process.

Details

The dataset is simulated through the following steps:

1. If 'X = NULL' (default), the function ‘MASS::mvrnorm(n, mean = rep(0, p), sigma = Sigma.X)’
is used to simulate 'n' samples from a 'p'-variate Gaussian distribution for generating a pre-
dictor matrix 'X';

2. If 'Beta = NULL' (default), the function ‘stats::rnorm(p*q, 0, 1)’ is used to fill an empty
(p × q) dimensional matrix 'Beta', of which the row sparsity and element sparsity are later
controlled by the auxiliary arguments 'Beta.row.sparsity' and 'Beta.elm.sparsity',
respectively;

3. If 'E = NULL' (default), the function ‘MASS::mvrnorm(n, mean = rep(0, q), sigma = solve(Theta))’
is used to simulate 'n' samples from a 'q'-variate Gaussian distribution for generating an er-
ror matrix 'E';

4. A complete response matrix 'Y' without missing values is then generated by the command 'Y
= X %*% Beta + E';

5. To get a response matrix 'Z' := f ('Y') corrupted by missing data, the values in 'Y' are par-
tially replaced with 'NA's following the strategy specified by the arguments 'missing.type'
and 'rho'.

12 generateData

To better illustrate the step 5 above, suppose for all i = 1,...,n and j = 1,...,q: 'Y[i, j]'
is replaced with 'NA' if 'M[i, j] == 1', where 'M' is an indicator matrix of missingness hav-
ing the same dimension as 'Y'. The value of 'M[i, j]' is partially controlled by the arguments
'missing.type' and 'rho'. Below we sum up the three built-in missing mechanisms supported
by the ‘generateData’ function:

• 'missing.type' == "MCAR": 'Y[i, j] <- NA' if 'M[i, j] == 1', where 'M[i, j] = rbinom(0,
rho[j])';

• 'missing.type' == "MAR": 'Y[i, j] <- NA' if 'M[i, j] == 1', where 'M[i, j] = rbinom(0,
(rho[j] * c / (1 + exp(-(X %*% Beta)[i, j]))))', in which c is a constant correcting the
missing rate of the jth column of 'Y' to 'rho[j]';

• 'missing.type' == "MNAR": 'Y[i, j] <- NA' if 'M[i, j] == 1', where 'M[i, j] = 1 * (Y[i,
j] < Tj)', in which 'Tj = quantile(Y[, j], rho[j])'.

Of the aforementioned missing mechanisms, "MCAR" is random, and the other two are systematic.
under "MCAR", 'M[i, j]' is not related to 'Y' or to 'X'; under "MAR", 'M[i, j]' is related to 'X',
but not related to 'Y' after 'X' is controlled; under "MNAR", 'M[i, j]' is related to 'Y' itself, even
after 'X' is controlled.

Value

This function returns a 'list' consisting of the following components:

X A simulated (or the user-supplied) predictor matrix (n× p).

Y A simulated response matrix without missing values (n× q).

Z A simulated response matrix with missing values coded as 'NA's (n× q).

Beta The regression coefficient matrix B for the generative model (p× q).

Theta The precision matrix Θ for the generative model (q × q).

rho A vector of length q storing the specified missing rate for each column of the
response matrix.

missing.type Character string: the type of missing mechanism used to generate missing values
in the response matrix.

Author(s)

Yixiao Zeng <yixiao.zeng@mail.mcgill.ca>, Celia M.T. Greenwood and Archer Yi Yang.

Examples

Simulate a dataset with response values missing completely at random (MCAR),
the overall missing rate is around 10%.
sim.dat <- generateData(n = 300, p = 50, q = 20, rho = 0.1, missing.type = "MCAR")

Fit a missoNet model using the simulated dataset.
X <- sim.dat$X # predictor matrix
Y <- sim.dat$Z # corrupted response matrix
fit <- missoNet(X = X, Y = Y, lambda.Beta = 0.1, lambda.Theta = 0.1)

missoNet 13

Simulate a dataset with response values missing at random (MAR), the approximate
missing rate for each column of the response matrix is specified through a vector 'rho'.
##
The row sparsity and element sparsity of the auto-generated 'Beta' could be
adjusted correspondingly by using 'Beta.row.sparsity' and 'Beta.elm.sparsity'.
n <- 300; p <- 50; q <- 20
rho <- runif(q, min = 0, max = 0.2)
sim.dat <- generateData(n = n, p = p, q = q, rho = rho, missing.type = "MAR",

Beta.row.sparsity = 0.3, Beta.elm.sparsity = 0.2)

