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kSamples-package The Package kSamples Contains Several Nonparametric K-Sample
Tests and their Combinations over Blocks

Description

The k-sample Anderson-Darling, Kruskal-Wallis, normal score and van der Waerden score tests are
used to test the hypothesis that k samples of sizes n1, . . . , nk come from a common continuous
distribution F that is otherwise unspecified. They are rank tests. Average rank scores are used
in case of ties. While ad.test is consistent against all alternatives, qn.test tends to be sensi-
tive mainly to shifts between samples. The combined versions of these tests, ad.test.combined
and qn.test.combined, are used to simultaneously test such hypotheses across several blocks of
samples. The hypothesized common distributions and the number k of samples for each block of
samples may vary from block to block.

The Jonckheere-Terpstra test addresses the same hypothesis as above but is sensitive to increasing
alternatives (stochastic ordering).

Also treated is the analysis of 2 x t contingency tables using the Kruskal-Wallis criterion and its
extension to blocks.

Steel’s simultaneous comparison test of a common control sample with s = k−1 treatment samples
using pairwise Wilcoxon tests for each control/treatment pair is provided, and also the simultane-
ous confidence bounds of treatment shift effects resulting from the inversion of these tests when
sampling from continuous populations.

Distributional aspects are handled asymptotically in all cases, and by choice also via simulation or
exact enumeration. While simulation is always an option, exact calculations are only possible for
small sample sizes and only when few samples are involved. These exact calculations can be done
with or without ties in the pooled samples, based on a recursively extended version of Algorithm
C (Chase’s sequence) in Knuth (2011), which allows the enumeration of all possible splits of the
pooled data into samples of sizes of n1, . . . , nk, as appropriate under treatment randomization or
random sampling, when viewing tests conditionally given the observed tie pattern.
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ad.pval P -Value for the Asymptotic Anderson-Darling Test Distribution

Description

This function computes upper tail probabilities for the limiting distribution of the standardized
Anderson-Darling test statistic.

Usage

ad.pval(tx,m,version=1)

Arguments

tx a vector of desired thresholds ≥ 0

m The degrees of freedom for the asymptotic standardized Anderson-Darling test
statistic

version = 1 (default) if P -value for version 1 of the test statistic is desired, otherwise the
version 2 P -value is calculated.

https://arxiv.org/abs/2308.05873
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Details

Extensive simulations (sampling from a common continuous distribution) were used to extend the
range of the asymptotic P -value calculation from the original [.01, .25] in Table 1 of the reference
paper to 36 quantiles corresponding to P = .00001, .00005, .0001, .0005, .001, .005, .01, .025,
.05, .075, .1, .2, .3, .4, .5, .6, .7, .8, .9, .925, .95, .975, .99, .9925, .995, .9975, .999, .99925,
.9995, .99975, .9999, .999925, .99995, .999975, .99999. Note that the entries of the original Table
1 were obtained by using the first 4 moments of the asymptotic distribution and a Pearson curve
approximation.

Using ad.test, 1 million replications of the standardized AD statistics with sample sizes ni = 500,
i = 1, . . . , k were run for k = 2, 3, 4, 5, 7 (k = 2 was done twice). These values of k correspond to
degrees of freedom m = k − 1 = 1, 2, 3, 4, 6 in the asymptotic distribution. The random variable
described by this distribution is denoted by Tm. The actual variances (for ni = 500) agreed fairly
well with the asymptotic variances.

Using the convolution nature of the asymptotic distribution, the performed simulations were ex-
ploited to result in an effective simulation of 2 million cases, except for k = 11, i.e., m = k − 1 =
10, for which the asymptotic distribution of T10 was approximated by the sum of the AD statistics
for k = 7 and k = 5, for just the 1 million cases run for each k.

The interpolation of tail probabilities P for any desired k is done in two stages. First, a spline in
1/
√
m is fitted to each of the 36 quantiles obtained for m = 1, 2, 3, 4, 6, 8, 10,∞ to obtain the

corresponding interpolated quantiles for the m in question.

Then a spline is fitted to the log((1 − P )/P ) as a function of these 36 interpolated quantiles. This
latter spline is used to determine the tail probabilities P for the specified threshold tx, corresponding
to either AD statistic version. The above procedure is based on simulations for either version of the
test statistic, appealing to the same limiting distribution.

Value

a vector of upper tail probabilities corresponding to tx

References

Scholz, F. W. and Stephens, M. A. (1987), K-sample Anderson-Darling Tests, Journal of the Amer-
ican Statistical Association, Vol 82, No. 399, 918–924.

See Also

ad.test, ad.test.combined

Examples

ad.pval(tx=c(3.124,5.65),m=2,version=1)
ad.pval(tx=c(3.124,5.65),m=2,version=2)
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ad.test Anderson-Darling k-Sample Test

Description

This function uses the Anderson-Darling criterion to test the hypothesis that k independent samples
with sample sizes n1, . . . , nk arose from a common unspecified distribution function F (x) and
testing is done conditionally given the observed tie pattern. Thus this is a permutation test. Both
versions of the AD statistic are computed.

Usage

ad.test(..., data = NULL, method = c("asymptotic", "simulated", "exact"),
dist = FALSE, Nsim = 10000)

Arguments

... Either several sample vectors, say x1, . . . , xk, with xi containing ni sample
values. ni > 4 is recommended for reasonable asymptotic P -value calculation.
The pooled sample size is denoted by N = n1 + . . .+ nk,
or a list of such sample vectors,
or a formula y ~ g, where y contains the pooled sample values and g is a factor
(of same length as y) with levels identifying the samples to which the elements
of y belong.

data = an optional data frame providing the variables in formula y ~ g.

method = c("asymptotic","simulated","exact"), where
"asymptotic" uses only an asymptotic P -value approximation, reasonable for
P in [.00001, .99999] when all ni > 4. Linear extrapolation via log(P/(1−P ))
is used outside [.00001, .99999]. This calculation is always done. See ad.pval
for details. The adequacy of the asymptotic P -value calculation may be checked
using pp.kSamples.
"simulated" uses Nsim simulated AD statistics, based on random splits of the
pooled samples into samples of sizes n1, . . . , nk, to estimate the exact condi-
tional P -value.
"exact" uses full enumeration of all sample splits with resulting AD statistics
to obtain the exact conditional P -values. It is used only when Nsim is at least as
large as the number

ncomb =
N !

n1! . . . nk!

of full enumerations. Otherwise, method reverts to "simulated" using the given
Nsim. It also reverts to "simulated" when ncomb > 1e8 and dist = TRUE.

dist = FALSE (default) or TRUE. If TRUE, the simulated or fully enumerated distribu-
tion vectors null.dist1 and null.dist2 are returned for the respective test
statistic versions. Otherwise, NULL is returned. When dist = TRUE then Nsim <-
min(Nsim, 1e8), to limit object size.
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Nsim = 10000 (default), number of simulation sample splits to use. It is only used
when method = "simulated", or when method = "exact" reverts to method =
"simulated", as previously explained.

Details

If AD is the Anderson-Darling criterion for the k samples, its standardized test statistic is T.AD =
(AD−µ)/σ, with µ = k−1 and σ representing mean and standard deviation of AD. This statistic
is used to test the hypothesis that the samples all come from the same but unspecified continuous
distribution function F (x).

According to the reference article, two versions of the AD test statistic are provided. The above
mean and standard deviation are strictly valid only for version 1 in the continuous distribution case.

NA values are removed and the user is alerted with the total NA count. It is up to the user to judge
whether the removal of NA’s is appropriate.

The continuity assumption can be dispensed with, if we deal with independent random samples,
or if randomization was used in allocating subjects to samples or treatments, and if we view the
simulated or exact P -values conditionally, given the tie pattern in the pooled samples. Of course,
under such randomization any conclusions are valid only with respect to the group of subjects that
were randomly allocated to their respective samples. The asymptotic P -value calculation assumes
distribution continuity. No adjustment for lack thereof is known at this point. For details on the
asymptotic P -value calculation see ad.pval.

