Title: | Adverse Events Analysis Using 'metalite' |
Version: | 0.1.3 |
Description: | Analyzes adverse events in clinical trials using the 'metalite' data structure. The package simplifies the workflow to create production-ready tables, listings, and figures discussed in the adverse events analysis chapters of "R for Clinical Study Reports and Submission" by Zhang et al. (2022) https://r4csr.org/. |
License: | GPL-3 |
URL: | https://merck.github.io/metalite.ae/, https://github.com/Merck/metalite.ae |
BugReports: | https://github.com/Merck/metalite.ae/issues |
Encoding: | UTF-8 |
LazyData: | true |
VignetteBuilder: | knitr |
Depends: | R (≥ 4.1.0) |
Imports: | glue, metalite, r2rtf, stats |
Suggests: | DescTools, covr, dplyr, knitr, rmarkdown, testthat (≥ 3.0.0), tibble, tidyr |
Config/testthat/edition: | 3 |
RoxygenNote: | 7.3.1 |
NeedsCompilation: | no |
Packaged: | 2024-10-23 01:56:17 UTC; fukuhiro |
Author: | Yilong Zhang [aut], Yujie Zhao [aut, cre], Benjamin Wang [aut], Nan Xiao [aut], Sarad Nepal [aut], Madhusudhan Ginnaram [aut], Venkatesh Burla [ctb], Ruchitbhai Patel [aut], Brian Lang [aut], Xuan Deng [aut], Hiroaki Fukuda [aut], Bing Liu [aut], Jeetender Chauhan [aut], Li Ma [ctb], Merck Sharp & Dohme Corp [cph] |
Maintainer: | Yujie Zhao <yujie.zhao@merck.com> |
Repository: | CRAN |
Date/Publication: | 2024-10-23 15:50:02 UTC |
metalite.ae: Adverse Events Analysis Using 'metalite'
Description
Analyzes adverse events in clinical trials using the 'metalite' data structure. The package simplifies the workflow to create production-ready tables, listings, and figures discussed in the adverse events analysis chapters of "R for Clinical Study Reports and Submission" by Zhang et al. (2022) https://r4csr.org/.
Author(s)
Maintainer: Yujie Zhao yujie.zhao@merck.com
Authors:
Yilong Zhang
Benjamin Wang
Nan Xiao
Sarad Nepal
Madhusudhan Ginnaram
Ruchitbhai Patel
Brian Lang
Xuan Deng
Hiroaki Fukuda
Bing Liu
Jeetender Chauhan
Other contributors:
Venkatesh Burla [contributor]
Li Ma [contributor]
Merck Sharp & Dohme Corp [copyright holder]
See Also
Useful links:
Report bugs at https://github.com/Merck/metalite.ae/issues
Add average duration information for AE specific analysis
Description
Add average duration information for AE specific analysis
Usage
extend_ae_specific_duration(outdata, duration_var, duration_unit = "Day")
Arguments
outdata |
An |
duration_var |
A character value of variable name for adverse event duration. |
duration_unit |
A character value of adverse event duration unit. |
Value
A list of analysis raw datasets.
Examples
meta <- meta_ae_example()
tbl <- prepare_ae_specific(meta,
population = "apat",
observation = "wk12",
parameter = "rel"
) |>
extend_ae_specific_duration(duration_var = "ADURN") |>
format_ae_specific(display = c("n", "prop", "dur"))
head(tbl$tbl)
Add average number of events information for AE specific analysis
Description
Add average number of events information for AE specific analysis
Usage
extend_ae_specific_events(outdata)
Arguments
outdata |
An |
Value
A list of analysis raw datasets.
Examples
meta <- meta_ae_example()
tbl <- prepare_ae_specific(meta,
population = "apat",
observation = "wk12",
parameter = "rel"
) |>
extend_ae_specific_events() |>
format_ae_specific(display = c("n", "prop", "events_avg"))
head(tbl$tbl)
Add inference information for AE specific analysis
Description
Add inference information for AE specific analysis
Usage
extend_ae_specific_inference(outdata, ..., ci = 0.95)
Arguments
outdata |
An |
... |
Other options passed on to |
ci |
A numeric value for the percentile of confidence interval. |
Value
A list of analysis raw datasets.