Simulate a dataset with response values missing not at random (MNAR),
using the user-supplied 'Beta' and 'Theta'.
n <- 300; p <- 50; q <- 20
Beta <- matrix(rnorm(p*q, 0, 1), p, q) # a nonsparse 'Beta' (p x q)
Theta <- diag(q) # a diagonal 'Theta' (q x q)
sim.dat <- generateData(Beta = Beta, Theta = Theta, n = n, p = p, q = q,

rho = 0.1, missing.type = "MNAR")

Specifying just one of 'Beta' and 'Theta' is also allowed.
sim.dat <- generateData(Theta = Theta, n = n, p = p, q = q,

rho = 0.1, missing.type = "MNAR")

User-supplied 'X', 'Beta' and 'E', in which case 'Y' is deterministic.
n <- 300; p <- 50; q <- 20
X <- matrix(rnorm(n*p, 0, 1), n, p)
Beta <- matrix(rnorm(p*q, 0, 1), p, q)
E <- mvtnorm::rmvnorm(n, rep(0, q), sigma = diag(q))
sim.dat <- generateData(X = X, Beta = Beta, E = E, n = n, p = p, q = q,

rho = 0.1, missing.type = "MCAR")

missoNet Fit a series of missoNet models with user-supplied regularization pa-
rameters for the lasso penalties

Description

This function fits the conditional graphical lasso models to datasets with missing response values.
‘missoNet’ computes the regularization path for the lasso penalties sequentially along the bivariate
regularization parameter sequence {(λB , λΘ)} provided by the user.

Usage

missoNet(
X,
Y,
lambda.Beta,
lambda.Theta,

14 missoNet

rho = NULL,
Beta.maxit = 10000,
Beta.thr = 1e-08,
eta = 0.8,
Theta.maxit = 10000,
Theta.thr = 1e-08,
eps = 1e-08,
penalize.diagonal = TRUE,
diag.penalty.factor = NULL,
standardize = TRUE,
standardize.response = TRUE,
fit.relax = FALSE,
parallel = FALSE,
cl = NULL,
verbose = 1

)

Arguments

X Numeric predictor matrix (n × p): columns correspond to predictor variables
and rows correspond to samples. Missing values are not allowed. There is no
need for centering or scaling of the variables. 'X' should not include a column
of ones for an intercept.

Y Numeric response matrix (n×q): columns correspond to response variables and
rows correspond to samples. Missing values should be coded as either 'NA's or
'NaN's. There is no need for centering or scaling of the variables.

lambda.Beta A scalar or a numeric vector: a user-supplied sequence of non-negative value(s)
for {λB} used to penalize the elements of the coefficient matrix B. Note that
the values will be sequentially visited in the given orders as inputs to the regu-
larization parameter sequence {(λB , λΘ)}; 'lambda.Beta' must have the same
length as 'lambda.Theta'.

lambda.Theta A scalar or a numeric vector: a user-supplied sequence of non-negative value(s)
for {λΘ} used to penalize the (off-diagonal) elements of the precision matrix Θ.
Note that the values will be sequentially visited in the given orders as inputs to
the regularization parameter sequence {(λB , λΘ)}; 'lambda.Theta' must have
the same length as 'lambda.Beta'.

rho (Optional) A scalar or a numeric vector of length q: the elements are user-
supplied probabilities of missingness for the response variables. The default
is 'rho = NULL' and the program will compute the empirical missing rates for
each of the columns of 'Y' and use them as the working missing probabilities.
The default setting should suffice in most cases; misspecified missing probabil-
ities would introduce biases into the model.

Beta.maxit The maximum number of iterations of the fast iterative shrinkage-thresholding
algorithm (FISTA) for updating B̂. The default is 'Beta.maxit = 10000'.

Beta.thr The convergence threshold of the FISTA algorithm for updating B̂; the default
is 'Beta.thr = 1.0E-8'. Iterations stop when the absolute parameter change is
less than ('Beta.thr' * sum(abs(B̂))).

missoNet 15

eta The backtracking line search shrinkage factor; the default is 'eta = 0.8'. Most
users will be able to use the default value, some experienced users may want to
tune 'eta' according to the properties of a specific dataset for a faster conver-
gence of the FISTA algorithm. Note that 'eta' must be in (0, 1).

Theta.maxit The maximum number of iterations of the ‘glasso’ algorithm for updating Θ̂.
The default is 'Theta.maxit = 10000'.

