
Package ‘kanjistat’
July 22, 2025

Type Package

Title A Statistical Framework for the Analysis of Japanese Kanji
Characters

Version 0.14.1

Date 2024-05-30

Maintainer Dominic Schuhmacher <dominic.schuhmacher@mathematik.uni-goettingen.de>

Description Various tools and data sets that support the study of kanji, including their morphol-
ogy, decomposition and concepts of distance and similarity between them.

URL https://dschuhmacher.github.io/kanjistat/

BugReports https://github.com/dschuhmacher/kanjistat/issues

Depends R (>= 4.1)

Imports methods, graphics, grDevices, utils, crayon, dendextend,
gsubfn, Matrix, png, purrr, RANN, rlang, ROI, sysfonts,
showtext, stringi, stringr, transport (>= 0.15), xml2,
lifecycle, Rcpp

Suggests dplyr, jsonlite, kanjistat.data, knitr, rmarkdown,
ROI.plugin.glpk, systemfonts, testthat (>= 3.0.0), tibble,
withr

Additional_repositories https://dschuhmacher.github.io/drat

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

VignetteBuilder knitr

Config/testthat/edition 3

LinkingTo Rcpp

NeedsCompilation yes

Author Dominic Schuhmacher [aut, cre] (ORCID:
<https://orcid.org/0000-0001-7079-6313>),

Lennart Finke [aut] (ORCID: <https://orcid.org/0009-0003-6908-314X>)

1

https://dschuhmacher.github.io/kanjistat/
https://github.com/dschuhmacher/kanjistat/issues
https://dschuhmacher.github.io/drat
https://orcid.org/0000-0001-7079-6313
https://orcid.org/0009-0003-6908-314X

2 cjk_escape

Repository CRAN

Date/Publication 2024-06-04 15:40:02 UTC

Contents
cjk_escape . 2
codepoint . 3
compare_neighborhoods . 4
convert_kanji . 5
distdata . 6
fivebetas . 7
fivetrees . 8
get_strokes . 9
get_strokes_compo . 10
kanjidata . 10
kanjidist . 12
kanjidistmat . 14
kanjimat . 16
kanjivec . 17
kmatdist . 20
kmatdistmat . 21
kreadmean . 22
lookup . 23
options . 24
plot.kanjimat . 24
plot.kanjivec . 25
plotkanji . 27
pooled_similarity . 28
print.kanjivec . 29
read_kanjidic2 . 29
samplekan . 31
sedist . 32
str.kanjivec . 33

Index 34

cjk_escape Replace CJK characters in files by escape sequences

Description

All CJK characters in the file(s) found at the specified path are substituted by their Unicode escape
sequences (\u + 4 digit hex number or \U + 8 digit hex number where necessary).

Usage

cjk_escape(path, outdir = NULL, verbose = TRUE)

codepoint 3

Arguments

path the path to a directory or a single file.

outdir the directory where the output files are written. Defaults to the subdirectory out
of the directory in path. The output files have the same names as the originals.

verbose whether to print a message for each output file.

Details

If path is a directory, the replacement is performed for all files at that location (subdirectories are
ignored). If outdir is the same as path, the original files are overwritten without warning.

If path is a file, the replacement is limited to this file. If outdir is the same as dirname(path), the
files are overwritten without warning.

Value

No return value, called for side effects.

codepoint Convert between Unicode codepoint and kanji

Description

Given codepoints cp, the function codepointToKanji transforms to UTF-8, which will typically
show as the actual character the codepoints stands for. Vice versa, given (UTF-8 encoded) kanjis
kan, the function kanjiToCodepoint transforms to unicode codepoints.

Usage

codepointToKanji(cp, concat = FALSE)

kanjiToCodepoint(kan, character = FALSE)

Arguments

cp a vector of character strings or objects of class hexmode, representing hexadeci-
mal numbers.

concat logical. Shall the returned characters be concatenated?

kan a vector of kanjis (strings of length 1) or a single string of length >= 1 of kanjis.

character logical. Shall the returned codepoints be of class "character" or hexmode.

Value

For codepointToKanji a character vector of kanji. For kanjiToCodepoint a vector of hexadeci-
mal numbers (class hexmode).

4 compare_neighborhoods

Examples

codepointToKanji(c("51b7", "6696", "71b1"))
kanjiToCodepoint("\u51b7\u6696\u71b1")

compare_neighborhoods Compare distances of nearest kanji

Description

List distances to nearest neighbors of a given kanji in terms of a reference distance (which is cur-
rently only the stroke edit distance) and compare with values in terms of another distance (currently
only the component transport distance, a.k.a. kanji distance).

Usage

compare_neighborhoods(
kan,
refdist = "strokedit",
refnn = 10,
compdist = "kanjidist",
compnn = 0,
...

)

Arguments

kan a kanji (currently only as a single UTF-8 character).

refdist the name of the reference distance (currently only "strokedit").

refnn the number of nearest neighbors in terms of the reference distance.

compdist a character vector. The name(s) of one or several other distances to compare
with (currently only "kanjidist").

compnn the number of nearest neighbors in terms of the other distance(s). If this is
positive it is assumed that the suggested package kanjistat.data is available.

... further parameters that are passed to kanjidist().

Value

A matrix of distances with refnn + compnn columns named by the nearest neighbors of kan (first in
terms of the reference distance, then the other distances) and 1 + length(compdist) rows named
by the type of distance.

convert_kanji 5

Warning

[Experimental]
This is only a first draft of the function and its interface and details may change considerably in
the future. As there is currently no precomputed kanjidist matrix, there is a huge difference in
computation time between setting compnn = 0 (only kanji distances to the refnn nearest neighbors
in terms of refdist have to be computed) and setting compnn to any value > 0 (kanji distances to
all 2135 other Jouyou kanji have to be computed in order to determine the compnn nearest neighbors;
depending on the system and parameter settings this can take (roughly) anywhere between 2 minutes
and an hour).

Examples

compare_neighborhoods("\u6674", refnn=5, compo_seg_depth=4, approx="pcweighted",
compnn=0, minor_warnings=FALSE)

convert_kanji Convert between kanji formats

Description

Accept any interpretable representation of kanji in terms of index numbers, UTF-8 character strings
of length 1, UTF-8 codepoints or kanjivec objects and convert it to all or any of these formats.

Usage

convert_kanji(
key,
output = c("all", "index", "character", "hexmode", "kanjivec"),
simplify = TRUE

)

Arguments

key an atomic vector or list of kanji in any combination of formats.

output a string describing the desired output.

simplify logical. Whether to simplify the output to an atomic vector or keep the structure
of the original vector. In either case it depends on output whether this is possible.