Value

A list of class kSamples with components

test.name "Anderson-Darling"

k number of samples being compared

ns vector of the k sample sizes (n1, . . . , nk)

N size of the pooled sample = n1 + . . .+ nk

n.ties number of ties in the pooled samples

sig standard deviations σ of version 1 of AD under the continuity assumption

ad 2 x 3 (2 x 4) matrix containing AD,T.AD, asymptotic P -value, (simulated or
exact P -value), for each version of the standardized test statistic T , version 1 in
row 1, version 2 in row 2.

warning logical indicator, warning = TRUE when at least one ni < 5

null.dist1 simulated or enumerated null distribution of version 1 of the test statistic, given
as vector of all generated AD statistics.

null.dist2 simulated or enumerated null distribution of version 2 of the test statistic, given
as vector of all generated AD statistics.

method The method used.

Nsim The number of simulations.
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warning

method = "exact" should only be used with caution. Computation time is proportional to the num-
ber of enumerations. In most cases dist = TRUE should not be used, i.e., when the returned distri-
bution vectors null.dist1 and null.dist2 become too large for the R work space. These vectors
are limited in length by 1e8.

Note

For small sample sizes and small k exact null distribution calculations are possible (with or without
ties), based on a recursively extended version of Algorithm C (Chase’s sequence) in Knuth (2011),
Ch. 7.2.1.3, which allows the enumeration of all possible splits of the pooled data into samples of
sizes of n1, . . . , nk, as appropriate under treatment randomization. The enumeration and simulation
are both done in C.

Note

It has recently come to our attention that the Anderson-Darling test, originally proposed by Pettitt
(1976) in the 2-sample case and generalized to k samples by Scholz and Stephens, has a close
relative created by Baumgartner et al (1998) in the 2 sample case and populatized by Neuhaeuser
(2012) with at least 6 papers among his cited references and generalized by Murakami (2006) to k
samples.

References

Baumgartner, W., Weiss, P. and Schindler, H. (1998), A nonparametric test for the general two-
sample problem, Bionetrics, 54, 1129-1135.

Knuth, D.E. (2011), The Art of Computer Programming, Volume 4A Combinatorial Algorithms Part
1, Addison-Wesley

Neuhaeuser, M. (2012), Nonparametric Statistical Tests, A Computational Approach, CRC Press.

Murakami, H. (2006), A k-sample rank test based on modified Baumgartner statistic and it power
comparison, Jpn. Soc. Comp. Statist., 19, 1-13.

Murakami, H. (2012), Modified Baumgartner statistic for the two-sample and multisample prob-
lems: a numerical comparison. J. of Statistical Comput. and Simul., 82:5, 711-728.

Pettitt, A.N. (1976), A two-sample Anderson_Darling rank statistic, Biometrika, 63, 161-168.

Scholz, F. W. and Stephens, M. A. (1987), K-sample Anderson-Darling Tests, Journal of the Amer-
ican Statistical Association, Vol 82, No. 399, 918–924.

See Also

ad.test.combined, ad.pval

Examples

u1 <- c(1.0066, -0.9587, 0.3462, -0.2653, -1.3872)
u2 <- c(0.1005, 0.2252, 0.4810, 0.6992, 1.9289)
u3 <- c(-0.7019, -0.4083, -0.9936, -0.5439, -0.3921)
y <- c(u1, u2, u3)



8 ad.test.combined

g <- as.factor(c(rep(1, 5), rep(2, 5), rep(3, 5)))
set.seed(2627)
ad.test(u1, u2, u3, method = "exact", dist = FALSE, Nsim = 1000)
# or with same seed
# ad.test(list(u1, u2, u3), method = "exact", dist = FALSE, Nsim = 1000)
# or with same seed
# ad.test(y ~ g, method = "exact", dist = FALSE, Nsim = 1000)

ad.test.combined Combined Anderson-Darling k-Sample Tests

Description

This function combines several independent Anderson-Darling k-sample tests into one overall test
of the hypothesis that the independent samples within each block come from a common unspecified
distribution, while the common distributions may vary from block to block. Both versions of the
Anderson-Darling test statistic are provided.

Usage

ad.test.combined(..., data = NULL,
method = c("asymptotic", "simulated", "exact"),
dist = FALSE, Nsim = 10000)

Arguments

... Either a sequence of several lists, say L1, . . . , LM (M > 1) where list Li con-
tains ki > 1 sample vectors of respective sizes ni1, . . . , niki , where nij > 4 is
recommended for reasonable asymptotic P -value calculation. Ni = ni1+ . . .+
niki

is the pooled sample size for block i,
or a list of such lists,
or a formula, like y ~ g | b, where y is a numeric response vector, g is a factor
with levels indicating different treatments and b is a factor indicating different
blocks; y, g, b are or equal length. y is split separately for each block level into
separate samples according to the g levels. The same g level may occur in dif-
ferent blocks. The variable names may correspond to variables in an optionally
supplied data frame via the data = argument,

data = an optional data frame providing the variables in formula input

method = c("asymptotic","simulated","exact"), where
"asymptotic" uses only an asymptotic P -value approximation, reasonable for
P in [0.00001, .99999], linearly extrapolated via log(P/(1 − P )) outside that
range. See ad.pval for details. The adequacy of the asymptotic P -value calcu-
lation may be checked using pp.kSamples.
"simulated" uses simulation to get Nsim simulated AD statistics for each block
of samples, adding them across blocks component wise to get Nsim combined
values. These are compared with the observed combined value to obtain the
estimated P -value.
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"exact" uses full enumeration of the test statistic values for all sample splits
of the pooled samples within each block. The test statistic vectors for the
first 2 blocks are added (each component against each component, as in the
R outer(x,y, "+") command) to get the convolution enumeration for the com-
bined test statistic. The resulting vector is convoluted against the next block
vector in the same fashion, and so on. It is possible only for small problems, and
is attempted only when Nsim is at least the (conservatively maximal) length

N1!

n11! . . . n1k1
!
× . . .× NM !

nM1! . . . nMkM
!

of the final distribution vector. Otherwise, it reverts to the simulation method
using the provided Nsim.

dist FALSE (default) or TRUE. If TRUE, the simulated or fully enumerated convolution
vectors null.dist1 and null.dist2 are returned for the respective test statistic
versions. Otherwise, NULL is returned for each.

Nsim = 10000 (default), number of simulation splits to use within each block of sam-
ples. It is only used when method = "simulated" or when method = "exact"
reverts to method = "simulated", as previously explained. Simulations are in-
dependent across blocks, using Nsim for each block. Nsim is limited by 1e7.

Details

If ADi is the Anderson-Darling criterion for the i-th block of ki samples, its standardized test
statistic is Ti = (ADi − µi)/σi, with µi and σi representing mean and standard deviation of ADi.
This statistic is used to test the hypothesis that the samples in the i-th block all come from the same
but unspecified continuous distribution function Fi(x).

The combined Anderson-Darling criterion is ADcomb = AD1+. . .+ADM and Tcomb = (ADcomb−
µc)/σc is the standardized form, where µc = µ1 + . . . + µM and σc =

√
σ2
1 + . . .+ σ2

M rep-
resent the mean and standard deviation of ADcomb. The statistic Tcomb is used to simultane-
ously test whether the samples in each block come from the same continuous distribution function
Fi(x), i = 1, . . . ,M . The unspecified common distribution function Fi(x) may change from block
to block. According to the reference article, two versions of the test statistic and its corresponding
combinations are provided.

The ki for each block of ki independent samples may change from block to block.

NA values are removed and the user is alerted with the total NA count. It is up to the user to judge
whether the removal of NA’s is appropriate.

The continuity assumption can be dispensed with if we deal with independent random samples, or if
randomization was used in allocating subjects to samples or treatments, independently from block
to block, and if we view the simulated or exact P -values conditionally, given the tie patterns within
each block. Of course, under such randomization any conclusions are valid only with respect to
the blocks of subjects that were randomly allocated. The asymptotic P -value calculation assumes
distribution continuity. No adjustment for lack thereof is known at this point. The same comment
holds for the means and standard deviations of respective statistics.