Examples
meta <- meta_ae_example()
tbl <- prepare_ae_specific(meta,
population = "apat",
observation = "wk12",
parameter = "rel"
) |>
extend_ae_specific_inference(eps = 1e-6, bisection = 200) |>
format_ae_specific(display = c("n", "prop", "diff", "diff_ci"))
head(tbl$tbl)
Add subgroup analysis in AE specific analysis
Description
Add subgroup analysis in AE specific analysis
Usage
extend_ae_specific_subgroup(outdata, subgroup_var)
Arguments
outdata |
An |
subgroup_var |
a character string for subgroup variable name |
Value
A list of analysis raw datasets.
Examples
meta <- meta_ae_example()
tbl <- prepare_ae_specific(meta,
population = "apat",
observation = "wk12",
parameter = "rel"
) |>
extend_ae_specific_subgroup(subgroup_var = "SEX")
Add exposure-adjusted rate information for AE summary analysis
Description
Add exposure-adjusted rate information for AE summary analysis
Usage
extend_ae_summary_eaer(
outdata,
duration_var = "TRTDUR",
adj_unit = c("year", "month", "week", "day")
)
Arguments
outdata |
An |
duration_var |
A character value of duration variable name.
By default, |
adj_unit |
A character value of exposure adjusted unit.
It could be select from |
Value
A list of analysis raw datasets.
Examples
meta <- meta_ae_example()
prepare_ae_summary(
meta,
population = "apat",
observation = "wk12",
parameter = "any;rel;ser"
) |>
extend_ae_summary_eaer()
Format confidence interval
Description
Format confidence interval
Usage
fmt_ci(lower, upper, digits = 2, width = 3 + digits)
Arguments
lower |
A numeric value of lower value of CI. |
upper |
A numeric value of upper value of CI. |
digits |
Digits of each column, i.e., format as (x.x, x.x). |
width |
Width of each column. |
Value
A numeric vector with the expected format.
Examples
fmt_ci(0.2356, 0.3871)
Format model estimator
Description
Formats mean sd/se to a format as x.x or x.x (x.xx) if both mean and sd/sd are defined.
Usage
fmt_est(
mean,
sd = rep(NA, length(mean)),
digits = c(1, 1),
width = c(4, 3) + digits
)
Arguments
mean |
A numeric vector of mean value. |
sd |
A numeric vector of standard deviation value. |
digits |
Digits of each column, i.e., format as x.x (x.xx). |
width |
Width of each column. |
Details
The function assumes 1 column or 2 columns:
If there is only 1 column, only represent mean.
If there are 2 columns, represent mean (sd) or mean(se). Decimals will understand the number will be formatted as x.x (x.xx).
Value
The same data frame with additional attributes for page features.
Specification
The contents of this section are shown in PDF user manual only.
Examples
fmt_est(mean(iris$Petal.Length), sd(iris$Petal.Length))
fmt_est(mean(iris$Petal.Length), sd(iris$Petal.Length), digits = c(2, 3))
Format percentage
Description
Format percentage
Usage
fmt_pct(x, digits = 1, pre = "(", post = ")")
Arguments
x |
A numeric vector. |
digits |
Number of digits. |
pre |
Text before the number. |
post |
Text after the number. |
Value
A numeric vector with the expected format.
Examples
fmt_pct(c(1, 1.52, 0.3, 100))
Format p-value
Description
Format p-value
Usage
fmt_pval(p, digits = 3, width = 3 + digits)
Arguments
p |
A numeric vector of p-values. |
digits |
Digits of each column, i.e., format as x.xxx. |
width |
Width of each column. |
Value
A numeric vector with the expected format.
Examples
fmt_pval(c(0.1234, 0.00002))
Format exposure-adjusted AE summary
Description
Format exposure-adjusted AE summary
Usage
format_ae_exp_adj(
outdata,
display = c("n", "total_exp", "events", "eaer", "total"),
digits_total_exp = 2,
digits_eaer = 2,
mock = FALSE
)
Arguments
outdata |
An |
display |
A character vector of measurement to be displayed:
|
digits_total_exp |
A numeric value of number of digits for total exposure value. |
digits_eaer |
A numeric value of number of digits for exposure-adjusted event rate. |
mock |
A boolean value to display mock table. |
Value
A list of analysis raw datasets.