Details

Index numbers are in terms of the order in kbase. UTF-8 codepoints are usually of class "hexmode",
but character strings starting with "0x" or "0X" are also accepted in the key.

For output = "kanjivec", the GitHub package kanjistat.data has to be available or an error is
returned. For output = "all", component kanjivec is set to NA if kanjistat.data is not available.

6 distdata

Value

A vector of the same length as key. If simplify is TRUE, this is an atomic vector for output =
"index", "character" or "hexmode", and a list for output = "kanjivec" or "all" a list. If simplify is
FALSE, the original structure (atomic or list) kept whenever possible.

Examples

convert_kanji(as.hexmode("99ac"))
convert_kanji("0x99ac") # same
convert_kanji(500, "character") == kbase$kanji[500] # TRUE

distdata Precomputed kanji distances

Description

Precomputed kanji distances

Usage

dstrokedit

dyehli

Format

Symmetric sparse matrices containing distances between a key kanji, its ten nearest neighbors and
possibly some other close kanji. For dstrokedit, these are the stroke edit distances according
to Yencken and Baldwin (2008). For dyehli, these are the bag-of-radicals distances according to
Yeh and Li (2002). Both are an instance of the S4 class dsCMatrix (symmetric sparse matrices in
column-compressed format) with 2133 rows and 2133 columns.

All pre-2010 jouyou kanji that are also post-2010 jouyou kanji are included. The indices are those
from kbase.

Source

Datasets from https://lars.yencken.org/datasets, made available under the Creative Com-
mons Attribution 3.0 Unported licence.

Computed as part of Yencken, Lars (2010) Orthographic support for passing the reading hurdle in
Japanese. PhD Thesis, University of Melbourne, Melbourne, Australia.

https://lars.yencken.org/datasets
https://lars.yencken.org/papers/phd-thesis.pdf
https://lars.yencken.org/papers/phd-thesis.pdf

fivebetas 7

References

Yeh, Su-Ling and Li, Jing-Ling (2002). Role of structure and component in judgements of visual
similarity of Chinese characters. Journal of Experimental Psychology: Human Perception and
Performance, 28(4), 933–947.

Yencken, Lars, & Baldwin, Timothy (2008). Measuring and predicting orthographic associations:
Modelling the similarity of Japanese kanji. In: Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pp. 1041-1048.

Examples

Find index for kanji \u90e8
bu_index <- match("\u90e8", kbase$kanji)

Look up available stroke edit distances for \u90e8.
non_zero <- which(dstrokedit[bu_index,] != 0)
sed <- dstrokedit[non_zero, bu_index]
names(sed) <- kbase[non_zero,]$kanji
sort(sed)

Look up available bag-of-radicals distances for \u90e8.
non_zero <- which(dyehli[bu_index,] != 0)
bord <- dyehli[non_zero, bu_index]
names(bord) <- kbase[non_zero,]$kanji
sort(bord)

fivebetas A sample list of kanjivec objects

Description

A sample list of kanjivec objects

Usage

fivebetas

Format

fivebetas is a list of five kanjivec objects representing the basic kanji \u90e8,\u969c,\u966a,\u90f5,\u9663
containing "beta" components, which come in fact from two different classical radicals:

• \u961c–>\u2ed6 on the left: mound, small village

• \u9091–>\u2ecf on the right: large village

8 fivetrees

Source

The list has been generated with the function kanjivec with parameter flatten="intelligent"
from the corresponding files in the KanjiVG database by Ulrich Apel (https://kanjivg.tagaini.
net/).

Examples

oldpar <- par(mfrow = c(1,5), mai = rep(0,4))
invisible(lapply(fivebetas, plot, seg_depth = 2))
par(oldpar)

fivetrees Sample lists of kanjimat objects

Description

Sample lists of kanjimat objects

Usage

fivetrees1

fivetrees2

fivetrees3

Format

fivetrees1, fivetrees2 and fivetrees3 are lists of five kanjimat objects each, representing
the same five basic kanji \u6821,\u6728,\u4f11,\u6797,\u76f8, containing each a tree component.
Their matrices are antialiased 64 x 64 pixel representations of the kanji. The size is chosen as a
compromise between aesthetics and memory/computational cost, such as for kmatdist.

All of them are in handwriting style fonts. fivetrees1 is in a Kyoukasho font (schoolbook style),
fivetrees2 is in a Kaisho font (regular script calligraphy font), fivetrees3 is in a Gyousho font
(semi-cursive calligraphy font).

An object of class list of length 5.

An object of class list of length 5.

An object of class list of length 5.

Source

The list has been generated with the function kanjimat using the Mac OS pre-installed YuKyokasho
font (fivetrees1), as well as the freely available fonts nagayama_kai by Norio Nagayama and Kouzan-
BrushFontGyousyo by Aoyagi Kouzan.

https://kanjivg.tagaini.net/
https://kanjivg.tagaini.net/

get_strokes 9

Examples

oldpar <- par(mfrow = c(3,5))
invisible(lapply(fivetrees1, plot))
invisible(lapply(fivetrees2, plot))
invisible(lapply(fivetrees3, plot))
par(oldpar)

get_strokes Get the strokes of a kanjivec object

Description

The strokes are the leaves of the kanjivec stroketree. They consist of a two-column matrix giving
a discretized path for the stroke in the unit square [0, 1]2 with further attributes.

Usage

get_strokes(kvec, which = 1:kvec$nstrokes, simplify = TRUE)

Arguments

kvec an object of class kanjivec

which a numeric vector specifying the numbers of the strokes that are to be returned.
Defaults to all strokes.

simplify logical. Shall only the stroke be returned if which has length 1?

Value

Usually a list of strokes with attributes. Regardless of whether which is ordered or contains du-
plicates, the returned list will always contain the strokes in their natural order without duplicates.
If which has length 1 and simplified = TRUE, the list is avoided, and only the single stroke is
returned.

See Also

get_strokes_compo

Examples

kanji <- fivebetas[[5]]
get_strokes(kanji, c(3,10)) # the two long vertical strokes in \u9663

10 kanjidata

get_strokes_compo Get the strokes of a specific component of a kanjivec object

Description

The strokes are the leaves of the kanjivec stroketree. They consist of a two-column matrix giving
a discretized path for the stroke in the unit square [0, 1]2 with further attributes.

Usage

get_strokes_compo(kvec, which = c(1, 1))

Arguments

kvec an object of class kanjivec

which a vector of length 2 specifing the index of the component, i.e. the component
used is pluck(kvec$components, !!!which). The default c(1,1) refers to the
root component (full kanji), so all strokes are returned.

