Title: | Alternative Implementations of Base R Functions |
Version: | 0.9.5 |
Author: | Craig Varrichio <canthony427@gmail.com> |
Maintainer: | Craig Varrichio <canthony427@gmail.com> |
Description: | Alternative implementations of some base R functions, including sort, order, and match. Functions are simplified but can be faster or have other advantages. |
Depends: | R (≥ 3.0.0) |
License: | GPL-3 |
RoxygenNote: | 5.0.1 |
NeedsCompilation: | yes |
Packaged: | 2016-08-26 16:28:14 UTC; Craig_Varrichio |
Repository: | CRAN |
Date/Publication: | 2016-08-26 20:35:38 |
Alternative Implementations of Base R Functions
Description
Alternative implementations of some base R functions, including sort, order, and match. Functions are simplified but can be faster or have other advantages. See the documentation of individual functions for details and benchmarks.
Details
Note that these functions cannot be considered drop-in replacements for the functions in base R
.
They do not implement all the same parameters and do not work for all data types. Utilize these
with caution in specialized applications that require them.
Convert string representations of numbers in any base to any other base.
Description
Convert string representations of numbers in any base to any other base.
Usage
convertBase(x, base1 = 10, base2 = 10)
Arguments
x |
a vector of integers or strings to be converted |
base1 |
the base of x |
base2 |
the base of the output |
See Also
Examples
identical(convertBase(1234,base2=8),as.character(as.octmode(1234)))
convertBase(17771,base1=8,base2=30)
convertBase(17771,base1=8,base2=10)
convertBase(8185,base1=10,base2=30)
Extract/return parts of objects
Description
Alternative to built-in Extract
or [
. Allows for
extraction operations that are ambivalent to the data type of the object. For
example, extract(x,i)
will work on lists, vectors, data frames,
matrices, etc.
Usage
extract(x, i = NULL, j = NULL)
Arguments
x |
object from which to extract elements |
i , j |
indices specifying elements to extract. Can be |
Details
Extraction is 2-100x faster on data frames than with the built in operation - but does not preserve row names.
Examples
#Typically about twice as fast on normal subselections
orders<-data.frame(orderNum=1:1e5,
sku=sample(1e3, 1e5, TRUE),
customer=sample(1e4,1e5,TRUE))
a<-sample(1e5,1e4)
system.time(b<-orders[a,])
system.time(c<-extract(orders,a))
rownames(b)<-NULL
rownames(c)<-NULL
identical(b,c)
#Speedup increases to 50-100x with oversampling
a<-sample(1e5,1e6,TRUE)
system.time(b<-orders[a,])
system.time(c<-extract(orders,a))
rownames(b)<-NULL
rownames(c)<-NULL
identical(b,c)
#Can create function calls that work for multiple data types
alist<-as.list(1:50)
avector<-1:50
extract(alist,1:5)
extract(avector,1:5)
extract(orders,1:5)#'
## Not run:
orders<-data.frame(orderNum=as.character(sample(1e5, 1e6, TRUE)),
sku=sample(1e3, 1e6, TRUE),
customer=sample(1e4,1e6,TRUE))
system.time(a<-sample(1e6,1e7,TRUE))
system.time(b<-orders[a,])
system.time(c<-extract(orders,a))
## End(Not run)
Value Matching
Description
Returns a lookup table or list of the positions of ALL matches of its first
argument in its second and vice versa. Similar to match
, though
that function only returns the first match.
Usage
matches(x, y, all.x = TRUE, all.y = TRUE, list = FALSE, indexes = TRUE,
nomatch = NA)
Arguments
x |
vector. The values to be matched. Long vectors are not currently supported. |
y |
vector. The values to be matched. Long vectors are not currently supported. |
all.x |
logical; if |
all.y |
logical; if |
list |
logical. If |
indexes |
logical. Whether to return the indices of the matches or the actual values. |
nomatch |
the value to be returned in the case when no match is found.
If not provided and |
Details
This behavior can be imitated by using joins to create lookup tables, but
matches
is simpler and faster: usually faster than the best joins in
other packages and thousands of times faster than the built in
merge
.
all.x/all.y
correspond to the four types of database joins in the
following way:
- left
all.x=TRUE
,all.y=FALSE
- right
all.x=FALSE
,all.y=TRUE
- inner
all.x=FALSE
,all.y=FALSE
- full
all.x=TRUE
,all.y=TRUE
Note that NA
values will match other NA
values.