Examples
meta <- meta_ae_example()
outdata <- meta |>
prepare_ae_summary(
population = "apat",
observation = "wk12",
parameter = "any;ser;rel"
) |>
extend_ae_summary_eaer(adj_unit = "month")
tbl <- outdata |>
format_ae_exp_adj()
head(tbl$tbl)
Format AE specific analysis
Description
Format AE specific analysis
Usage
format_ae_specific(
outdata,
display = c("n", "prop", "total"),
hide_soc_stats = FALSE,
digits_prop = 1,
digits_ci = 1,
digits_p = 3,
digits_dur = c(1, 1),
digits_events = c(1, 1),
filter_method = c("percent", "count"),
filter_criteria = 0,
sort_order = c("alphabetical", "count_des", "count_asc"),
sort_column = NULL,
mock = FALSE
)
Arguments
outdata |
An |
display |
A character vector of measurement to be displayed:
|
hide_soc_stats |
A boolean value to hide stats for SOC rows. |
digits_prop |
A numeric value of number of digits for proportion value. |
digits_ci |
A numeric value of number of digits for confidence interval. |
digits_p |
A numeric value of number of digits for p-value. |
digits_dur |
A numeric value of number of digits for average duration of adverse event. |
digits_events |
A numeric value of number of digits for average of number of adverse events per subject. |
filter_method |
A character value to specify how to filter rows:
|
filter_criteria |
A numeric value to display rows where at least
one therapy group has a percent incidence or participant count
greater than or equal to the specified value.
If |
sort_order |
A character value to specify sorting order:
|
sort_column |
A character value of |
mock |
A boolean value to display mock table. |
Value
A list of analysis raw datasets.
Examples
meta <- meta_ae_example()
outdata <- prepare_ae_specific(meta,
population = "apat",
observation = "wk12",
parameter = "rel"
)
# Basic example
tbl <- outdata |>
format_ae_specific()
head(tbl$tbl)
# Filtering
tbl <- outdata |>
format_ae_specific(
filter_method = "percent",
filter_criteria = 10
)
head(tbl$tbl)
# Display different measurements
tbl <- outdata |>
extend_ae_specific_events() |>
format_ae_specific(display = c("n", "prop", "events_count"))
head(tbl$tbl)
Format AE specific subgroup analysis
Description
Format AE specific subgroup analysis
Usage
format_ae_specific_subgroup(
outdata,
display = c("n", "prop"),
digits_prop = 1,
digits_ci = 1,
digits_p = 3,
digits_dur = c(1, 1),
digits_events = c(1, 1),
mock = FALSE
)
Arguments
outdata |
An |
display |
A character vector of measurement to be displayed.
|
digits_prop |
A numeric value of number of digits for proportion value. |
digits_ci |
A numeric value of number of digits for confidence interval. |
digits_p |
A numeric value of number of digits for p-value. |
digits_dur |
A numeric value of number of digits for average duration of adverse event. |
digits_events |
A numeric value of number of digits for average of number of adverse event per subjects. |
mock |
Logical. Display mock table or not. |
Value
A list of analysis raw datasets for subgroup analysis.
Examples
meta <- meta_ae_example()
prepare_ae_specific_subgroup(meta,
population = "apat",
observation = "wk12",
parameter = "rel",
subgroup_var = "SEX",
display_subgroup_total = TRUE
) |>
format_ae_specific_subgroup()
Format AE summary analysis
Description
Format AE summary analysis
Usage
format_ae_summary(
outdata,
display = c("n", "prop", "total"),
hide_soc_stats = FALSE,
digits_prop = 1,
digits_ci = 1,
digits_p = 3,
digits_dur = c(1, 1),
digits_events = c(1, 1),
filter_method = c("percent", "count"),
filter_criteria = 0,
sort_order = c("alphabetical", "count_des", "count_asc"),
sort_column = NULL,
mock = FALSE
)
Arguments
outdata |
An |
display |
A character vector of measurement to be displayed:
|
hide_soc_stats |
A boolean value to hide stats for SOC rows. |
digits_prop |
A numeric value of number of digits for proportion value. |
digits_ci |
A numeric value of number of digits for confidence interval. |
digits_p |
A numeric value of number of digits for p-value. |
digits_dur |
A numeric value of number of digits for average duration of adverse event. |
digits_events |
A numeric value of number of digits for average of number of adverse events per subject. |
filter_method |
A character value to specify how to filter rows:
|
filter_criteria |
A numeric value to display rows where at least
one therapy group has a percent incidence or participant count
greater than or equal to the specified value.