Value

A list of strokes with attributes.

See Also

get_strokes

Examples

kanji <- fivebetas[[5]]
get the three strokes of the component\u2ed6 in \u9663
rad <- get_strokes_compo(kanji, c(2,1))
plot(0.5, 0.5, xlim=c(0,1), ylim=c(0,1), type="n", asp=1, xaxs="i", yaxs="i", xlab="", ylab="")
invisible(lapply(rad, lines, lwd=4))

kanjidata Data on kanji

Description

The tibbles kbase and kmorph provide basic and morphologic information, respectively, for all kanji
contained in the KANJIDIC2 file (see below)

kanjidata 11

Usage

kbase

kmorph

Format

kbase is a tibble with 13,108 rows and 13 variables:

kanji the kanji
unicode the Unicode codepoint
strokes the number of strokes
class one of four classes: "kyouiku", "jouyou", "jinmeiyou" or "hyougai"
grade a number from 1-11, basically a finer version of class, same as in KANJIDIC2, except that

we assgined an 11 for all hyougaiji (rather than an NA value)
kanken at what level the kanji appears in the Nihon Kanji Nouryoku Kentei (Kanken)
jlpt at what level the kanji appears in the Japanese Language Proficiency Test (Nihongou Nouryoku

Shiken)
wanikani at what level the kanji is learned on the kanji learning website Wanikani
frank the frequency rank (1 = most frequent) "based on several averages (Wikipedia, novels, news-

papers, ...)"
frank_news the frequency rank (1 = most frequent) based on news paper data (2501 most frequent

kanji over four years in the Mainichi Shimbun)
read_on, read_kun a single ON reading in katakana
read_kun a single kun reading in hiragana
mean a single English meaning of the kanji

kmorph is a tibble with 13,108 rows and 15 variables:

kanji the kanji
strokes the number of strokes
radical the traditional (Kangxi) radical used for indexing kanji (one of 214)
radvar the variant of the radical if it is different, otherwise NA

nelson_c the Nelson radical if it differs from the traditional one, otherwise NA

idc ideographic description character (plus sometimes a number or a letter) describing the shape of
the kanji

components visible components of the kanji; originally from KRADFILE
skip the kanji’s SKIP code
mean a single English meaning of the kanji (same as in kbase)

Details

The single ON and kun readings and the single meaning are for easy identification of the more
difficult kanji. They are the first entry in the KANJIDIC2 file which may not always be the most
important one. For full readings/meanings use the function lookup or consult a dictionary.

12 kanjidist

Source

Most of the data is directly from the KANJIDIC2 file. https://www.edrdg.org/wiki/index.
php/KANJIDIC_Project
Variables jlpt, frank, idc, components were taken from the Kanjium data base https://github.
com/mifunetoshiro/kanjium
Variable components is originally from RADKFILE/KRADFILE. https://www.edrdg.org/)

The use of this data is covered in each case by a Creative Commons BY-SA 4.0 License. See the
package’s LICENSE file for details and copyright holders.

Variable "class" is derived from "grade".
Variable "kanken" was compiled based on the Wikipedia description of the test levels (as of Septem-
ber 2022).

kanjidist Compute distance between two kanjivec objects based on hierarchical
optimal transport

Description

The kanji distance is based on matching hierarchical component structures in a nesting-free way
across all levels. The cost for matching individual components is a cost for registering the compo-
nents (i.e. alligning there position, scale and aspect ratio) plus the (relative unbalanced) Wasserstein
distance between the registered components.

Usage

kanjidist(
k1,
k2,
compo_seg_depth1 = 3,
compo_seg_depth2 = 3,
p = 1,
C = 0.2,
approx = c("grid", "pc", "pcweighted"),
type = c("rtt", "unbalanced", "balanced"),
size = 48,
lwd = 2.5,
density = 30,
verbose = FALSE,
minor_warnings = TRUE

)

Arguments

k1, k2 two objects of type kanjivec.

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project
https://www.edrdg.org/wiki/index.php/KANJIDIC_Project
https://github.com/mifunetoshiro/kanjium
https://github.com/mifunetoshiro/kanjium
https://www.edrdg.org/

kanjidist 13

compo_seg_depth1, compo_seg_depth2
two integers ≥ 1. Specifies for each kanji the deepest level included for compo-
nent matching. If 1, only the kanji itself is used.

p the order of the Wasserstein distance used for matching components. All dis-
tances and the penalty (if any) are taken to the p-th power (which is compensated
by taking the p-th root after summation).

C the penalty for extra mass if type is "rtt" or "unbalanced", i.e. we add C^p
per unit of extra mass (before applying the p-th root).

approx what kind of approximation is used for matching components. If this is "grid",
a bitmap (raster image) is used, otherwise lines are approximated by more freely
spaced points. For "pc" (point cloud) each point has the same weight and points
are placed in a (more or less) equidistant way. For "pcweighted" points are
further apart along straight lines and around the center of the Bezier curves that
describe the strokes. The weights of the points are then (more or less) propor-
tional to the amount of ink (stroke length) they represent.

type the type of Wasserstein distance used for matching components based on the
grid or point cloud approximation chosen. "unbalanced" means the weights
(pixel values if approx = "grid) are interpreted as mass. The total masses in
two components be very different. Extra mass can be disposed of at cost C^p
per unit. "rtt" is computationally the same, but the final distance is divided
by the maximum of the total ink (sum of weights) in each component to the
1/p. "balanced" means the weights are normalized so that both images have
the same total mass 1. Everything has to be transported, i.e.\ disposal of mass is
not allowed.

size side length of the bitmaps used for matching components (if approx = "grid).

lwd linewidth for drawing the components in these bitmaps (if approx = "grid).

density approximate number of discretization points per unit line length (if approx != "grid)

verbose logical. Whether to print detailed information on the cost for all pairs of com-
ponents and the final matching.

minor_warnings logical. Should minor_warnings be given. If FALSE, the warnings about substan-
tial distances between bitmaps/pointclouds standing for the same component
and the use of a workaround due to missing strokes in component decomposi-
tions are suppressed. While these warnings indicate to same extent that things
are not going exactly as planned, they are usually not of interest if a larger num-
ber of kanji distances is computed and obscure the visibility of more important
warnings (if any).

Details

For the precise definition and details see the reference below. Parameter C corresponds to b/21/p in
the paper.

Value

The kanji distance, a non-negative number.