Value

A list of class kSamples with components
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test.name = "Anderson-Darling"

M number of blocks of samples being compared

n.samples list of M vectors, each vector giving the sample sizes for each block of samples
being compared

nt = (N1, . . . , NM )

n.ties vector giving the number of ties in each the M comparison blocks

ad.list list of M matrices giving the ad results for ad.test applied to the samples in
each of the M blocks

mu vector of means of the AD statistic for the M blocks

sig vector of standard deviations of the AD statistic for the M blocks

ad.c 2 x 3 (2 x 4) matrix containing ADcomb, Tcomb, asymptotic P -value, (simulated
or exact P -value), for each version of the combined test statistic, version 1 in
row 1 and version 2 in row 2

mu.c mean of ADcomb

sig.c standard deviation of ADcomb

warning logical indicator, warning = TRUE when at least one nij < 5

null.dist1 simulated or enumerated null distribution of version 1 of ADcomb

null.dist2 simulated or enumerated null distribution of version 2 of ADcomb

method the method used.

Nsim the number of simulations used for each block of samples.

Note

This test is useful in analyzing treatment effects in randomized (incomplete) block experiments and
in examining performance equivalence of several laboratories when presented with different test
materials for comparison.

References

Scholz, F. W. and Stephens, M. A. (1987), K-sample Anderson-Darling Tests, Journal of the Amer-
ican Statistical Association, Vol 82, No. 399, 918–924.

See Also

ad.test, ad.pval

Examples

## Create two lists of sample vectors.
x1 <- list( c(1, 3, 2, 5, 7), c(2, 8, 1, 6, 9, 4), c(12, 5, 7, 9, 11) )
x2 <- list( c(51, 43, 31, 53, 21, 75), c(23, 45, 61, 17, 60) )
# and a corresponding data frame datx1x2
x1x2 <- c(unlist(x1),unlist(x2))
gx1x2 <- as.factor(c(rep(1,5),rep(2,6),rep(3,5),rep(1,6),rep(2,5)))
bx1x2 <- as.factor(c(rep(1,16),rep(2,11)))
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datx1x2 <- data.frame(A = x1x2, G = gx1x2, B = bx1x2)

## Run ad.test.combined.
set.seed(2627)
ad.test.combined(x1, x2, method = "simulated", Nsim = 1000)
# or with same seed
# ad.test.combined(list(x1, x2), method = "simulated", Nsim = 1000)
# ad.test.combined(A~G|B,data=datx1x2,method="simulated",Nsim=1000)

contingency2xt Kruskal-Wallis Test for the 2 x t Contingency Table

Description

This function uses the Kruskal-Wallis criterion to test the hypothesis of no association between the
counts for two responses "A" and "B" across t categories.

Usage

contingency2xt(Avec, Bvec,
method = c("asymptotic", "simulated", "exact"),
dist = FALSE, tab0 = TRUE, Nsim = 1e+06)

Arguments

Avec vector of length t giving the counts A1, . . . , At for response "A" according to t
categories. m = A1 + . . .+At.

Bvec vector of length t giving the counts B1, . . . , Bt for response "B" according to t
categories. n = B1 + . . .+Bt = N −m.

method = c("asymptotic","simulated","exact"), where
"asymptotic" uses only an asymptotic chi-square approximation with t − 1
degrees of freedom to approximate the P -value. This calculation is always done.
"simulated" uses Nsim simulated counts for Avec and Bvec with the observed
marginal totals, m, n, d = Avec+Bvec, to estimate the P -value.
"exact" enumerates all counts for Avec and Bvec with the observed marginal
totals to get an exact P -value. It is used only when Nsim is at least as large as the
number choose(m+t-1,t-1) of full enumerations. Otherwise, method reverts
to "simulated" using the given Nsim.

dist FALSE (default) or TRUE. If dist = TRUE, the distribution of the simulated or fully
enumerated Kruskal-Wallis test statistics is returned as null.dist, if dist =
FALSE the value of null.dist is NULL. The coice dist = TRUE also limits Nsim
<- min(Nsim,1e8).
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tab0 TRUE (default) or FALSE. If tab0 = TRUE, the null distribution is returned in 2 col-
umn matrix form when method = "simulated". When tab0 = FALSE the simu-
lated null distribution is returned as a vector of all simulated values of the test
statistic.

Nsim =10000 (default), number of simulated Avec splits to use. It is only used when
method = "simulated", or when method = "exact" reverts to method = "simulated",
as previously explained.

Details

For this data scenario the Kruskal-Wallis criterion is

K.star =
N(N − 1)

mn
(
∑ A2

i

di
− m2

N
)

with di = Ai + Bi, treating "A" responses as 1 and "B" responses as 2, and using midranks as
explained in Lehmann (2006), Chapter 5.3.

For small sample sizes exact null distribution calculations are possible, based on Algorithm C
(Chase’s sequence) in Knuth (2011), which allows the enumeration of all possible splits of m into
counts A1, . . . , At such that m = A1+ . . .+At, followed by the calculation of the statistic K.star
for each such split. Simulation of A1, . . . , At uses the probability model (5.35) in Lehmann (2006)
to successively generate hypergeometric counts A1, . . . , At. Both these processes, enumeration and
simulation, are done in C.

Value

A list of class kSamples with components

test.name "2 x t Contingency Table"

t number of classification categories

KW.cont 2 (3) vector giving the observed KW statistic, its asymptotic P -value (and sim-
ulated or exact P -value)

null.dist simulated or enumerated null distribution of the test statistic. It is given as an
M by 2 matrix, where the first column (named KW) gives the M unique ordered
values of the Kruskal-Wallis statistic and the second column (named prob) gives
the corresponding (simulated or exact) probabilities.
This format of null.dist is returned when method = "exact" and dist = TRUE
or when method = "simulated" and dist = TRUE and tab0 = TRUE are speci-
fied.
For method = "simulated", dist = TRUE, and tab0 = FALSE the null distribu-
tion null.dist is returned as the vector of all simulated test statistic values.
This is used in contingency2xt.comb in the simulation mode.
null.dist = NULL is returned when dist = FALSE or when method = "asymptotic".

method the method used.

Nsim the number of simulations.
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warning

method = "exact" should only be used with caution. Computation time is proportional to the num-
ber of enumerations. In most cases dist = TRUE should not be used, i.e., when the returned distri-
bution objects become too large for R’s work space.

References

Knuth, D.E. (2011), The Art of Computer Programming, Volume 4A Combinatorial Algorithms Part
1, Addison-Wesley

Kruskal, W.H. (1952), A Nonparametric Test for the Several Sample Problem, The Annals of Math-
ematical Statistics, Vol 23, No. 4, 525-540

Kruskal, W.H. and Wallis, W.A. (1952), Use of Ranks in One-Criterion Variance Analysis, Journal
of the American Statistical Association, Vol 47, No. 260, 583–621.

Lehmann, E.L. (2006), Nonparametrics, Statistical Methods Based on Ranks, Revised First Edition,
Springer, New York.

Examples

contingency2xt(c(25,15,20),c(16,6,18),method="exact",dist=FALSE,
tab0=TRUE,Nsim=1e3)

contingency2xt.comb Combined Kruskal-Wallis Tests for the 2 x t Contingency Tables

Description

This function uses the Kruskal-Wallis criterion to test the hypothesis of no association between the
counts for two responses "A" and "B" across t categories and across M blocks.

Usage

contingency2xt.comb(...,
method = c("asymptotic", "simulated", "exact"),
dist = FALSE, Nsim = 10000)

Arguments

... Either several lists L1, . . . , LM , each of two equal length vectors Ai and Bi,
i = 1, . . . ,M , of counts ≥ 0, where the common length ti of Ai and Bi may
vary from list to list
or a list of M such lists

method = c("asymptotic","simulated","exact"), where
"asymptotic" uses only an asymptotic chi-square approximation with (t1−1)+
. . .+(tM −1) degrees of freedom to approximate the P -value, This calculation
is always done.
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"simulated" uses Nsim simulated counts for the two vectors Ai and Bi in list
Li, with the observed marginal totals, mi =

∑
Ai, ni =

∑
Bi, di = Ai + Bi.