If |
sort_order |
A character value to specify sorting order:
|
sort_column |
A character value of |
mock |
A boolean value to display mock table. |
Value
A list of analysis raw datasets.
Examples
meta <- meta_ae_example()
outdata <- prepare_ae_summary(meta,
population = "apat",
observation = "wk12",
parameter = "any;rel;ser"
)
tbl <- outdata |>
format_ae_summary()
head(tbl$tbl)
Create an example meta_adam
object
Description
This function is only for illustration purpose. r2rtf is required.
Usage
meta_ae_example()
Value
A metadata object.
Examples
meta <- meta_ae_example()
ADEX dataset
Description
A dataset containing exposure details.
Usage
metalite_ae_adex
Format
A data frame with 591 rows and 41 variables.
Value
An analysis data frame.
Source
https://github.com/phuse-org/phuse-scripts/tree/master/data/sdtm/cdiscpilot01
ADEXSUM dataset
Description
A dataset containing exposure details in Basic Data Structure (BDS).
Usage
metalite_ae_adexsum
Format
A data frame with 254 rows and 30 variables.
Value
An analysis data frame.
Source
https://github.com/phuse-org/phuse-scripts/tree/master/data/sdtm/cdiscpilot01
Prepare datasets for AE listing
Description
Prepare datasets for AE listing
Usage
prepare_ae_listing(meta, analysis, population, observation, parameter)
Arguments
meta |
A metadata object created by metalite. |
analysis |
Analysis name from |
population |
A character value of population term name. The term name is used as key to link information. |
observation |
A character value of observation term name. The term name is used as key to link information. |
parameter |
A character value of parameter term name. The term name is used as key to link information. |
Value
A list of analysis datasets needed for AE listing.
Examples
meta <- meta_ae_example()
str(prepare_ae_listing(meta, "ae_listing", "apat", "wk12", "ser"))
Prepare datasets for AE specific analysis
Description
Prepare datasets for AE specific analysis
Usage
prepare_ae_specific(
meta,
population,
observation,
parameter,
components = c("soc", "par"),
reference_group = NULL
)
Arguments
meta |
A metadata object created by metalite. |
population |
A character value of population term name. The term name is used as key to link information. |
observation |
A character value of observation term name. The term name is used as key to link information. |
parameter |
A character value of parameter term name. The term name is used as key to link information. |
components |
A character vector of components name. |
reference_group |
An integer to indicate reference group. Default is 2 if there are 2 groups, otherwise, the default is 1. |
Value
A list of analysis datasets needed for AE specific analysis.
Examples
meta <- meta_ae_example()
str(prepare_ae_specific(meta, "apat", "wk12", "rel"))
# Allow to extract each components
prepare_ae_specific(meta, "apat", "wk12", "rel", components = NULL)$data
prepare_ae_specific(meta, "apat", "wk12", "rel", components = "soc")$data
prepare_ae_specific(meta, "apat", "wk12", "rel", components = "par")$data
Prepare datasets for AE specific subgroup analysis
Description
Prepare datasets for AE specific subgroup analysis
Usage
prepare_ae_specific_subgroup(
meta,
population,
observation,
parameter,
subgroup_var,
subgroup_header = c(meta$population[[population]]$group, subgroup_var),
components = c("soc", "par"),
display_subgroup_total = TRUE
)
Arguments
meta |
A metadata object created by metalite. |
population |
A character value of population term name. The term name is used as key to link information. |
observation |
A character value of observation term name. The term name is used as key to link information. |
parameter |
A character value of parameter term name. The term name is used as key to link information. |
subgroup_var |
A character value of subgroup variable name in
observation data saved in |
subgroup_header |
A character vector for column header hierarchy. The first element will be the first level header and the second element will be second level header. |
components |
A character vector of components name. |
display_subgroup_total |
Logical. Display total column for subgroup analysis or not. |
Value
A list of analysis datasets needed for AE specific subgroup analysis.