14 kanjidistmat

Warning

[Experimental]
The interface and details of this function will change in the future. Currently only a minimal set
of parameters can be passed. The other parameters are fixed exactly as in the "prototype distance"
(4.1) of the reference below for better or worse.
There is a certain tendency that exact matches of components are rather strongly favored (if the
KanjiVG elements agree this can overrule the unbalanced Wasserstein distance) and the penalties
for translation/scaling/distortion of components are somewhat mild.
The computation time is rather high (depending on the settings and kanji up to several seconds per
kanji pair). This can be alleviated somewhat by keeping the compo_seg_depth parameters at 3 or
lower and setting size = 32 (which goes well with lwd=1.8).
Future versions will use a much faster line base optimal transport algorithm and further speed-ups.

References

Dominic Schuhmacher (2023).
Distance maps between Japanese kanji characters based on hierarchical optimal transport.
ArXiv, doi:10.48550/arXiv.2304.02493

See Also

kanjidistmat, kmatdist

Examples

if (requireNamespace("ROI.plugin.glpk")) {
kanjidist(fivebetas[[4]], fivebetas[[5]])
kanjidist(fivebetas[[4]], fivebetas[[5]], verbose=TRUE)
faster and similar:
kanjidist(fivebetas[[4]], fivebetas[[5]], compo_seg_depth1=2, compo_seg_depth2=2,

size=32, lwd=1.8, verbose=TRUE)
slower and similar:
kanjidist(fivebetas[[4]], fivebetas[[5]], size=64, lwd=3.2, verbose=TRUE)

}

kanjidistmat Compute distance matrix based on hierarchical optimal transport for
lists of kanjivec objects

Description

Individual distances are based on kanjidist.

https://doi.org/10.48550/arXiv.2304.02493

kanjidistmat 15

Usage

kanjidistmat(
klist,
klist2 = NULL,
compo_seg_depth = 3,
p = 1,
C = 0.2,
approx = c("grid", "pc", "pcweighted"),
type = c("rtt", "unbalanced", "balanced"),
size = 48,
lwd = 2.5,
density = 30,
verbose = FALSE,
minor_warnings = FALSE

)

Arguments

klist a list of kanjimat objects.

klist2 an optional second list of kanjimat objects.
compo_seg_depth

integer ≥ 1. Specifies for all kanji the deepest level included for component
matching. If 1, only the kanji itself is used.

p, C, type, approx, size, lwd, density, verbose, minor_warnings
the same as for the function kanjidist, with the sole difference that minor_warnings
defaults to FALSE here.

Value

A matrix of dimension length(klist) x length(klist2) having as its (i, j)-th entry the distance
between klist[[i]] and klist2[[j]]. If klist2 is not provided it is assumed to be equal to
klist, but computation is more efficient as only the upper triangular part is computed and then
symmetrized with diagonal zero.

Warning

[Experimental]
The same precautions apply as for kanjidist.

See Also

kanjidist, kmatdistmat

Examples

kanjidistmat(fivebetas)

16 kanjimat

kanjimat Create kanjimat objects

Description

Create a (list of) kanjimat object(s), i.e. bitmap representations of a kanji using a certain font-family
and other typographical parameters.

Usage

kanjimat(
kanji,
family = NULL,
size = NULL,
margin = 0,
antialias = TRUE,
save = FALSE,
overwrite = FALSE,
simplify = TRUE,
...

)

Arguments

kanji a (vector of) character string(s) containing kanji.
family the font-family to be used. For details see vignette.
size the sidelength of the (square) bitmap
margin numeric. Extra margin around the character. Defaults to 0 which leaves a rel-

atively slim margin. Positive values increase this margin, negative values de-
crease it (which usually cuts off part of the kanji).

antialias logical. Shall antialiasing be performed?
save logical or character. If FALSE return the (list of) kanjimat object(s). Otherwise

save the result as an rds file in the working directory (as kmatsave.rds) or under
the file path provided.

overwrite logical. If FALSE return an error (before any computations are done) if the
designated file path already exists. Otherwise an existing file is overwritten.

simplify logical. Shall a single kanjimat object be returned (instead a list of one) if kanji
is a single kanji?

... futher arguments passed to png. This is for extensibility. The only argument that
may currently be used is type. Trying to change sizes, units, colors or fonts by
this argument results in an error or an undesirable output.

Value

A list of objects of class kanjimat or, if only one kanji was specified and simplify is TRUE, a
single objects of class kanjimat. If save = TRUE, the same is (saved and) still returned invisibly.

kanjivec 17

Warning

If no font family is provided, the default Chinese font WenQuanYi Micro Hei that comes with the
package showtext is used. This means that the characters will typically be recognizable, but quite
often look odd as Japanese characters. We strongly advised that a Japanese font is used as detailed
above.

Examples

res <- kanjimat(kanji="\u85e4", size = 128)

kanjivec Create kanjivec objects from kanjivg data

Description

Create a (list of) kanjivec object(s). Each object is a representation of the kanji as a tree of strokes
based on .svg files from the KanjiVG database containing further, derived information.

Usage

kanjivec(
kanji,
database = NULL,
flatten = "intelligent",
bezier_discr = c("svgparser", "eqtimed", "eqspaced"),
save = FALSE,
overwrite = FALSE,
simplify = TRUE

)

Arguments

kanji a (vector of) character string(s) of one or several kanji.

database the path to a local copy of (a subset of) the KanjiVG database. It is expected
that the svg files reside at this exact location (not in a subdirectory). If NULL,
an attempt is made to read the svg file(s) from the KanjiVG GitHub reposi-
tory (after prompting for confirmation, which can be switched off via the option
ask_github).

flatten logical. Should nodes that are only-children be fused with their parents? Alter-
natively one of the strings "intelligent", "inner" or "leaves". Although the first is
the default it is experimental and the precise meaning will change in the future;
see details.

18 kanjivec

bezier_discr character. How to discretize the Bézier curves describing the strokes. If "svg-
parser" (the only option available prior to kanjistat 0.12.0), code from the non-
CRAN package svgparser is used for discretizing at equal time steps. The new
choices "eqtimed" and "eqspaced" discretize into fewer points (and allow for
more customization underneath). The former creates discretization points at
equal time steps, the latter at equal distance steps (to a good approximation).

save logical or character. If FALSE return the (list of) kanjivec object(s). Otherwise
save the result as an rds file in the working directory (as kvecsave.rds) or under
the file path provided.

overwrite logical. If FALSE return an error (before any computations are done) if the
designated file path already exists. Otherwise an existing file is overwritten.

simplify logical. Shall a single kanjivec object be returned (instead a list of one) if kanji
is a single kanji?