It does this independently from list to list using the same Nsim each time, adding
the resulting Kruskal-Wallis criteria across lists to get Nsim such summed values
to estimate the P -value.
"exact" enumerates all counts for Ai and Bi with the respective observed
marginal totals to get an exact distribution for each list. These distributions
are then convolved to obtain the P -value. It is used only when Nsim is at least
as large as the product across blocks of the number choose(m+t-1,t-1) of full
enumerations per block, where t = t1, . . . , tM . Otherwise, method reverts to
"simulated" using the given Nsim.

dist FALSE (default) or TRUE. If TRUE, the simulated or fully enumerated null dis-
tribution null.dist is returned for the Kruskal-Wallis test statistic. Otherwise
null.dist = NULL is returned.

Nsim =10000 (default), number of simulated Ai splits to use per block. It is only used
when method = "simulated", or when method = "exact" reverts to method =
"simulated", as previously explained.

Details

For details on the calculation of the Kruskal-Wallis criterion and its exact or simulated distribution
for each block see contingency2xt.

Value

A list of class kSamples with components

test.name "Combined 2 x t Contingency Tables"

t vector giving the number of classification categories per block

M number of blocked tables

kw.list a list of the KW.cont output componenents from contingency2xt for each of
the blocks

null.dist simulated or enumerated null distribution of the combined test statistic. It is
given as an L by 2 matrix, where the first column (named KW) gives the L unique
ordered values of the combined Kruskal-Wallis statistic and the second column
(named prob) gives the corresponding (simulated or exact) probabilities.
null.dist = NULL is returned when dist = FALSE or when method = "asymptotic".

method the method used.

Nsim the number of simulations.

warning

method = "exact" should only be used with caution. Computation time is proportional to the num-
ber of enumerations. In most cases dist = TRUE should not be used, i.e., when the returned distri-
bution objects become too large for R’s work space.
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Note

The required level for Nsim in order for method = "exact" to be carried out, is conservative,
but there is no transparent way to get a better estimate. The actual dimension L of the realized
null.dist will typically be much smaller, since the distribution is compacted to its unique support
values.

Examples

out <- contingency2xt.comb(list(c(25,15,20),c(16,6,18)),
list(c(12,4,5),c(13,8,9)),method = "simulated", dist=FALSE, Nsim=1e3)

conv Convolution of Two Discrete Distributions

Description

This function convolutes two discrete distribution, each given by strictly increasing support vectors
and corresponding probability vectors.

Usage

conv(x1,p1,x2,p2)

Arguments

x1 support vector of the first distribution, with strictly increasing elements.
p1 vector of probabilities corresponding to x1.
x2 support vector of the second distribution, with strictly increasing elements.
p2 vector of probabilities corresponding to x2.

Details

The convolution is performed in C, looping through all paired sums, augmenting existing values or
inserting them with an update of the corresponding probabilities.

Value

A matrix with first column the new support vector and the second column the corresponding prob-
ability vector.

Examples

x1 <- c(1,2,3.5)
p1 <- c(.2,.3,.5)
x2 <- c(0,2.3,3,4)
p2 <- c(.1,.3,.3,.3)

conv(x1,p1,x2,p2)
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JT.dist Null Distribution of the Jonckheere-Terpstra k-Sample Test Statistic

Description

The Jonckheere-Terpstra k-sample test statistic JT is defined as JT =
∑

i<j Wij where Wij is the
Mann-Whitney statistic comparing samples i and j, indexed in the order of the stipulated increasing
alternative. It is assumed that there are no ties in the pooled samples.

This function uses Harding’s algorithm as far as computations are possible without becoming un-
stable.

Usage

djt(x, nn)

pjt(x, nn)

qjt(p, nn)

Arguments

x a numeric vector, typically integers

nn a vector of integers, representing the sample sizes in the order stipulated by the
alternative

p a vector of probabilities

Details

While Harding’s algorithm is mathematically correct, it is problematic in its computing implemen-
tation. The counts become very large and normalizing them by combinatorials leads to significance
loss. When that happens the functions return an error message: can’t compute due to numerical
instability. This tends to happen when the total number of sample values becomes too large. That
depends also on the way the sample sizes are allocated.

Value

For djt it is a vector p = (p1, . . . , pn) giving the values of pi = P (JT = xi), where n is the length
of the input x.

For pjt it is a vector P = (P1, . . . , Pn) giving the values of Pi = P (JT ≤ xi).

For qjt is a vecto r x = (x1, . . . , xn),where xi is the smallest x such that P (JT ≤ x) ≥ pi.
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References

Harding, E.F. (1984), An Efficient, Minimal-storage Procedure for Calculating the Mann-Whitney
U, Generalized U and Similar Distributions, Appl. Statist. 33 No. 1, 1-6.

Jonckheere, A.R. (1954), A Distribution Free k-sample Test against Ordered Alternatives, Biometrika,
41, 133-145.

Lehmann, E.L. (2006), Nonparametrics, Statistical Methods Based on Ranks, Revised First Edition,
Springer Verlag.

Terpstra, T.J. (1952), The Asymptotic Normality and Consistency of Kendall’s Test against Trend,
when Ties are Present in One Ranking, Indagationes Math. 14, 327-333.

Examples

djt(c(-1.5,1.2,3), 2:4)
pjt(c(2,3.4,7), 3:5)
qjt(c(0,.2,.5), 2:4)

jt.test Jonckheere-Terpstra k-Sample Test for Increasing Alternatives

Description

The Jonckheere-Terpstra k-sample test statistic JT is defined as JT =
∑

i<j Wij where Wij is the
Mann-Whitney statistic comparing samples i and j, indexed in the order of the stipulated increasing
alternative. There may be ties in the pooled samples.

Usage

jt.test(..., data = NULL, method=c("asymptotic","simulated","exact"),
dist = FALSE, Nsim = 10000)

Arguments

... Either several sample vectors, say x1, . . . , xk, with xi containing ni sample
values. ni > 4 is recommended for reasonable asymptotic P -value calculation.
The pooled sample size is denoted by N = n1+ . . .+nk. The order of samples
should be as stipulated under the alternative
or a list of such sample vectors,
or a formula y ~ g, where y contains the pooled sample values and g (same
length as y) is a factor with levels identifying the samples to which the elements
of y belong, the factor levels reflecting the order under the stipulated alternative,

data = an optional data frame providing the variables in formula y ~ g.

method = c("asymptotic","simulated","exact"), where
"asymptotic" uses only an asymptotic normal P -value approximation.
"simulated" uses Nsim simulated JT statistics based on random splits of the
pooled samples into samples of sizes n1, . . . , nk, to estimate the P -value.
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"exact" uses full enumeration of all sample splits with resulting JT statistics
to obtain the exact P -value. It is used only when Nsim is at least as large as the
number

ncomb =
N !

n1! . . . nk!

of full enumerations. Otherwise, method reverts to "simulated" using the given
Nsim. It also reverts to "simulated" when ncomb > 1e8 and dist = TRUE.

dist = FALSE (default) or TRUE. If TRUE, the simulated or fully enumerated distri-
bution vector null.dist is returned for the JT test statistic. Otherwise, NULL
is returned. When dist = TRUE then Nsim <- min(Nsim, 1e8), to limit object
size.

Nsim = 10000 (default), number of simulation sample splits to use. It is only used
when method = "simulated", or when method = "exact" reverts to method =
"simulated", as previously explained.

Details

The JT statistic is used to test the hypothesis that the samples all come from the same but unspecified
continuous distribution function F (x). It is specifically aimed at alternatives where the sampled
distributions are stochastically increasing.

NA values are removed and the user is alerted with the total NA count. It is up to the user to judge
whether the removal of NA’s is appropriate.

The continuity assumption can be dispensed with, if we deal with independent random samples,
or if randomization was used in allocating subjects to samples or treatments, and if we view the
simulated or exact P -values conditionally, given the tie pattern in the pooled samples. Of course,
under such randomization any conclusions are valid only with respect to the group of subjects that
were randomly allocated to their respective samples. The asymptotic P -value calculation is valid
provided all sample sizes become large.