Theta.thr The convergence threshold of the ‘glasso’ algorithm for updating Θ̂; the de-
fault is 'Theta.thr = 1.0E-8'. Iterations stop when the average absolute pa-
rameter change is less than ('Theta.thr' * ave(abs(offdiag(Σ̂)))), where
Σ̂ denotes the empirical working covariance matrix.

eps A numeric tolerance level for the L1 projection of the empirical covariance ma-
trix; the default is 'eps = 1.0E-8'. The empirical covariance matrix will be
projected onto a L1 ball to have min(eigen(Σ̂)$value) == 'eps', if any of
the eigenvalues is less than the specified tolerance. Most users will be able to
use the default value.

penalize.diagonal

Logical: should the diagonal elements of Θ be penalized? The default is 'TRUE'.
diag.penalty.factor

Numeric: a separate penalty multiplication factor for the diagonal elements of Θ
when 'penalize.diagonal = TRUE'. λΘ is multiplied by this number to allow
a differential shrinkage of the diagonal elements. The default is 'NULL' and the
program will guess a value based on an initial estimate of Θ. This factor could
be '0' for no shrinkage (equivalent to 'penalize.diagonal = FALSE') or '1'
for an equal shrinkage.

standardize Logical: should the columns of 'X' be standardized so each has unit variance?
The default is 'TRUE'. The estimated results will always be returned on the
original scale. If 'X' has been standardized prior to fitting the model, you might
not wish to standardize it inside the algorithm.

standardize.response

Logical: should the columns of 'Y' be standardized so each has unit variance?
The default is 'TRUE'. The estimated results will always be returned on the
original scale. If 'Y' has been standardized prior to fitting the model, you might
not wish to standardize it inside the algorithm.

fit.relax Logical: the default is 'FALSE'. If 'TRUE', the program will re-estimate the
edges in the active set (i.e. nonzero off-diagonal elements) of the network struc-
ture Θ̂ without penalization (λΘ = 0). This debiased estimate of Θ could be
useful for some interdependency analyses. WARNING: there may be conver-
gence issues if the empirical covariance matrix is not of full rank (e.g. n < q)).

parallel Logical: the default is 'FALSE'. If 'TRUE', the program uses clusters to fit mod-
els with each element of the λ sequence {(λB , λΘ)} in parallel. Must register
parallel clusters beforehand, see examples below.

cl A cluster object created by ‘parallel::makeCluster’ for parallel evaluations.
This is only needed when 'parallel = TRUE'.

verbose Value of '0', '1' or '2'. 'verbose = 0' – silent; 'verbose = 1' (the default)
– limited tracing with progress bars; 'verbose = 2' – detailed tracing. Note
that displaying the progress bars slightly increases the computation overhead

16 missoNet

compared to the silent mode. The detailed tracing should be used for monitoring
progress only when the program runs extremely slowly, and it is not supported
under 'parallel = TRUE'.

Details

‘missoNet’ is the main model-fitting function which is specifically proposed to fit the conditional
graphical lasso models / penalized multi-task Gaussian regressions to (corrupted) datasets with
response values missing at random (MAR). To facilitate the interpretation of the model, let’s tem-
porarily assume that there are no missing values in the data used to fit the model. Suppose we have
n observations of both a p-variate predictor X ∈ Rp and a q-variate response Y ∈ Rq , for the ith
sample (i = 1, ..., n), ‘missoNet’ assumes the model

Yi = µ+XiB+ Ei, Ei ∼ MVN (0q, (Θ)−1),

where Yi ∈ R1×q and Xi ∈ R1×p are one realization of the q responses and the p predictors,
respectively. Ei ∈ R1×q is an error vector drawn from a multivariate Gaussian distribution.

The regression coefficient matrix B ∈ Rp×q that mapping predictors to responses and the precision
(inverse covariance) matrix Θ ∈ Rq×q that revealing the responses’ conditional dependencies are
the parameters to be estimated by solving a penalized MLE problem

(Θ̂, B̂) = argminΘ⪰0, B g(Θ,B) + λΘ(∥Θ∥1,off + 1n≤max(p,q)∥Θ∥1,diag) + λB∥B∥1,

where

g(Θ,B) = tr

[
1

n
(Y −XB)⊤(Y −XB)Θ

]
− log|Θ|.

The response matrix Y ∈ Rn×q has ith row (Yi− 1
n

∑n
j=1 Yj), and the predictor matrix X ∈ Rn×p

has ith row (Xi − 1
n

∑n
j=1 Xj). The intercept µ ∈ R1×q is canceled out because of centering of

the data matrices Y and X. 1n≤max(p,q) denotes the indicator function for whether penalizing the
diagonal elements of Θ or not. When n ≤ max(p, q), a global minimizer of the objective function
defined above does not exist without the diagonal penalization.