Details

A kanjivec object contains detailed information on the strokes of which an individual kanji is com-
posed including their order, a segmentation into reasonable components ("radicals" in a more gen-
eral sense of the word), classification of individual strokes, and both vector data and interpolated
points to recreate the actual stroke in a Kyoukashou style font. For more information on the original
data see http://kanjivg.tagaini.net/. That data is licenced under Creative Commons BY-SA
3.0 (see licence file of this package).

The original .svg files sometimes contain additional <g> elements that provide information about
the current group of strokes rather than establishing a new subgroup of its own. This happens
typically for information that establishes coherence with another part of the tree (by noting that the
current subgroup is also part 2 of something else), but also for variant information. With the option
flatten = TRUE the extra hierarchy level in the tree is avoided, while the original information in the
KanjiVG file is kept. This is achieved by fusing only-children to their parents, giving the new node
the name of the child and all its attributes, but prefixing p. to the attribute names of the parent (the
parents’ "names" attribute is discarded, but can be reconstructed from the parents’ id). Removal
of several hierarchies in sequence can lead to attribute names with multiple p. in front. Fusing to
parents is suppressed if the parent is the root of the hierarchy (typically for one-stroke kanji), as this
could lead to confusing results.

The options flatten = "inner" and flatten = "leaves" implement the above behavior only for
the corresponding type of node (inner nodes or leaves). The option flatten = "intelligent"
tries to find out in more sophisticated ways which flattening is desirable and which is not (it will
flatten rather conservatively). Currently nodes without an element attribute that have only one child
are flattened away (one example where this is reasonable is in kanji kbase[187,]), as are nodes
with an element attribute and only one child if this child is also an inner node and has the same
element and part attribute as the parent, but both have no number (this would be problematic for
any component-building code in the particular case of kanji kbase[1111,]).

A kanjivec object has components

char the kanji (a single character)

hex its Unicode codepoint (integer of class hexmode)

padhex the Unicode codepoint padded with zeros to five digits (mode character)

http://kanjivg.tagaini.net/

kanjivec 19

family the font on which the data is based. Currently only "schoolbook" (to be extended with
"kaisho" at some point)

nstrokes the number of strokes in the kanji

ncompos a vector of the number of components at each depth of the tree

nveins the number of veins in the component structure

strokedend the decomposition tree of the kanji as an object of class dendrogram

components the component structure by segmentation depth (components can overlap) in terms of
KanjiVG elements and their depth-first tree coordinates

veins the veins in the component structure. Each vein is represented as a two-column matrix
that lists in its rows the indices of components (starting at the root, which in the component
indexing is c(1,1))

stroketree the decomposition tree of the kanji, a list containing the full information of the the
KanjiVG file (except some top level attributes)

stroketree is a close representation of the KanjiVG svg file as list object with some serious nesting
of sublists. The XML attributes become attributes of the list and its elements. The user will usually
not have to look at or manipulate stroketree directly, but strokedend and compents are derived
from it and other functions may process it further.

The main differences to the svg file are

1. the actual strokes are not only given as d-attributes describing Bézier curves, but but also
as two-column matrices describing discretizations of these curves. These matrices are the
actual contents of the innermost lists in stroketree, but are more conveniently accessed via
the function get_strokes. Starting with version 0.13.0, there is also an additional attribute
"beziermat", which describes the Bézier curves for the stroke in a 2 x (1+3n) matrix format.
The first column is the start point, then each triplet of columns stands for control point 1,
control point 2 and end point (=start point of the next Bézier curve if any).

2. The positions of the stroke numbers (for plotting) are saved as an attribute strokenum_coords
to the entire stroke tree rather than a separate element.

strokedend is more easy to examine and work with due to various convenience functions for den-
drograms in the packages stats and dendextend, including str and plot.dendrogram. The func-
tion plot.kanjivec with option type = "dend" is a wrapper for plot.dendrogram with reason-
able presets for various options.

The label-attributes of the nodes of strokedend are taken from the element (for inner nodes) and
type (for leaves) attributes of the .svg files. They consist of UTF-8 characters representing kanji
parts and a combination of UTF-8 characters for representing strokes and may not represent well in
all CJK fonts (see details of plot.kanjivec). If element and type are missing in the .svg file, the
label assigned is the second part of the id-attribute, e.g. g5 or s9.

The components at a given level can be plotted, see plot.kanjivec with type = "kanji". Both
components and veins serve mainly for the computation of kanji distances.

Value

A list of objects of class kanjivec or, if only one kanji was specified and simplify is TRUE, a
single objects of class kanjivec. If save = TRUE, the same is (saved and) still returned invisibly.

20 kmatdist

See Also

plot.kanjivec, str.kanjivec

Examples

if (interactive()) {
Try to load the svg file for the kanji from GitHub.
res <- kanjivec("\u85e4", database=NULL)
str(res)

}

fivebetas # sample kanjivec data
str(fivebetas[[1]])

kmatdist Compute the unbalanced or balanced Wasserstein distance between
two kanjimat objects

Description

This gives the dissimilarity of pixel-images of the kanji based on how far mass (or "ink") has to be
transported to transform one image into the other.

Usage

kmatdist(
k1,
k2,
p = 1,
C = 0.2,
type = c("unbalanced", "balanced"),
output = c("dist", "all")

)

Arguments

k1, k2 two objects of type kanjimat.
p the order of the Wasserstein distance. All distances and a potential penalty are

taken to the p-th power (which is compensated by taking the p-th root after
summation).

C the penalty for extra mass if type="unbalanced", i.e. we add C^p per unit of
extra mass (before applying the p-th root).

type the type of Wasserstein metric. "unbalanced" means the pixel values in the two
images are interpreted as mass. The total masses can be very different. Extra
mass can be disposed of at cost C^p per unit. "balanced" means the pixel values
are normalized so that both images have the same total mass 1. Everything has
to be transported, i.e. disposal of mass is not allowed.

kmatdistmat 21

output the requested output. See return value below.

Value

If output = "dist", a single non-negative number: the unbalanced or balanced Wasserstein dis-
tance between the kanji. If output = "all" a list with detailed information on the transport plan
and the disposal of pixel mass. See unbalanced for details.

See Also

kmatdistmat, kanjidist

Examples

res <- kmatdist(fivetrees1[[1]], fivetrees1[[5]], p=1, C=0.1, output="all")
plot(res, what="plan", angle=20, lwd=1.5)
plot(res, what="trans")
plot(res, what="extra")
plot(res, what="inplace")

kmatdistmat Compute distance matrix for lists of kanjimat objects

Description

Apply kmatdist to every pair of kanjimat objects to compute the unbalanced or balanced Wasser-
stein distance.