Value

A list of class kSamples with components

test.name "Jonckheere-Terpstra"

k number of samples being compared

ns vector (n1, . . . , nk) of the k sample sizes

N size of the pooled sample = n1 + . . .+ nk

n.ties number of ties in the pooled sample

qn 4 (or 5) vector containing the observed JT , its mean and standard deviation and
its asymptotic P -value, (and its simulated or exact P -value)

warning logical indicator, warning = TRUE when at least one ni < 5

null.dist simulated or enumerated null distribution of the test statistic. It is NULL when
dist = FALSE or when method = "asymptotic".

method the method used.

Nsim the number of simulations used.
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References

Harding, E.F. (1984), An Efficient, Minimal-storage Procedure for Calculating the Mann-Whitney
U, Generalized U and Similar Distributions, Appl. Statist. 33 No. 1, 1-6.

Jonckheere, A.R. (1954), A Distribution Free k-sample Test against Ordered Alternatives, Biometrika,
41, 133-145.

Lehmann, E.L. (2006), Nonparametrics, Statistical Methods Based on Ranks, Revised First Edition,
Springer Verlag.

Terpstra, T.J. (1952), The Asymptotic Normality and Consistency of Kendall’s Test against Trend,
when Ties are Present in One Ranking, Indagationes Math. 14, 327-333.

Examples

x1 <- c(1,2)
x2 <- c(1.5,2.1)
x3 <- c(1.9,3.1)
yy <- c(x1,x2,x3)
gg <- as.factor(c(1,1,2,2,3,3))
jt.test(x1, x2, x3,method="exact",Nsim=90)
# or
# jt.test(list(x1, x2, x3), method = "exact", Nsim = 90)
# or
# jt.test(yy ~ gg, method = "exact", Nsim = 90)

pp.kSamples Upper Tail Probability Plots for Objects of Class kSamples

Description

This function plots upper tail probabilities of the limiting distribution against the corresponding
exact or simulated probabilities, both on a log-scale.

Usage

pp.kSamples(x)

Arguments

x an object of class kSamples

Details

Objects of class kSamples are produced by any of the following functions

ad.test Anderson-Darling k-sample test.

ad.test.combined Combined Anderson-Darling k-sample tests.

qn.test QN rank scores test.

qn.test.combined Combined QN rank scores tests.
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contingency2xt test for 2 ∗ t contingency table.

contingency2xt.comb test for the combination of 2 ∗ t contingency tables.

jt.test Jonckheere-Terpstra test.

Steel.test Steel test. This will work only for alternative = "greater" or "two-sided". The approx-
imation quality for "less" is the same as for "greater".

The command pp.kSamples(x) for an object of class kSamples will only produce a plot when the
object x contains non-NULL entries for the null distribution. The purpose of this function is to give
the user a sense of the asymptotic distribution accuracy.

See Also

ad.test, ad.test.combined, qn.test, qn.test.combined,

contingency2xt, contingency2xt.comb jt.test Steel.test

Examples

qn.out <- qn.test(c(1,3,7,2,9),c(1,4,6,11,2),test="KW",
method="simulated",dist=TRUE,Nsim=1000)
pp.kSamples(qn.out)

qn.test Rank Score k-Sample Tests

Description

This function uses the QN criterion (Kruskal-Wallis, van der Waerden scores, normal scores) to
test the hypothesis that k independent samples arise from a common unspecified distribution.

Usage

qn.test(..., data = NULL, test = c("KW", "vdW", "NS"),
method = c("asymptotic", "simulated", "exact"),
dist = FALSE, Nsim = 10000)

Arguments

... Either several sample vectors, say x1, . . . , xk, with xi containing ni sample
values. ni > 4 is recommended for reasonable asymptotic P -value calculation.
The pooled sample size is denoted by N = n1 + . . .+ nk,
or a list of such sample vectors,
or a formula y ~ g, where y contains the pooled sample values and g (same
length as y) is a factor with levels identifying the samples to which the elements
of y belong.

data = an optional data frame providing the variables in formula y ~ g.
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test = c("KW", "vdW", "NS"), where
"KW" uses scores 1:N (Kruskal-Wallis test)
"vdW" uses van der Waerden scores, qnorm( (1:N) / (N+1) )

"NS" uses normal scores, i.e., expected standard normal order statistics, invoking
function normOrder of package SuppDists (>=1.1-9.4)

method = c("asymptotic","simulated","exact"), where
"asymptotic" uses only an asymptotic chi-square approximation with k-1 de-
grees of freedom to approximate the P -value. This calculation is always done.
"simulated" uses Nsim simulated QN statistics based on random splits of the
pooled samples into samples of sizes n1, . . . , nk, to estimate the P -value.
"exact" uses full enumeration of all sample splits with resulting QN statistics
to obtain the exact P -value. It is used only when Nsim is at least as large as the
number

ncomb =
N !

n1! . . . nk!

of full enumerations. Otherwise, method reverts to "simulated" using the given
Nsim. It also reverts to "simulated" when ncomb > 1e8 and dist = TRUE.

dist FALSE (default) or TRUE. If TRUE, the simulated or fully enumerated null distri-
bution vector null.dist is returned for the QN test statistic. Otherwise, NULL
is returned. When dist = TRUE then Nsim <- min(Nsim, 1e8), to limit object
size.

Nsim = 10000 (default), number of simulation sample splits to use. It is only used
when method = "simulated", or when method = "exact" reverts to method =
"simulated", as previously explained.

Details

The QN criterion based on rank scores v1, . . . , vN is

QN =
1

s2v

(
k∑

i=1

(SiN − niv̄N )2

ni

)

where SiN is the sum of rank scores for the i-th sample and v̄N and s2v are sample mean and sample
variance (denominator N − 1) of all scores.

The statistic QN is used to test the hypothesis that the samples all come from the same but unspec-
ified continuous distribution function F (x). QN is always adjusted for ties by averaging the scores
of tied observations.

Conditions for the asymptotic approximation (chi-square with k − 1 degrees of freedom) can be
found in Lehmann, E.L. (2006), Appendix Corollary 10, or in Hajek, Sidak, and Sen (1999), Ch. 6,
problems 13 and 14.

For small sample sizes exact null distribution calculations are possible (with or without ties), based
on a recursively extended version of Algorithm C (Chase’s sequence) in Knuth (2011), which allows
the enumeration of all possible splits of the pooled data into samples of sizes of n1, . . . , nk, as
appropriate under treatment randomization. This is done in C, as is the simulation.

NA values are removed and the user is alerted with the total NA count. It is up to the user to judge
whether the removal of NA’s is appropriate.
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The continuity assumption can be dispensed with, if we deal with independent random samples
from any common distribution, or if randomization was used in allocating subjects to samples or
treatments, and if the asymptotic, simulated or exact P -values are viewed conditionally, given the
tie pattern in the pooled sample. Under such randomization any conclusions are valid only with
respect to the subjects that were randomly allocated to their respective treatment samples.

Value

A list of class kSamples with components

test.name "Kruskal-Wallis", "van der Waerden scores", or
"normal scores"

k number of samples being compared

ns vector (n1, . . . , nk) of the k sample sizes

N size of the pooled samples = n1 + . . .+ nk

n.ties number of ties in the pooled sample

qn 2 (or 3) vector containing the observed QN , its asymptotic P -value, (its simu-
lated or exact P -value)

warning logical indicator, warning = TRUE when at least one ni < 5

null.dist simulated or enumerated null distribution of the test statistic. It is NULL when
dist = FALSE or when method = "asymptotic".

method the method used.

Nsim the number of simulations used.

warning

method = "exact" should only be used with caution. Computation time is proportional to the num-
ber of enumerations. Experiment with system.time and trial values for Nsim to get a sense of the
required computing time. In most cases dist = TRUE should not be used, i.e., when the returned
distribution objects become too large for R’s work space.

References

Hajek, J., Sidak, Z., and Sen, P.K. (1999), Theory of Rank Tests (Second Edition), Academic Press.

Knuth, D.E. (2011), The Art of Computer Programming, Volume 4A Combinatorial Algorithms Part
1, Addison-Wesley

Kruskal, W.H. (1952), A Nonparametric Test for the Several Sample Problem, The Annals of Math-
ematical Statistics, Vol 23, No. 4, 525-540

Kruskal, W.H. and Wallis, W.A. (1952), Use of Ranks in One-Criterion Variance Analysis, Journal
of the American Statistical Association, Vol 47, No. 260, 583–621.