Missingness in real data is inevitable. In this instance, the estimates based only on complete cases
are likely to be biased, and the objective function is likely to no longer be a biconvex optimization
problem. In addition, many algorithms cannot be directly employed since they require complete
datasets as inputs. ‘missoNet’ aims to handle the specific situation where the response matrix Y
contains values that are missing at random (MAR. Please refer to the vignette or other resources for
more information about the differences between MAR, missing completely at random (MCAR) and
missing not at random (MNAR)). As it should be, ‘missoNet’ is also applicable to datasets with
MCAR response values or without any missing values. The method provides a unified framework
for automatically solving a convex modification of the multi-task learning problem defined above,
using corrupted datasets. Moreover, ‘missoNet’ enjoys the theoretical and computational benefits
of convexity and returns solutions that are comparable/close to the clean conditional graphical lasso
estimates. Please refer to the original manuscript (coming soon) for more details of our method.

Value

This function returns a 'list' consisting of the following components:

est.list A named 'list' storing the lists of results estimated at each of the λ pairs, (λB ,
λΘ). Each sub-'list' contains:

missoNet 17

• Beta: the penalized estimate of the regression coefficient matrix B̂ (p× q).
• Theta: the penalized estimate of the precision matrix Θ̂ (q × q).
• mu: a vector of length q storing the model intercept µ̂.
• lambda.Beta: the value of λB used to fit the model.
• lambda.Theta: the value of λΘ used to fit the model.
• relax.net: the relaxed (debiased) estimate of the conditional network

structure Θ̂rlx (q × q) if 'fit.relax = TRUE' when calling ‘missoNet’.

rho A vector of length q storing the working missing probabilities for the q response
variables.

penalize.diagonal

Logical: whether the diagonal elements of Θ were penalized.
diag.penalty.factor

The additional penalty multiplication factor for the diagonal elements of Θ
when 'penalize.diagonal' was returned as 'TRUE'.

Author(s)

Yixiao Zeng <yixiao.zeng@mail.mcgill.ca>, Celia M.T. Greenwood and Archer Yi Yang.

Examples

Simulate a dataset with response values missing completely at random (MCAR),
the overall missing rate is around 10%.
set.seed(123) # reproducibility
sim.dat <- generateData(n = 300, p = 50, q = 20, rho = 0.1, missing.type = "MCAR")
tr <- 1:240 # training set indices
tst <- 241:300 # test set indices
X.tr <- sim.dat$X[tr,] # predictor matrix
Y.tr <- sim.dat$Z[tr,] # corrupted response matrix

Fit one missoNet model with two scalars for 'lambda.Beta' and 'lambda.Theta'.
fit1 <- missoNet(X = X.tr, Y = Y.tr, lambda.Beta = 0.1, lambda.Theta = 0.2)

Fit a series of missoNet models with the lambda pairs := (lambda.Beta, lambda.Theta)
sequentially extracted from the 'lambda.Beta' and 'lambda.Theta' vectors, note that the
two vectors must have the same length.
lamB.vec <- 10^(seq(from = 0, to = -1, length.out = 5))
lamTht.vec <- rep(0.1, 5)
fit2 <- missoNet(X = X.tr, Y = Y.tr, lambda.Beta = lamB.vec, lambda.Theta = lamTht.vec)

Parallelization on a cluster with two cores.
cl <- parallel::makeCluster(2)
fit2 <- missoNet(X = X.tr, Y = Y.tr, lambda.Beta = lamB.vec, lambda.Theta = lamTht.vec,

parallel = TRUE, cl = cl)
parallel::stopCluster(cl)

18 plot.cv.missoNet

Extract the estimates at ('lamB.vec[1]', 'lamTht.vec[1]').
The estimates at the subsequent lambda pairs could be accessed in the same way.
Beta.hat <- fit2$est.list[[1]]$Beta
Theta.hat <- fit2$est.list[[1]]$Theta
lambda.Beta <- fit2$est.list[[1]]$lambda.Beta # equal to 'lamB.vec[1]'
lambda.Theta <- fit2$est.list[[1]]$lambda.Theta # equal to 'lamTht.vec[1]'

Fit a series of missoNet models using PRE-STANDARDIZED training data
if you wish to compare the results with other softwares.
X.tr.std <- scale(X.tr, center = TRUE, scale = TRUE)
Y.tr.std <- scale(Y.tr, center = TRUE, scale = TRUE)
fit3 <- missoNet(X = X.tr.std, Y = Y.tr.std, lambda.Beta = lamB.vec, lambda.Theta = lamTht.vec,

standardize = FALSE, standardize.response = FALSE)

plot.cv.missoNet Plot the cross-validation errors produced by cv.missoNet

Description

S3 method for plotting the cross-validation error surface from a fitted 'cv.missoNet' object.