Usage

kmatdistmat(
klist,
klist2 = NULL,
p = 1,
C = 0.2,
type = c("unbalanced", "balanced")

)

Arguments

klist a list of kanjimat objects.

klist2 an optional second list of kanjimat objects.

p, C, type the same as for the function kmatdist.

22 kreadmean

Value

A matrix of dimension length(klist) x length(klist2) having as its (i, j)-th entry the distance
between klist[[i]] and klist2[[j]]. If klist2 is not provided it is assumed to be equal to
klist, but the computation is more efficient as only the upper triangular part is computed and then
symmetrized with diagonal zero.

See Also

kmatdist, kanjidistmat

Examples

kmatdistmat(fivetrees1)
kmatdistmat(fivetrees1, fivetrees1) # same result but slower
kmatdistmat(fivetrees1, fivetrees2) # note the smaller values on the diagonal

kreadmean Kanji readings and meanings

Description

Data set of all kanji readings and meanings from the KANJIDIC2 dataset in an R list format. For
convenient access to this data use function lookup.

Usage

kreadmean

Format

An object of class list of length 13108.

Source

KANJIDIC2 file by Jim Breen and The Electronic Dictionary Research and Development Group
(EDRDG)
https://www.edrdg.org/wiki/index.php/KANJIDIC_Project
The use of this data is covered by the Creative Commons BY-SA 4.0 License.

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project

lookup 23

lookup Look up kanji

Description

Return readings and meanings or information from kbase or kmorph.

Usage

lookup(kanji, what = c("readmean", "basic", "morphologic"))

Arguments

kanji a (vector of) character strings containing kanji.

what the sort of information to display.

Details

This is a very basic interface for a quick lookup information based on exact knowledge of the kanji
(provided by a Japanese input method or its UTF-8 code). Most of the information is based on the
KANJIDIC2 file by EDRDG (see thank you page) Please use one of the many excellent online kanji
dictionaries (see e.g.) more sophisticated lookup methods and more detailed results.

Value

If what is "readmean" the information is output with cat and there is no return value (invisible
NULL) In the other cases the appropriate subsets of the tables kbase and kmorph are returned

Author(s)

Dominic Schuhmacher <schuhmacher@math.uni-goettingen.de>

Examples

lookup(c("\u6674", "\u66c7", "\u96e8"))
lookup("\u6674\u66c7\u96e8") # same

24 plot.kanjimat

options Kanjistat Options

Description

Set or examine global kanjistat options.

Usage

kanjistat_options(...)

get_kanjistat_option(x)

Arguments

... any number of options specified as name = value

x name of an option given as character string.

Value

kanjistat_options returns the list of all set options if there is no function argument. Otherwise it
returns list of all old options. get_kanjistat_option returns the current value set for option x or
NULL if the option is not set.

plot.kanjimat Plot kanjimat object

Description

Plot kanjimat object

Usage

S3 method for class 'kanjimat'
plot(
x,
mode = c("dark", "light"),
col = gray(seq(0, 1, length.out = 256)),
...

)

plot.kanjivec 25

Arguments

x object of class kanjimat.

mode character string. If "dark" the original grayscale values are used, if "light" they
are inverted. With the default grayscale color scheme the kanji is plotted white-
on-black for "dark" and black-on-white for "light".

col a vector of colors. Typically 256 values are enough to keep the full information
of an (antialiased) kanjimat object.

... further parameters passed to image.

Value

No return value, called for side effects.

plot.kanjivec Plot kanjivec objects

Description

Plot kanjivec objects

Usage

S3 method for class 'kanjivec'
plot(
x,
type = c("kanji", "dend"),
seg_depth = 0,
palette = "Dark 3",
pal.extra = 0,
numbers = FALSE,
offset = c(0.025, 0),
family = NULL,
lwd = 8,
...

)

Arguments

x an object of class kanjivec

type either "kanji" or "dend". Whether to plot the actual kanji, coloring strokes ac-
cording to levels of segmentation, or to plot a representation of the tree structure
underlying this segmentation. Among the following named parameters, only
family is for use with type = "dend"; all others are for type = "dend".

seg_depth an integer. How many steps down the segmentation hierarchy we use different
colors for different groups. If zero (the default), only one color is used that can
be specified with col passed via ... as usual

26 plot.kanjivec

palette a valid name of a hcl palette (one of hcl.pals()). Used for coloring the com-
ponents if seg_depth is > 0.

pal.extra an integer. How many extra colors are picked in the specified palette. If this is 0
(the default), palette is used with as many colors as we have components. Since
many hcl palettes run from dark to light colors, the last (few) components may
be too light. Increasing pal.extra then makes the component colors somewhat
more similar, but the last component darker.

numbers logical. Shall the stroke numbers be displayed.

offset the (x,y)-offset for the numbers relative to the positions from kanjivg saved in
the kanjivec object. Either a vector of length 2 specifying some fixed offset for
all numbers or a matrix of dimension kanjivec$nstrokes times 2.

family the font-family for labeling the nodes if type = dend. See details.

lwd the usual line width graphics parameter.

... further parameters passed to lines if type = "kanji" and to plot.dendrogram
if type = "dend".

Details

Setting up nice labels for the nodes if type = "dend" is not easy. For many font families it appears
that some "kanji components" cannot be displayed in plots even with the help of package showtext
and if the font contains glyphs for the corresponding codepoints that display correctly in text doc-
uments. This concerns in increasing severity of the problem Unicode blocks 2F00–2FDF (Kangxi
Radicals), 2E80–2EFF (CJK Radicals Supplement) and 31C0–31EF (CJK Strokes). For the strokes
it seems nearly impossible which is why leaves are simply annotated with the number of the strokes.

For the other it is up to the user to find a suitable font and pass it via the argument font fam-
ily. The default family = NULL first tries to use default_font if this option has been set (via
kanjistat_options) and otherwise uses wqy-microhei, the Chinese default font that comes with
package showtext and cannot display any radicals from the supplement.

On a Mac the experience is that "hiragino_sans" works well. In addition there is the issue of font
size which is currently not judiciously set and may be too large for some (especially on-screen)
devices. The parameter cex (via ...) fixes this.

Value

No return value, called for side effects.

Examples

kanji <- fivebetas[[2]]
plot(kanji, type = "kanji", seg_depth = 2)
plot(kanji, type = "dend")

gives a warning if get_kanjistat_option("default_font") is NULL

plotkanji 27

plotkanji Plot kanji

Description

Write kanji to a graphics device.