Examples
meta <- meta_ae_example()
prepare_ae_specific_subgroup(meta, "apat", "wk12", "rel", subgroup_var = "SEX")$data
Prepare datasets for AE summary
Description
Prepare datasets for AE summary
Usage
prepare_ae_summary(meta, population, observation, parameter, ...)
Arguments
meta |
A metadata object created by metalite. |
population |
A character value of population term name. The term name is used as key to link information. |
observation |
A character value of observation term name. The term name is used as key to link information. |
parameter |
A character value of parameter term name. The term name is used as key to link information. |
... |
Additional arguments passed to |
Value
A list of analysis datasets needed for AE summary.
Examples
meta <- meta_ae_example()
prepare_ae_summary(
meta,
population = "apat",
observation = "wk12",
parameter = "any;rel;ser"
)
Unstratified and stratified Miettinen and Nurminen test
Description
Unstratified and stratified Miettinen and Nurminen test details can be found
in vignette("rate-compare")
.
Usage
rate_compare(
formula,
strata,
data,
delta = 0,
weight = c("ss", "equal", "cmh"),
test = c("one.sided", "two.sided"),
bisection = 100,
eps = 1e-06,
alpha = 0.05
)
Arguments
formula |
A symbolic description of the model to be fitted,
which has the form |
strata |
An optional vector of weights to be used in the analysis. If not specified, unstratified MN analysis is used. If specified, stratified MN analysis is conducted. |
data |
An optional data frame, list, or environment containing
the variables in the model.
If not found in data, the variables are taken from |
delta |
A numeric value to set the difference of two group under the null. |
weight |
Weighting schema used in stratified MN method.
Default is
|
test |
A character string specifying the side of p-value,
must be one of |
bisection |
The number of sections in the interval used in bisection method. Default is 100. |
eps |
The level of precision. Default is 1e-06. |
alpha |
Pre-defined alpha level for two-sided confidence interval. |
Value
A data frame with the test results.
References
Miettinen, O. and Nurminen, M, Comparative Analysis of Two Rates. Statistics in Medicine, 4(2):213–226, 1985.
Examples
# Conduct the stratified MN analysis with sample size weights
treatment <- c(rep("pbo", 100), rep("exp", 100))
response <- c(rep(0, 80), rep(1, 20), rep(0, 40), rep(1, 60))
stratum <- c(rep(1:4, 12), 1, 3, 3, 1, rep(1:4, 12), rep(1:4, 25))
rate_compare(
response ~ factor(treatment, levels = c("pbo", "exp")),
strata = stratum,
delta = 0,
weight = "ss",
test = "one.sided",
alpha = 0.05
)
Unstratified and stratified Miettinen and Nurminen test in aggregate data level
Description
Unstratified and stratified Miettinen and Nurminen test in aggregate data level
Usage
rate_compare_sum(
n0,
n1,
x0,
x1,
strata = NULL,
delta = 0,
weight = c("ss", "equal", "cmh"),
test = c("one.sided", "two.sided"),
bisection = 100,
eps = 1e-06,
alpha = 0.05
)
Arguments
n0 , n1 |
The sample size in the control group and experimental group,
separately. The length should be the same as the length for
|
x0 , x1 |
The number of events in the control group and
experimental group, separately. The length should be the same
as the length for |
strata |
A vector of stratum indication to be used in the analysis.
If |
delta |
A numeric value to set the difference of two groups under the null. |
weight |
Weighting schema used in stratified MN method.
Default is
|
test |
A character string specifying the side of p-value,
must be one of |
bisection |
The number of sections in the interval used in bisection method. Default is 100. |
eps |
The level of precision. Default is 1e-06. |
alpha |
Pre-defined alpha level for two-sided confidence interval. |
Value
A data frame with the test results.
References
Miettinen, O. and Nurminen, M, Comparative Analysis of Two Rates. Statistics in Medicine, 4(2):213–226, 1985.