Examples
one<-as.integer(1:10000)
two<-as.integer(sample(1:10000,1e3,TRUE))
system.time(a<-lapply(one, function (x) which(two %in% x)))
system.time(b<-matches(one,two,all.y=FALSE,list=TRUE))
#Only retain items from one with a match in two
b<-matches(one,two,all.x=FALSE,all.y=FALSE,list=TRUE)
length(b)==length(unique(two))
one<-round(runif(1e3),3)
two<-round(runif(1e3),3)
system.time(a<-lapply(one, function (x) which(two %in% x)))
system.time(b<-matches(one,two,all.y=FALSE,list=TRUE))
one<-as.character(1:1e5)
two<-as.character(sample(1:1e5,1e5,TRUE))
system.time(b<-matches(one,two,list=FALSE))
system.time(c<-merge(data.frame(key=one),data.frame(key=two),all=TRUE))
## Not run:
one<-as.integer(1:1000000)
two<-as.integer(sample(1:1000000,1e5,TRUE))
system.time(b<-matches(one,two,indexes=FALSE))
if(requireNamespace("dplyr",quietly=TRUE))
system.time(c<-dplyr::full_join(data.frame(key=one),data.frame(key=two)))
if(require(data.table,quietly=TRUE))
system.time(d<-merge(data.table(data.frame(key=one))
,data.table(data.frame(key=two))
,by='key',all=TRUE,allow.cartesian=TRUE))
one<-as.character(1:1000000)
two<-as.character(sample(1:1000000,1e5,TRUE))
system.time(a<-merge(one,two)) #Times out
system.time(b<-matches(one,two,indexes=FALSE))
if(requireNamespace("dplyr",quietly=TRUE))
system.time(c<-dplyr::full_join(data.frame(key=one),data.frame(key=two)))#'
if(require(data.table,quietly=TRUE))
{
system.time(d<-merge(data.table(data.frame(key=one))
,data.table(data.frame(key=two))
,by='key',all=TRUE,allow.cartesian=TRUE))
identical(b[,1],as.character(d$key))
}
## End(Not run)
Ordering vectors
Description
Simplified implementation of order
. For large vectors, typically is about 3x faster for
numbers and 20x faster for characters.
Usage
order2(x)
Arguments
x |
a vector of class numeric, integer, character, factor, or logical. Long vectors are not supported. |
Examples
chars<-as.character(sample(1e3,1e4,TRUE))
system.time(a<-order(chars))
system.time(b<-order2(chars))
identical(chars[a],chars[b])
ints<-as.integer(sample(1e3,1e4,TRUE))
system.time(a<-order(ints))
system.time(b<-order2(ints))
identical(ints[a],ints[b])
nums<-runif(1e4)
system.time(a<-order(nums))
system.time(b<-order2(nums))
identical(nums[a],nums[b])
logs<-as.logical(sample(0:1,1e6,TRUE))
system.time(a<-order(logs))
system.time(b<-order2(logs))
identical(logs[a],logs[b])
facts<-as.factor(as.character(sample(1e3,1e4,TRUE)))
system.time(a<-order(facts))
system.time(b<-order2(facts))
identical(facts[a],facts[b])
#How are special values like NA and Inf handled?
#For numerics, values sort intuitively, with the important note that NA and
#NaN will come after all real numbers but before Inf.
(function (x) x[order2(x)])(c(1,2,NA,NaN,Inf,-Inf))
#For characters, values sort correctly with NA at the end.
(function (x) x[order2(x)])(c('C','B',NA,'A'))
#For factors, values sort correctly with NA at the end.