Usage

plotkanji(
kanji,
device = "default",
family = NULL,
factor = 10,
width = NULL,
height = NULL,
...

)

Arguments

kanji a vector of class character specifying one or several kanji to be plotted.

device the type of graphics device where the kanji is plotted. Defaults to the user’s
default type according to getOption("device").

family the font family or families used for writing the kanji. Make sure to add the
font(s) first by using font_add; see details. If family is a vector of several font
families they are matched to the characters in kanji (and possibly recycled).

factor a maginification factor applied to the font size (typically 12 points).

width, height the dimensions of the device.

... further parameters passed to the function opening the device (such as a file name
for devices that create a file).

Details

This function writes one or several kanji to a graphics device in an arbitrary font that has been regis-
tered, i.e., added to the database in package sysfonts. For the latter say font_add or font_families
to verify what fonts are available.

For further information see Working with Japanese fonts in vignette("kanjistat", package =
"kanjistat"). plotkanji uses the package showtext to write the kanji in a large font at the
center of a new device of the specified type. specify device = "current" to write the kanji to
the current device. It is now recommended to simply use graphics::text in combination with
showtext::showtext_auto instead.

Value

No return value, called for side effects.

28 pooled_similarity

Warning

If no font family is provided, the default Chinese font WenQuanYi Micro Hei that comes with the
package showtext is used. This means that the characters will typically be recognizable, but quite
often look odd as Japanese characters. We strongly advised that a Japanese font is used as detailed
above.

Examples

plotkanji("\u6edd")
plotkanji("\u72ac\u732b\u9b5a")

pooled_similarity Precomputed kanji distances

Description

Precomputed kanji distances

Usage

pooled_similarity

Format

A tibble containing kanji similarity judgments by 3 "native or native-like" speakers of Japanese. For
each row, the pivot kanji was compared to a list of potential distractors. From the distractors, the
subjects selected one character which they found particularly easy to confuse with the pivot. For
the exact methodology, see the original study referenced below.

Source

Datasets from https://lars.yencken.org/datasets, made available under the Creative Com-
mons Attribution 3.0 Unported licence.

Collected as part of Yencken, Lars (2010) Orthographic support for passing the reading hurdle in
Japanese. PhD Thesis, University of Melbourne, Melbourne, Australia.

References

Yencken, Lars, & Baldwin, Timothy (2008). Measuring and predicting orthographic associations:
Modelling the similarity of Japanese kanji. In: Proceedings of the 22nd International Conference
on Computational Linguistics (Coling 2008), pp. 1041-1048.

Examples

Get kanji characters that were found to be easily confused with \u5927.
pooled_similarity[pooled_similarity$selected == "\u5927",]$pivot

https://lars.yencken.org/datasets
https://lars.yencken.org/papers/phd-thesis.pdf
https://lars.yencken.org/papers/phd-thesis.pdf

print.kanjivec 29

print.kanjivec Print basic information about a kanjivec object

Description

Print basic information about a kanjivec object

Usage

S3 method for class 'kanjivec'
print(x, dend = FALSE, ...)

Arguments

x an object of class kanjivec.

dend whether to print the structure of the strokedend component.

... further parameters passed to print.default.

Value

No return value, called for side effects.

read_kanjidic2 Read a KANJIDIC2 file

Description

Perform basic validity checks and transform data to a standardized list or keep as an object of class
xml_document (package xml2).

Usage

read_kanjidic2(fpath = NULL, output = c("list", "xml"))

Arguments

fpath the path to a local KANJIDIC2 file. If NULL (the default) the most recent KAN-
JIDIC2 file is downloaded from https://www.edrdg.org/kanjidic/kanjidic2.
xml.gz after asking for confirmation.

output one of "list" or "xml". The desired type of output.

https://www.edrdg.org/kanjidic/kanjidic2.xml.gz
https://www.edrdg.org/kanjidic/kanjidic2.xml.gz

30 read_kanjidic2

Details

KANJIDIC2 contains detailed information on all of the 13108 kanji in three main Japanese stan-
dards (JIS X 0208, 0212 and 0213). The KANJIDIC files have been compiled and maintained by
Jim Breen since 1991, with the help of various other people. The copyright is now held by the
Electronic Dictionary Research and Development Group (EDRDG). The files are made available
under the Creative Commons BY-SA 4.0 license. See https://www.edrdg.org/wiki/index.
php/KANJIDIC_Project for details on the contents of the files and their license.

If output = "xml", some minimal checks are performed (high level structure and total number of
kanji).

If output = "list", additional validity checks of the lower level structure are performed. Most
are in accordance with the file’s Document Type Definition (DTD). Some additional check concern
some common patterns that are true about the current KANJIDIC2 file (as of December 2023) and
seem unlikely to change in the near future. This includes that there is always at most one rmgroup
entry in reading_meaning. Informative warnings are provided if any of these additional checks
fail.

Value

If output = "xml", the exact XML document obtained from xml2::read_xml. If output = "list",
a list of lists (the individual kanji), each with the following seven components.

• literal: a single UTF-8 character representing the kanji.

• codepoint: a named character vector giving the available codepoints in the unicode and jis
standards.

• radical: a named numeric vector giving the radical number(s), in the range 1 to 214. The
number named classical is as recorded in the KangXi Zidian (1716); if there is a number
named nelson_c, the kanji was reclassified in Nelson’s Modern Reader’s Japanese-English
Character Dictionary (1962/74).

• misc: a list with six components

– grade: the kanji grade level. 1 through 6 indicates a kyouiku kanji and the grade in which
the kanji is taught in Japanese primary school. 8 indicates one of the remaining jouyou
kanji learned in junior high school, and 9 or 10 are jinmeiyou kanji. The remaining
(hyougai) kanji have NA as their entry.

– stroke_count: The stroke count of the kanji, including the radical. If more than one, the
first is considered the accepted count, while subsequent ones are common miscounts.

– variant: a named character vector giving either a cross-reference code to another kanji,
usually regarded as a variant, or an alternative indexing code for the current kanji. The
type of variant is given in the name.

– freq: the frequency rank (1 = most frequent) based on newspaper data. NA if not among
the 2500 most frequent.

– rad_name: a character vector. For a kanji that is a radical itself, the name(s) of the radical
(if there are any), otherwise of length 0.