Lehmann, E.L. (2006), Nonparametrics, Statistical Methods Based on Ranks, Revised First Edition,
Springer Verlag.

See Also

qn.test.combined
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Examples

u1 <- c(1.0066, -0.9587, 0.3462, -0.2653, -1.3872)
u2 <- c(0.1005, 0.2252, 0.4810, 0.6992, 1.9289)
u3 <- c(-0.7019, -0.4083, -0.9936, -0.5439, -0.3921)
yy <- c(u1, u2, u3)
gy <- as.factor(c(rep(1,5), rep(2,5), rep(3,5)))
set.seed(2627)
qn.test(u1, u2, u3, test="KW", method = "simulated",

dist = FALSE, Nsim = 1000)
# or with same seed
# qn.test(list(u1, u2, u3),test = "KW", method = "simulated",
# dist = FALSE, Nsim = 1000)
# or with same seed
# qn.test(yy ~ gy, test = "KW", method = "simulated",
# dist = FALSE, Nsim = 1000)

qn.test.combined Combined Rank Score k-Sample Tests

Description

This function combines several independent rank score k-sample tests into one overall test of the
hypothesis that the independent samples within each block come from a common unspecified dis-
tribution, while the common distributions may vary from block to block.

Usage

qn.test.combined(..., data = NULL, test = c("KW", "vdW", "NS"),
method = c("asymptotic", "simulated", "exact"),
dist = FALSE, Nsim = 10000)

Arguments

... Either a sequence of several lists, say L1, . . . , LM (M > 1) where list Li con-
tains ki > 1 sample vectors of respective sizes ni1, . . . , niki , where nij > 4 is
recommended for reasonable asymptotic P -value calculation. Ni = ni1+ . . .+
niki

is the pooled sample size for block i,
or a list of such lists,
or a formula, like y ~ g | b, where y is a numeric response vector, g is a factor
with levels indicating different treatments and b is a factor indicating different
blocks; y, g, b have same length. y is split separately for each block level into
separate samples according to the g levels. The same g level may occur in dif-
ferent blocks. The variable names may correspond to variables in an optionally
supplied data frame via the data = argument.

data = an optional data frame providing the variables in formula input
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test = c("KW", "vdW", "NS"),
where "KW" uses scores 1:N (Kruskal-Wallis test)
"vdW" uses van der Waerden scores, qnorm( (1:N) / (N+1) )

"NS" uses normal scores, i.e., expected values of standard normal order statis-
tics, invoking function normOrder of package SuppDists (>=1.1-9.4)

For the above scores N changes from block to block and represents the total
pooled sample size Ni for block i.

method =c("asymptotic","simulated","exact"), where
"asymptotic" uses only an asymptotic chi-square approximation for the P -
value. The adequacy of asymptotic P -values for use with moderate sample sizes
may be checked with method = "simulated".
"simulated" uses simulation to get Nsim simulated QN statistics for each block
of samples, adding them component wise across blocks to get Nsim combined
values, and compares these with the observed combined value to get the esti-
mated P -value.
"exact" uses full enumeration of the test statistic value for all sample splits of
the pooled samples within each block. The test statistic vectors for each block
are added (each component against each component, as in the R outer(x,y,
"+") command) to get the convolution enumeration for the combined test statis-
tic. This "addition" is done one block at a time. It is possible only for small
problems, and is attempted only when Nsim is at least the (conservatively maxi-
mal) length

N1!

n11! . . . n1k1
!
× . . .× NM !

nM1! . . . nMkM
!

of the final distribution vector, were Ni = ni1 + . . . + niki is the sample size
of the pooled samples for the i-th block. Otherwise, it reverts to the simulation
method using the provided Nsim.

dist FALSE (default) or TRUE. If TRUE, the simulated or fully enumerated convolution
vector null.dist is returned for the QN test statistic.
Otherwise, NULL is returned.

Nsim = 10000 (default), number of simulation splits to use within each block of sam-
ples. It is only used when method = "simulated" or when method = "exact"
reverts to method = "simulated", as previously explained. Simulations are in-
dependent across blocks, using Nsim for each block.

Details

The rank score QN criterion QNi for the i-th block of ki samples, is used to test the hypothesis
that the samples in the i-th block all come from the same but unspecified continuous distribution
function Fi(x). See qn.test for the definition of the QN criterion and the exact calculation of its
null distribution.

The combined QN criterion QNcomb = QN1+ . . .+QNM is used to simultaneously test whether
the samples in block i come from the same continuous distribution function Fi(x). However, the
unspecified common distribution function Fi(x) may change from block to block.

The k for each block of k independent samples may change from block to block.
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The asymptotic approximating chi-square distribution has f = (k1 − 1) + . . .+ (kM − 1) degrees
of freedom.

NA values are removed and the user is alerted with the total NA count. It is up to the user to judge
whether the removal of NA’s is appropriate.

The continuity assumption can be dispensed with if we deal with independent random samples, or if
randomization was used in allocating subjects to samples or treatments, independently from block
to block, and if the asymptotic, simulated or exact P -values are viewed conditionally, given the tie
patterns within each block. Under such randomization any conclusions are valid only with respect
to the blocks of subjects that were randomly allocated. In case of ties the average rank scores are
used across tied observations within each block.

Value

A list of class kSamples with components

test.name "Kruskal-Wallis", "van der Waerden scores", or
"normal scores"

M number of blocks of samples being compared

n.samples list of M vectors, each vector giving the sample sizes for each block of samples
being compared

nt vector of length M of total sample sizes involved in each of the M comparisons of
ki samples, respectively

n.ties vector giving the number of ties in each the M comparison blocks

qn.list list of M matrices giving the qn results from qn.test, applied to the samples in
each of the M blocks

qn.c 2 (or 3) vector containing the observed QNcomb, asymptotic P -value, (simulated
or exact P -value).

warning logical indicator, warning = TRUE when at least one nij < 5.

null.dist simulated or enumerated null distribution of the QNcomb statistic. It is NULL
when dist = FALSE or when method = "asymptotic".

method The method used.

Nsim The number of simulations used for each block of samples.

Note

These tests are useful in analyzing treatment effects of shift nature in randomized (incomplete)
block experiments.

References

Lehmann, E.L. (2006), Nonparametric, Statistical Methods Based on Ranks, Springer Verlag, New
York. Ch. 6, Sec. 5D.

See Also

qn.test
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Examples

## Create two lists of sample vectors.
x1 <- list( c(1, 3, 2, 5, 7), c(2, 8, 1, 6, 9, 4), c(12, 5, 7, 9, 11) )
x2 <- list( c(51, 43, 31, 53, 21, 75), c(23, 45, 61, 17, 60) )
# and a corresponding data frame datx1x2
x1x2 <- c(unlist(x1),unlist(x2))
gx1x2 <- as.factor(c(rep(1,5),rep(2,6),rep(3,5),rep(1,6),rep(2,5)))
bx1x2 <- as.factor(c(rep(1,16),rep(2,11)))
datx1x2 <- data.frame(A = x1x2, G = gx1x2, B = bx1x2)

## Run qn.test.combined.
set.seed(2627)
qn.test.combined(x1, x2, method = "simulated", Nsim = 1000)
# or with same seed
# qn.test.combined(list(x1, x2), method = "simulated", Nsim = 1000)
# or qn.test.combined(A~G|B,data=datx1x2,method="simulated",Nsim=1000)

ShorelineFireEMS Shoreline Fire and EMS Turnout Times

Description

This data set gives turnout response times for Fire and EMS (Emergency Medical Services) dispatch
calls to the Shoreline, WA, Fire Department in 2006. The turnout time refers to time elapsed
between the emergency call dispatch and the crew leaving the fire station, or signaling that they are
on their way while being on route already. The latter scenario may explain the bimodal distribution
character.

Usage

data(ShorelineFireEMS)

Format

A list of two sublists $EMSTOT and $FireTOT, each with 4 vector components $ST57, $ST63, $ST64,
and $ST65 respectively, giving the turnout times (in seconds) (for EMS and Fire) at fire stations
ST57, ST63, ST64, and ST65.