(function (x) x[order2(x)])(as.factor(c('C','B',NA,'A')))
#Ordering a data frame using order2
df<-data.frame(one=as.character(1:4e5),
two=sample(1:1e5,4e5,TRUE),
three=sample(letters,4e5,TRUE),stringsAsFactors=FALSE)
system.time(a<-df[order(df$one),])
system.time(b<-df[order2(df$one),])
system.time(a<-df[order(df$two),])
system.time(b<-df[order2(df$two),])
## Not run:
chars<-as.character(sample(1e5,1e6,TRUE))
system.time(a<-order(chars))
system.time(b<-order2(chars))
ints<-as.integer(sample(1e5,1e6,TRUE))
system.time(result<-order(ints))
system.time(result<-order2(ints))
nums<-runif(1e6)
system.time(result<-order(nums))
system.time(result<-order2(nums))
logs<-as.logical(sample(0:1,1e7,TRUE))
system.time(result<-order(logs))
system.time(result<-order2(logs))
facts<-as.factor(as.character(sample(1e5,1e6,TRUE)))
system.time(a<-order(facts))
system.time(b<-order2(facts))
identical(facts[a],facts[b])
## End(Not run)
A wrapper for sample.int
and extract
that makes it easy to quickly sample rows from any object,
including Matrix and sparse matrix objects.
Description
Row names are not preserved.
Usage
sample2(x, size, replace = FALSE, prob = NULL)
Arguments
x |
object from which to extract elements |
size |
a positive number, the number of items to choose. |
replace |
Should sampling be with replacement? |
prob |
A vector of probability weights for obtaining the elements of the vector being sampled. |
Examples
#Sampling from a list
l1<-as.list(1:1e6)
b<-sample2(l1,1e5)
#Sampling from a data frame
orders<-data.frame(orderNum=sample(1e5, 1e6, TRUE),
sku=sample(1e3, 1e6, TRUE),
customer=sample(1e4,1e6,TRUE),stringsAsFactors=FALSE)
a<-sample2(orders,250000)
#With oversampling sample2 can be much faster than the alternatives,
#with the caveat that it does not preserve row names.
system.time(a<-sample2(orders,2000000,TRUE))
system.time(b<-orders[sample.int(nrow(orders),2000000,TRUE),])
## Not run:
system.time(c<-dplyr::sample_n(orders,2000000,replace=TRUE))
#Can quickly sample for sparse matrices while preserving sparsity
sm<-rsparsematrix(20000000,10000,density=.0001)
sm2<-sample2(sm,1000000)
## End(Not run)
Sorting vectors
Description
Simplified implementation of sort
. For large vectors,
typically is about 2x faster for numbers and 20x faster for characters and
factors.
Usage
sort2(x)
Arguments
x |
a vector of class numeric, integer, character, factor, or logical. Long vectors are not supported. |
Examples
chars<-as.character(sample(1e3,1e4,TRUE))
system.time(a<-sort(chars))
system.time(b<-sort2(chars))
identical(a,b)
ints<-as.integer(sample(1e3,1e4,TRUE))
system.time(a<-sort(ints))
system.time(b<-sort2(ints))
identical(a,b)
nums<-runif(1e4)
system.time(a<-sort(nums))
system.time(b<-sort2(nums))
identical(a,b)
logs<-as.logical(sample(0:1,1e6,TRUE))
system.time(result<-sort(logs))
system.time(result<-sort2(logs))
facts<-as.factor(as.character(sample(1e3,1e4,TRUE)))
system.time(a<-sort(facts))
system.time(b<-sort2(facts))
identical(a,b)
#How are special values like NA and Inf handled?
#For numerics, values sort intuitively, with the important note that NA and
#NaN will come after all real numbers but before Inf.
sort2(c(1,2,NA,NaN,Inf,-Inf))
#For characters, values sort correctly with NA at the end.
sort2(c('C','B',NA,'A'))
#For factors, values sort correctly with NA at the end
sort2(as.factor(c('C','B',NA,'A')))
## Not run:
chars<-as.character(sample(1e5,1e6,TRUE))
system.time(a<-sort(chars))
system.time(b<-sort2(chars))
ints<-as.integer(sample(1e5,1e6,TRUE))
system.time(result<-sort(ints))
system.time(result<-sort2(ints))
nums<-runif(1e6)
system.time(result<-sort(nums))
system.time(result<-sort2(nums))
logs<-as.logical(sample(0:1,1e7,TRUE))
system.time(result<-sort(logs))
system.time(result<-sort2(logs))
facts<-as.factor(as.character(sample(1e5,1e6,TRUE)))
system.time(a<-sort(facts))
system.time(b<-sort2(facts))
## End(Not run)