Examples
# Conduct the stratified MN analysis with sample size weights
treatment <- c(rep("pbo", 100), rep("exp", 100))
response <- c(rep(0, 80), rep(1, 20), rep(0, 40), rep(1, 60))
stratum <- c(rep(1:4, 12), 1, 3, 3, 1, rep(1:4, 12), rep(1:4, 25))
n0 <- sapply(split(treatment[treatment == "pbo"], stratum[treatment == "pbo"]), length)
n1 <- sapply(split(treatment[treatment == "exp"], stratum[treatment == "exp"]), length)
x0 <- sapply(split(response[treatment == "pbo"], stratum[treatment == "pbo"]), sum)
x1 <- sapply(split(response[treatment == "exp"], stratum[treatment == "exp"]), sum)
strata <- c("a", "b", "c", "d")
rate_compare_sum(
n0, n1, x0, x1,
strata,
delta = 0,
weight = "ss",
test = "one.sided",
alpha = 0.05
)
Exposure-adjusted AE summary table
Description
Exposure-adjusted AE summary table
Usage
tlf_ae_exp_adj(
outdata,
source,
col_rel_width = NULL,
text_font_size = 9,
orientation = "portrait",
title = c("analysis", "observation", "population"),
footnotes = NULL,
path_outdata = NULL,
path_outtable = NULL
)
Arguments
outdata |
An |
source |
A character value of the data source. |
col_rel_width |
Column relative width in a vector e.g. c(2,1,1) refers to 2:1:1. Default is NULL for equal column width. |
text_font_size |
Text font size. To vary text font size by column, use numeric vector with length of vector equal to number of columns displayed e.g. c(9,20,40). |
orientation |
Orientation in 'portrait' or 'landscape'. |
title |
Term "analysis", "observation"and "population") for collecting title from metadata or a character vector of table titles. |
footnotes |
A character vector of table footnotes. |
path_outdata |
A character string of the outdata path. |
path_outtable |
A character string of the outtable path. |
Value
RTF file and source dataset for exposure-adjusted AE summary table.
Examples
meta <- meta_ae_example()
outdata <- meta |>
prepare_ae_summary(
population = "apat",
observation = "wk12",
parameter = "any;rel;ser"
) |>
extend_ae_summary_eaer(adj_unit = "month")
outdata |>
format_ae_exp_adj() |>
tlf_ae_exp_adj(
source = "Source: [CDISCpilot: adam-adsl; adae]",
path_outdata = tempfile(fileext = ".Rdata"),
path_outtable = tempfile(fileext = ".rtf")
)
Generate AE listing
Description
Generate AE listing
Usage
tlf_ae_listing(
outdata,
footnotes = NULL,
source = NULL,
col_rel_width = NULL,
text_font_size = 9,
orientation = "landscape",
path_outdata = NULL,
path_outtable = NULL
)
Arguments
outdata |
An |
footnotes |
A character vector of table footnotes. |
source |
A character value of the data source. |
col_rel_width |
Column relative width in a vector e.g. c(2,1,1) refers to 2:1:1. Default is NULL for equal column width. |
text_font_size |
Text font size. To vary text font size by column, use numeric vector with length of vector equal to number of columns displayed e.g. c(9,20,40). |
orientation |
Orientation in 'portrait' or 'landscape'. |
path_outdata |
A character string of the outdata path. |
path_outtable |
A character string of the outtable path. |
Value
RTF file and the source dataset for AE listing.
Examples
library(r2rtf)
library(metalite)
meta <- meta_ae_example()
prepare_ae_listing(meta, "ae_listing", "apat", "wk12", "ser") |>
tlf_ae_listing(
footnotes = "footnote1",
source = "Source: [CDISCpilot: adam-adsl; adae]",
path_outdata = tempfile(fileext = ".Rdata"),
path_outtable = tempfile(fileext = ".rtf")
)
Specific adverse events table
Description
Specific adverse events table
Usage
tlf_ae_specific(
outdata,
meddra_version,
source,
col_rel_width = NULL,
text_font_size = 9,
orientation = "portrait",
footnotes = NULL,
title = c("analysis", "observation", "population"),
path_outdata = NULL,
path_outtable = NULL
)
Arguments
outdata |
An |
meddra_version |
A character value of the MedDRA version for this dataset. |
source |
A character value of the data source. |
col_rel_width |
Column relative width in a vector e.g. c(2,1,1) refers to 2:1:1. Default is NULL for equal column width. |
text_font_size |
Text font size. To vary text font size by column, use numeric vector with length of vector equal to number of columns displayed e.g. c(9,20,40). |
orientation |
Orientation in 'portrait' or 'landscape'. |
footnotes |
A character vector of table footnotes. |
title |
Term "analysis", "observation"and "population") for collecting title from metadata or a character vector of table titles. |
path_outdata |
A character string of the outdata path. |
path_outtable |
A character string of the outtable path. |
Value
RTF file and the source dataset for AE specific table.