– jlpt: The Japanese Language Proficiency Test level according to the old four-level sys-
tem that was in place before 2010. A value from 4 (most elementary) to 1 (most ad-
vanced).

https://www.edrdg.org/wiki/index.php/KANJIDIC_Project
https://www.edrdg.org/wiki/index.php/KANJIDIC_Project

samplekan 31

• dic_number: a named character vector (possibly of length 0) giving the index numbers (for
some kanji with letters attached) of the kanji in various dictionaries, textbooks and flashcard
collections (specified by the name). For Morohashi’s Dai Kan-Wa Jiten, the volume and page
number is also provided in the format moro.VOL.PAGE.

• query_code: a named character vector giving the codes of the kanji in various query sys-
tems (specified by the name). For Halpern’s SKIP code, possible misclassifications (if any)
of the kanji are also noted in the format mis.skip.TYPE, where TYPE indicates the type of
misclassification.

• reading_meaning: a (possibly empty) list containing zero or more rmgroup components
creating groups of readings and meanings (in practice there is never more than one rmgroup
currently) as well as a component nanori giving a character vector (possibly of length 0) of
readings only associated with names. Each rmgroup is a list with entries:

– reading: a (possibly empty) list of entries named from among pinyin, korean_r, korean_h,
vietnam, ja_on and ja_kun, each containing a character vector of the corresponding
readings

– meaning: a (possibly empty) list of entries named with two-letter (ISO 639-1) language
codes, each containing a character vector of the corresponding meanings.

See Also

kanjidata, kreadmean

Examples

if (interactive()) {
read_kanjidic2("kanjidic2.xml")

}

samplekan Sample kanji from a set

Description

Sample kanji from a set

Usage

samplekan(
set = c("kyouiku", "jouyou", "jinmeiyou", "kanjidic"),
size = 1,
replace = FALSE,
prob = NULL

)

32 sedist

Arguments

set a character string specifying the set of kanjis to sample from.

size a positive number, the number of samples.

replace logical. Sample with replacement?

prob currently without effect.

Value

a vector of length size containing the individual characters

Examples

(sam <- samplekan(size = 10))
lookup(sam)

sedist Compute the stroke edit distances between two sets of kanji

Description

Variants of the stroke edit distance proposed by Yencken (2010). Each kanji is encoded as sequence
of stroke types according to its stroke order, using the type attribute from the kanjiVG data. Then
the edit distance (a.k.a.\ Levenshtein distance) between sequences is computed and divided by the
maximum of the number of strokes

Usage

sedist(k1, k2, type = c("full", "before_slash", "first"))

Arguments

k1, k2 atomic vectors or lists of kanji in any format that can be treated by convert_kanji()

type the type of stroke edit distance to compute. See details.

Details

The kanjiVG type attribute is a single string composed of a CJK strokes Unicode character, an op-
tional latin letter providing further information and possibly a variant (another CJK strokes character
with optional letter) separated by "/". If type is "full"‘ a match is only counted if two strings are ex-
actly the same, "before_slash" ignores any slashes and what comes after them, "first" only considers
the first character of each string (so the first CJK stroke character) when counting matches.

The stroke edit distance used by Yencken (2010) is obtained by setting type = "all" (the default),
except that the underlying kanjiVG data has significantly changed since then. Comparing with the
values in dstrokedit we get an agreement of 96.3 percent, whereas the other distances disagree by a
small amount (usually 1-2 edit operations).

str.kanjivec 33

Value

A length(k1) x length(k2) matrix of stroke edit distances.

Warning

Requires kanjistat.data package.

References

Yencken, Lars (2010). Orthographic support for passing the reading hurdle in Japanese. PhD
Thesis, University of Melbourne, Australia

Examples

ind1 <- 384
k1 <- convert_kanji(ind1, "character")
ind2 <- which(dstrokedit[ind1,] > 0)
dstrokedit contains only the "closest" kanji
k2 <- convert_kanji(ind2, "character")
row_a <- dstrokedit[ind1, ind2]
if (requireNamespace("kanjistat.data", quietly = TRUE)) {

row_b <- sedist(k1, k2)
mat <- rbind(row_a, row_b)
rownames(mat) = c(k1, k1)
colnames(mat) = k2
mat

}

str.kanjivec Compactly display the structure of a kanjivec object

Description

Compactly display the structure of a kanjivec object

Usage

S3 method for class 'kanjivec'
str(object, ...)

Arguments

object an object of class kanjivec.
... further parameters passed to str for all but the stroketree component of

object.

Value

No return value, called for side effects.

Index

∗ datasets
distdata, 6
fivebetas, 7
fivetrees, 8
kanjidata, 10
kreadmean, 22
pooled_similarity, 28

cjk_escape, 2
codepoint, 3
codepointToKanji (codepoint), 3
compare_neighborhoods, 4
convert_kanji, 5
convert_kanji(), 32

dendextend, 19
distdata, 6
dstrokedit, 32
dstrokedit (distdata), 6
dyehli (distdata), 6

fivebetas, 7
fivetrees, 8
fivetrees1 (fivetrees), 8
fivetrees2 (fivetrees), 8
fivetrees3 (fivetrees), 8
font_add, 27
font_families, 27

get_kanjistat_option (options), 24
get_strokes, 9, 10, 19
get_strokes_compo, 9, 10

image, 25

kanji distances, 19
kanjidata, 10, 31
kanjidist, 12, 14, 15, 21
kanjidist(), 4
kanjidistmat, 14, 14, 22
kanjimat, 8, 15, 16, 21

kanjistat_options, 26
kanjistat_options (options), 24
kanjiToCodepoint (codepoint), 3
kanjivec, 5, 7, 8, 17, 25
kbase, 5, 6
kbase (kanjidata), 10
kmatdist, 8, 14, 20, 21, 22
kmatdistmat, 15, 21, 21
kmorph (kanjidata), 10
kreadmean, 22, 31

lookup, 11, 22, 23

option, 17
options, 24

plot.dendrogram, 19
plot.kanjimat, 24
plot.kanjivec, 19, 20, 25
plotkanji, 27
png, 16
pooled_similarity, 28
print.kanjivec, 29

read_kanjidic2, 29

samplekan, 31
sedist, 32
str, 19
str.kanjivec, 20, 33

unbalanced, 21

xml2::read_xml, 30
xml_document, 29

34

	cjk_escape
	codepoint
	compare_neighborhoods
	convert_kanji
	distdata
	fivebetas
	fivetrees
	get_strokes
	get_strokes_compo
	kanjidata
	kanjidist
	kanjidistmat
	kanjimat
	kanjivec
	kmatdist
	kmatdistmat
	kreadmean
	lookup
	options
	plot.kanjimat
	plot.kanjivec
	plotkanji
	pooled_similarity
	print.kanjivec
	read_kanjidic2
	samplekan
	sedist
	str.kanjivec
	Index