Usage

S3 method for class 'cv.missoNet'
plot(
x,
type = c("cv.heatmap", "cv.scatter"),
detailed.axes = TRUE,
plt.surf = TRUE,
...

)

Arguments

x A fitted 'cv.missoNet' object.

type A character string for the type of plot, can be either "cv.heatmap" (default) or
"cv.scatter".

detailed.axes Logical: whether the detailed axes should be plotted. The default is 'TRUE'.

plt.surf Logical: whether to draw the error surface. The default is 'TRUE'. This is only
needed when 'type' = "cv.scatter".

... Other graphical arguments used by ‘ComplexHeatmap::Heatmap’ ('type' =
"cv.heatmap") or ‘scatterplot3d::scatterplot3d’ ('type' = "cv.scatter").

Value

The plot object.

predict.cv.missoNet 19

Author(s)

Yixiao Zeng <yixiao.zeng@mail.mcgill.ca>, Celia M.T. Greenwood and Archer Yi Yang.

Examples

Simulate a dataset.
set.seed(123) # reproducibility
sim.dat <- generateData(n = 200, p = 10, q = 10, rho = 0.1, missing.type = "MCAR")

Perform a five-fold cross-validation on the simulated dataset.
cvfit <- cv.missoNet(X = sim.dat$X, Y = sim.dat$Z, kfold = 5,

fit.1se = TRUE, permute = TRUE, with.seed = 486)

Plot the (standardized) mean cross-validated errors in a heatmap.
plot(cvfit, type = "cv.heatmap")

Plot the (standardized) mean cross-validated errors in a 3D scatterplot.
plot(cvfit, type = "cv.scatter", plt.surf = TRUE)

predict.cv.missoNet Make predictions from a cv.missoNet object

Description

S3 method for making predictions of response values from a fitted 'cv.missoNet' object.

Usage

S3 method for class 'cv.missoNet'
predict(object, newx = NULL, s = "lambda.min", ...)

Arguments

object A fitted 'cv.missoNet' object.

newx A predictor matrix of new values at which predictions are to be made. The
columns of 'newx' should have the same standardization flags as the original
input for training the model. Missing values are not allowed. 'newx' should not
include a column of ones for an intercept.

s Character string, the regularization parameter pair λ = (λB , λΘ) at which the co-
efficients are extracted for making predictions. It supports three special strings,
named "lambda.min" (default), "lambda.1se.Beta" and "lambda.1se.Theta".

... Not used. Other arguments for predicting.

20 predict.cv.missoNet

Value

The matrix of predicted values: 'newy = mu_hat + newx %*% Beta_hat'.

Author(s)

Yixiao Zeng <yixiao.zeng@mail.mcgill.ca>, Celia M.T. Greenwood and Archer Yi Yang.

Examples

Simulate a dataset.
set.seed(123) # reproducibility
sim.dat <- generateData(n = 300, p = 10, q = 10, rho = 0.1, missing.type = "MCAR")
tr <- 1:240 # training set indices
tst <- 241:300 # test set indices

Perform a five-fold cross-validation on the training set.
cvfit <- cv.missoNet(X = sim.dat$X[tr,], Y = sim.dat$Z[tr,], kfold = 5,

fit.1se = TRUE, permute = TRUE, with.seed = 486)

Make predictions of response values on the test set.
newy1 <- predict(cvfit, newx = sim.dat$X[tst,], s = "lambda.min")
newy2 <- predict(cvfit, newx = sim.dat$X[tst,], s = "lambda.1se.Beta") # 'fit.1se' = TRUE
newy3 <- predict(cvfit, newx = sim.dat$X[tst,], s = "lambda.1se.Theta") # 'fit.1se' = TRUE

Index

cv.missoNet, 3

generateData, 10
glasso, 5, 15

missoNet, 2, 3, 6, 13
missoNet-package, 2

plot.cv.missoNet, 7, 18
predict.cv.missoNet, 7, 19

21

	missoNet-package
	cv.missoNet
	generateData
	missoNet
	plot.cv.missoNet
	predict.cv.missoNet
	Index