Note

These data sets are provided to illustrate usage of ad.test and qn.test and their combined ver-
sions in testing for performance equivalence across fire stations.

Source

Thanks to Michael Henderson and the Fire Fighters and Paramedics of the Shoreline Fire Depart-
ment in Washington State.
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Examples

data(ShorelineFireEMS)
boxplot(ShorelineFireEMS$EMSTOT,xlab="Station", ylab="seconds",
main="EMS Turnout Time")
boxplot(ShorelineFireEMS$FireTOT,xlab="Station", ylab="seconds",
main="Fire Turnout Time")

Steel.test Steel’s Multiple Comparison Wilcoxon Tests

Description

This function uses pairwise Wilcoxon tests, comparing a common control sample with each of
several treatment samples, in a multiple comparison fashion. The experiment wise significance
probabity is calculated, estimated, or approximated, when testing the hypothesis that all indepen-
dent samples arise from a common unspecified distribution, or that treatments have no effect when
assigned randomly to the given subjects.

Usage

Steel.test(..., data = NULL,
method = c("asymptotic", "simulated", "exact"),
alternative = c("greater","less","two-sided"),
dist = FALSE, Nsim = 10000)

Arguments

... Either several sample vectors, say x1, . . . , xk, with xi containing ni sample
values. ni > 4 is recommended for reasonable asymptotic P -value calculation.
The pooled sample size is denoted by N = n1+ . . .+nk. The first vector serves
as control sample, the others as treatment samples.
or a list of such sample vectors.
or a formula y ~ g, where y contains the pooled sample values and g (same
length as y) is a factor with levels identifying the samples to which the elements
of y belong. The lowest factor level corresponds to the control sample, the other
levels to treatment samples.

data = an optional data frame providing the variables in formula y ~ g or y, g input

method = c("asymptotic","simulated","exact"), where
"asymptotic" uses only an asymptotic normal approximation to approximate
the P -value, This calculation is always done.
"simulated" uses Nsim simulated standardized Steel statistics based on random
splits of the pooled samples into samples of sizes n1, . . . , nk, to estimate the P -
value.
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"exact" uses full enumeration of all sample splits with resulting standardized
Steel statistics to obtain the exact P -value. It is used only when Nsim is at least
as large as the number

ncomb =
N !

n1! . . . nk!

of full enumerations. Otherwise, method reverts to "simulated" using the given
Nsim. It also reverts to "simulated" when ncomb > 1e8 and dist = TRUE.

alternative = c("greater","less","two-sided"), where for "greater" the maximum
of the pairwise standardized Wilcoxon test statistics is used and a large maxi-
mum value is judged significant. For "less" the minimum of the pairwise stan-
dardized Wilcoxon test statistics is used and a low minimum value is judged sig-
nificant. For "two-sided" the maximum of the absolute pairwise standardized
Wilcoxon test statistics is used and a large maximum value is judged significant.

dist = FALSE (default) or TRUE. If TRUE, the simulated or fully enumerated null dis-
tribution vector null.dist is returned for the Steel test statistic, as chosen via
alternative. Otherwise, NULL is returned. When dist = TRUE then Nsim <-
min(Nsim, 1e8), to limit object size.

Nsim = 10000 (default), number of simulation sample splits to use. It is only used
when method = "simulated", or when method = "exact" reverts to method =
"simulated", as previously explained.

Details

The Steel criterion uses the Wilcoxon test statistic in the pairwise comparisons of the common
control sample with each of the treatment samples. These statistics are used in standardized form,
using the means and standard deviations as they apply conditionally given the tie pattern in the
pooled data, see Scholz (2016). This conditional treatment allows for correct usage in the presence
of ties and is appropriate either when the samples are independent and come from the same distri-
bution (continuous or not) or when treatments are assigned randomly among the total of N subjects.
However, in the case of ties the significance probability has to be viewed conditionally given the tie
pattern.

The Steel statistic is used to test the hypothesis that the samples all come from the same but unspec-
ified distribution function F (x), or, under random treatment assigment, that the treatments have no
effect. The significance probability is the probability of obtaining test results as extreme or more
extreme than the observed test statistic, when testing for the possibility of a treatment effect under
any of the treatments.

For small sample sizes exact (conditional) null distribution calculations are possible (with or without
ties), based on a recursively extended version of Algorithm C (Chase’s sequence) in Knuth (2011),
which allows the enumeration of all possible splits of the pooled data into samples of sizes of
n1, . . . , nk, as appropriate under treatment randomization. This is done in C, as is the simulation of
such splits.

NA values are removed and the user is alerted with the total NA count. It is up to the user to judge
whether the removal of NA’s is appropriate.

Value

A list of class kSamples with components
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test.name "Steel"

alternative "greater", "less", or "two-sided"

k number of samples being compared, including the control sample as the first one

ns vector (n1, . . . , nk) of the k sample sizes

N size of the pooled sample = n1 + . . .+ nk

n.ties number of ties in the pooled sample

st 2 (or 3) vector containing the observed standardized Steel statistic, its asymp-
totic P -value, (its simulated or exact P -value)

warning logical indicator, warning = TRUE when at least one ni < 5

null.dist simulated or enumerated null distribution vector of the test statistic. It is NULL
when dist = FALSE or when method = "asymptotic".

method the method used.

Nsim the number of simulations used.

W vector (W12, . . . ,W1k) of Mann-Whitney statistics comparing each observation
under treatment i(> 1) against each observation of the control sample.

mu mean vector (n1n2/2, . . . , n1nk/2) of W.

tau vector of standard deviations of W.

sig0 standard deviation used in calculating the significance probability of the maxi-
mum (minimum) of (absolute) standardized Mann-Whitney statistics, see Scholz
(2016).

sig vector (σ1, . . . , σk) of standard deviations used in calculating the significance
probability of the maximum (minimum) of (absolute) standardized Mann-Whitney
statistics, see Scholz (2016).

warning

method = "exact" should only be used with caution. Computation time is proportional to the num-
ber of enumerations. Experiment with system.time and trial values for Nsim to get a sense of the
required computing time. In most cases dist = TRUE should not be used, i.e., when the returned
distribution objects become too large for R’s work space.

References

Knuth, D.E. (2011), The Art of Computer Programming, Volume 4A Combinatorial Algorithms Part
1, Addison-Wesley

Lehmann, E.L. (2006), Nonparametrics, Statistical Methods Based on Ranks, Revised First Edition,
Springer Verlag.

Scholz, F.W. (2023), "On Steel’s Test with Ties", https://arxiv.org/abs/2308.05873

https://arxiv.org/abs/2308.05873
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Examples

z1 <- c(103, 111, 136, 106, 122, 114)
z2 <- c(119, 100, 97, 89, 112, 86)
z3 <- c( 89, 132, 86, 114, 114, 125)
z4 <- c( 92, 114, 86, 119, 131, 94)
y <- c(z1, z2, z3, z4)
g <- as.factor(c(rep(1, 6), rep(2, 6), rep(3, 6), rep(4, 6)))
set.seed(2627)
Steel.test(list(z1, z2, z3, z4), method = "simulated",

alternative = "less", Nsim = 1000)
# or with same seed
# Steel.test(z1, z2, z3, z4,method = "simulated",
# alternative = "less", Nsim = 1000)
# or with same seed
# Steel.test(y ~ g, method = "simulated",
# alternative = "less", Nsim=1000)

SteelConfInt Simultaneous Confidence Bounds Based on Steel’s Multiple Compari-
son Wilcoxon Tests

Description

This function inverts pairwise Wilcoxon tests, comparing a common control sample with each of
several treatment samples to provide simultaneous confidence bounds for the respective shift pa-
rameters by which the sampled treatment populations may differ from the control population. It is
assumed that all samples are independent and that the sampled distributions are continuous to avoid
ties. The joint coverage probability for all bounds/intervals is calculated, estimated, or approxi-
mated, see Details. For treatment of ties also see Details.