Examples
meta <- meta_ae_example()
meta |>
prepare_ae_specific(
population = "apat",
observation = "wk12",
parameter = "rel"
) |>
format_ae_specific() |>
tlf_ae_specific(
source = "Source: [CDISCpilot: adam-adsl; adae]",
meddra_version = "24.0",
path_outdata = tempfile(fileext = ".Rdata"),
path_outtable = tempfile(fileext = ".rtf")
)
Specific adverse events table for subgroup analysis
Description
Specific adverse events table for subgroup analysis
Usage
tlf_ae_specific_subgroup(
outdata,
meddra_version,
source,
col_rel_width = NULL,
text_font_size = 9,
orientation = "landscape",
footnotes = NULL,
title = NULL,
path_outdata = NULL,
path_outtable = NULL
)
Arguments
outdata |
An |
meddra_version |
A character value of the MedDRA version for this dataset. |
source |
A character value of the data source. |
col_rel_width |
Column relative width in a vector e.g. c(2,1,1) refers to 2:1:1. Default is NULL for equal column width. |
text_font_size |
Text font size. To vary text font size by column, use numeric vector with length of vector equal to number of columns displayed e.g. c(9,20,40). |
orientation |
Orientation in 'portrait' or 'landscape'. |
footnotes |
A character vector of table footnotes. |
title |
Term "analysis", "observation"and "population") for collecting title from metadata or a character vector of table titles. |
path_outdata |
A character string of the outdata path. |
path_outtable |
A character string of the outtable path. |
Value
RTF file and the source dataset for AE specific subgroup analysis table.
Examples
meta <- meta_ae_example()
prepare_ae_specific_subgroup(meta,
population = "apat",
observation = "wk12",
parameter = "rel",
subgroup_var = "SEX",
display_subgroup_total = TRUE
) |>
format_ae_specific_subgroup() |>
tlf_ae_specific_subgroup(
meddra_version = "24.0",
source = "Source: [CDISCpilot: adam-adsl; adae]",
path_outtable = tempfile(fileext = ".rtf")
)
AE summary table
Description
AE summary table
Usage
tlf_ae_summary(
outdata,
source,
col_rel_width = NULL,
text_font_size = 9,
orientation = "portrait",
title = c("analysis", "observation", "population"),
footnotes = NULL,
path_outdata = NULL,
path_outtable = NULL
)
Arguments
outdata |
An |
source |
A character value of the data source. |
col_rel_width |
Column relative width in a vector e.g. c(2,1,1) refers to 2:1:1. Default is NULL for equal column width. |
text_font_size |
Text font size. To vary text font size by column, use numeric vector with length of vector equal to number of columns displayed e.g. c(9,20,40). |
orientation |
Orientation in 'portrait' or 'landscape'. |
title |
Term "analysis", "observation"and "population") for collecting title from metadata or a character vector of table titles. |
footnotes |
A character vector of table footnotes. |
path_outdata |
A character string of the outdata path. |
path_outtable |
A character string of the outtable path. |
Value
RTF file and the source dataset for AE summary table.
Examples
meta <- meta_ae_example()
outdata <- prepare_ae_summary(meta,
population = "apat",
observation = "wk12",
parameter = "any;rel;ser"
)
outdata |>
format_ae_summary() |>
tlf_ae_summary(
source = "Source: [CDISCpilot: adam-adsl; adae]",
path_outdata = tempfile(fileext = ".Rdata"),
path_outtable = tempfile(fileext = ".rtf")
)