Usage

SteelConfInt(..., data = NULL, conf.level = 0.95,
alternative = c("less", "greater", "two.sided"),

method = c("asymptotic", "exact", "simulated"), Nsim = 10000)

Arguments

... Either several sample vectors, say x1, . . . , xk, with xi containing ni sample
values. ni > 4 is recommended for reasonable asymptotic P -value calculation.
The pooled sample size is denoted by N = n1+ . . .+nk. The first vector serves
as control sample, the others as treatment samples.
or a list of such sample vectors.
or a formula y ~ g, where y contains the pooled sample values and g (same
length as y) is a factor with levels identifying the samples to which the elements
of y belong. The lowest factor level corresponds to the control sample, the other
levels to treatment samples.
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data = an optional data frame providing the variables in formula y ~ g.

conf.level = 0.95 (default) the target joint confidence level for all bounds/intervals.
0 < conf.level < 1.

alternative = c("less", "greater", "two.sided"), where "less" results in simultane-
ous upper confidence bounds for all shift parameters and any negative upper
bound should lead to the rejection of the null hypothesis of all shift parameters
being zero or positive in favor of at least one being less than zero.
"greater" results in simultaneous lower confidence bounds for all shift pa-
rameters and any positive lower bound should lead to the rejection of the null
hypothesis of all shift parameters being zero or negative in favor of at least one
being greater than zero.
"two.sided" results in simultaneous confidence intervals for all shift parame-
ters and any interval not straddling zero should lead to the rejection of the null
hypothesis of all shift parameters being zero in favor of at least one being dif-
ferent from zero.

method = c("asymptotic", "exact", "simulated"), where
"asymptotic" uses only an asymptotic normal approximation to approximate
the achieved joint coverage probability. This calculation is always done.
"exact" uses full enumeration of all sample splits to obtain the exact achieved
joint coverage probability (see Details). It is used only when Nsim is at least
as large as the number of full enumerations. Otherwise, method reverts to
"simulated" using the given Nsim.
"simulated" uses Nsim simulated random splits of the pooled samples into
samples of sizes n1, . . . , nk, to estimate the achieved joint coverage probability.

Nsim = 10000 (default), number of simulated sample splits to use. It is only used
when method = "simulated", or when method = "exact" reverts to method =
"simulated", as previously explained.

Details

The first sample is treated as control sample with sample size n1. The remaining s = k − 1
samples are treatment samples. Let W1i, i = 2, . . . , k denote the respective Wilcoxon statistics
comparing the common control sample (index 1) with each of the s treatment samples (indexed by
i). For each comparison of control and treatment i sample only the observations of the two samples
involved are ranked. By Wi = W1i − ni(ni + 1)/2 we denote the corresponding Mann-Whitney
test statistic. Furthermore, let Di(j) denote the j-th ordered value (ascending order) of the n1ni

paired differences between the observations in treatment sample i and those of the control sample.
By simple extension of results in Lehmann (2006), pages 87 and 92, the following equations hold,
relating the null distribution of the Mann-Whitney statistics and the joint coverage probabilities of
the Di(ji) for any set of j1, . . . , js with 1 ≤ ji ≤ n1ni.

P∆(∆i ≤ Di(ji), i = 2, . . . , k) = P0(Wi ≤ ji − 1, i = 2, . . . , k)

and
P∆(∆i ≥ Di(ji), i = 2, . . . , s) = P0(Wi ≤ n1ni − ji, i = 2, . . . , k)

where P∆ refers to the distribution under ∆ = (∆2, . . . ,∆k) and P0 refers to the joint null dis-
tribution of the Wi when all sampled distributions are the same and continuous. There are k − 1
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indices ji that can be manipulated to affect the achieved confidence level. To limit the computa-
tional complexity standardized versions of the Wi, i.e., (Wi − µi)/τi with µi and τi representing
mean and standard deviation of Wi, are used to choose a common value for (ji − 1 − µi)/τi (sat-
isfying the γ level) from the multivariate normal approximation for the Wi (see Miller (1981) and
Scholz (2016)), and reduce that to integer values for ji, rounding up, rounding down, and rounding
to the nearest integer. These integers ji are then used in approximating the actual joint probabilities
P0(Wi ≤ ji−1, i = 2, . . . , k), and from these three coverage probabilities the one that is closest to
the nominal confidence level γ and ≥ γ and also also the one that is closest without the restriction
≥ γ are chosen.

When method = "exact" or = "simulated" is specified, the same process is used, using either
the fully enumerated exact distribution of Wi, i = 2, . . . , k (based on a recursive version of Chase’s
sequence as presented in Knuth (2011)) for all sample splits, or the simulated distribution of Wi, i =
2, . . . , k. However, since these distributions are discrete the starting point before rounding up is the
smallest quantile such that the proportion of distribution values less or equal to it is at least γ. The
starting point before rounding down is the highest quantile such that the proportion of distribution
values less or equal to it is at most γ. The third option of rounding to the closest integer is performed
using the average of the first two.

Confidence intervals are constructed by using upper and lower confidence bounds, each with same
confidence level of (1 + γ)/2.

When the original sample data appear to be rounded, and especially when there are ties, one should
widen the computed intervals or bounds by the rounding ϵ, as illustrated in Lehmann (2006), pages
85 and 94. For example, when all sample values appear to end in one of .0, .2, .4, .6, .8, the rounding
ϵ would be .2. Ultimately, this is a judgment call for the user. Such widening of intervals will make
the actually achieved confidence level ≥ the stated achieved level.

Value

A list of class kSamples with components

test.name "Steel.bounds"

n1 the control sample size = n1

ns vector (n2, . . . , nk) of the s = k − 1 treatment sample sizes

N size of the pooled sample = n1 + . . .+ nk

n.ties number of ties in the pooled sample

bounds a list of data frames. When method = "asymptotic" is specified, the list con-
sists of two data frames named conservative.bounds.asymptotic and closest.bounds.asymptotic.
Each data frame consists of s rows corresponding to the s shift parameters ∆i

and three columns, the first column giving the lower bound, the second column
the upper bound, while the first row of the third column states the computed
confidence level by asymptotic approximation, applying jointly to all s sets of
bounds. For one-sided bounds the corresponding other bound is set to Inf or
-Inf, respectively.
In case of conservative.bounds.asymptotic the achieved asymptotic confi-
dence level is targeted to be ≥ conf.level, but closest to it among three possi-
ble choices (see Details).
In the case of closest.bounds.asymptotic the achieved level is targeted to be
closest to conf.level.



SteelConfInt 33

When method = "exact" or method = "simulated" is specified the list consists
in addition of two further data frames named either
conservative.bounds.exact and closest.bounds.exact or
conservative.bounds.simulated and closest.bounds.simulated.
In either case the structure and meaning of these data frames parallels that of the
"asymptotic" case.

method the method used.

Nsim the number of simulations used.

j.LU an s by 4 matrix giving the indices ji used for computing the bounds Di(ji) for
∆i, i = 1, . . . , s.

warning

method = "exact" should only be used with caution. Computation time is proportional to the num-
ber of enumerations. Experiment with system.time and trial values for Nsim to get a sense of the
required computing time.

References

Knuth, D.E. (2011), The Art of Computer Programming, Volume 4A Combinatorial Algorithms Part
1, Addison-Wesley

Lehmann, E.L. (2006), Nonparametrics, Statistical Methods Based on Ranks, Revised First Edition,
Springer Verlag.

Miller, Rupert G., Jr. (1981), Simultaneous Statistical Inference, Second Edition, Springer Verlag,
New York.

Scholz, F.W. (2023), "On Steel’s Test with Ties", https://arxiv.org/abs/2308.05873

Examples

z1 <- c(103, 111, 136, 106, 122, 114)
z2 <- c(119, 100, 97, 89, 112, 86)
z3 <- c( 89, 132, 86, 114, 114, 125)
z4 <- c( 92, 114, 86, 119, 131, 94)
set.seed(2627)
SteelConfInt(list(z1,z2,z3,z4),conf.level=0.95,alternative="two.sided",

method="simulated",Nsim=10000)
# or with same seed
# SteelConfInt(z1,z2,z3,z4,conf.level=0.95,alternative="two.sided",
# method="simulated",Nsim=10000)

https://arxiv.org/abs/2308.05873
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