Title: Alternative Implementations of Base R Functions
Version: 0.9.5
Author: Craig Varrichio <canthony427@gmail.com>
Maintainer: Craig Varrichio <canthony427@gmail.com>
Description: Alternative implementations of some base R functions, including sort, order, and match. Functions are simplified but can be faster or have other advantages.
Depends: R (≥ 3.0.0)
License: GPL-3
RoxygenNote: 5.0.1
NeedsCompilation: yes
Packaged: 2016-08-26 16:28:14 UTC; Craig_Varrichio
Repository: CRAN
Date/Publication: 2016-08-26 20:35:38

Alternative Implementations of Base R Functions

Description

Alternative implementations of some base R functions, including sort, order, and match. Functions are simplified but can be faster or have other advantages. See the documentation of individual functions for details and benchmarks.

Details

Note that these functions cannot be considered drop-in replacements for the functions in base R. They do not implement all the same parameters and do not work for all data types. Utilize these with caution in specialized applications that require them.


Convert string representations of numbers in any base to any other base.

Description

Convert string representations of numbers in any base to any other base.

Usage

convertBase(x, base1 = 10, base2 = 10)

Arguments

x

a vector of integers or strings to be converted

base1

the base of x

base2

the base of the output

See Also

as.octmode

as.hexmode

strtoi

Examples


identical(convertBase(1234,base2=8),as.character(as.octmode(1234)))

convertBase(17771,base1=8,base2=30)
convertBase(17771,base1=8,base2=10)
convertBase(8185,base1=10,base2=30)


Extract/return parts of objects

Description

Alternative to built-in Extract or [. Allows for extraction operations that are ambivalent to the data type of the object. For example, extract(x,i) will work on lists, vectors, data frames, matrices, etc.

Usage

extract(x, i = NULL, j = NULL)

Arguments

x

object from which to extract elements

i, j

indices specifying elements to extract. Can be numeric, character, or logical vectors.

Details

Extraction is 2-100x faster on data frames than with the built in operation - but does not preserve row names.

Examples

#Typically about twice as fast on normal subselections
orders<-data.frame(orderNum=1:1e5,
 sku=sample(1e3, 1e5, TRUE),
 customer=sample(1e4,1e5,TRUE))
a<-sample(1e5,1e4)
system.time(b<-orders[a,])
system.time(c<-extract(orders,a))
rownames(b)<-NULL
rownames(c)<-NULL
identical(b,c)

#Speedup increases to 50-100x with oversampling 
a<-sample(1e5,1e6,TRUE)
system.time(b<-orders[a,])
system.time(c<-extract(orders,a))
rownames(b)<-NULL
rownames(c)<-NULL
identical(b,c)

#Can create function calls that work for multiple data types
alist<-as.list(1:50)
avector<-1:50
extract(alist,1:5)
extract(avector,1:5)
extract(orders,1:5)#'

## Not run: 
orders<-data.frame(orderNum=as.character(sample(1e5, 1e6, TRUE)),
 sku=sample(1e3, 1e6, TRUE),
 customer=sample(1e4,1e6,TRUE))
system.time(a<-sample(1e6,1e7,TRUE))
system.time(b<-orders[a,])
system.time(c<-extract(orders,a))

## End(Not run)

Value Matching

Description

Returns a lookup table or list of the positions of ALL matches of its first argument in its second and vice versa. Similar to match, though that function only returns the first match.

Usage

matches(x, y, all.x = TRUE, all.y = TRUE, list = FALSE, indexes = TRUE,
  nomatch = NA)

Arguments

x

vector. The values to be matched. Long vectors are not currently supported.

y

vector. The values to be matched. Long vectors are not currently supported.

all.x

logical; if TRUE, then each value in x will be included even if it has no matching values in y

all.y

logical; if TRUE, then each value in y will be included even if it has no matching values in x

list

logical. If TRUE, the result will be returned as a list of vectors, each vector being the matching values in y. If FALSE, result is returned as a data frame with repeated values for each match.

indexes

logical. Whether to return the indices of the matches or the actual values.

nomatch

the value to be returned in the case when no match is found. If not provided and indexes=TRUE, items with no match will be represented as NA. If set to NULL, items with no match will be set to an index value of length+1. If indexes=FALSE, they will default to NA.

Details

This behavior can be imitated by using joins to create lookup tables, but matches is simpler and faster: usually faster than the best joins in other packages and thousands of times faster than the built in merge.

all.x/all.y correspond to the four types of database joins in the following way:

left

all.x=TRUE, all.y=FALSE

right

all.x=FALSE, all.y=TRUE

inner

all.x=FALSE, all.y=FALSE

full

all.x=TRUE, all.y=TRUE

Note that NA values will match other NA values.

Examples

one<-as.integer(1:10000)
two<-as.integer(sample(1:10000,1e3,TRUE))
system.time(a<-lapply(one, function (x) which(two %in% x)))
system.time(b<-matches(one,two,all.y=FALSE,list=TRUE))

#Only retain items from one with a match in two
b<-matches(one,two,all.x=FALSE,all.y=FALSE,list=TRUE)
length(b)==length(unique(two))

one<-round(runif(1e3),3)
two<-round(runif(1e3),3)
system.time(a<-lapply(one, function (x) which(two %in% x)))
system.time(b<-matches(one,two,all.y=FALSE,list=TRUE))
 
one<-as.character(1:1e5)
two<-as.character(sample(1:1e5,1e5,TRUE))
system.time(b<-matches(one,two,list=FALSE))
system.time(c<-merge(data.frame(key=one),data.frame(key=two),all=TRUE))

## Not run: 
one<-as.integer(1:1000000)
two<-as.integer(sample(1:1000000,1e5,TRUE))
system.time(b<-matches(one,two,indexes=FALSE))
if(requireNamespace("dplyr",quietly=TRUE))
 system.time(c<-dplyr::full_join(data.frame(key=one),data.frame(key=two)))
if(require(data.table,quietly=TRUE))
 system.time(d<-merge(data.table(data.frame(key=one))
             ,data.table(data.frame(key=two))
             ,by='key',all=TRUE,allow.cartesian=TRUE))

one<-as.character(1:1000000)
two<-as.character(sample(1:1000000,1e5,TRUE))
system.time(a<-merge(one,two)) #Times out
system.time(b<-matches(one,two,indexes=FALSE))
if(requireNamespace("dplyr",quietly=TRUE))
 system.time(c<-dplyr::full_join(data.frame(key=one),data.frame(key=two)))#'
if(require(data.table,quietly=TRUE))
{
 system.time(d<-merge(data.table(data.frame(key=one))
             ,data.table(data.frame(key=two))
             ,by='key',all=TRUE,allow.cartesian=TRUE))
 identical(b[,1],as.character(d$key))
}

## End(Not run)

Ordering vectors

Description

Simplified implementation of order. For large vectors, typically is about 3x faster for numbers and 20x faster for characters.

Usage

order2(x)

Arguments

x

a vector of class numeric, integer, character, factor, or logical. Long vectors are not supported.

Examples

chars<-as.character(sample(1e3,1e4,TRUE))
system.time(a<-order(chars))
system.time(b<-order2(chars))
identical(chars[a],chars[b])

ints<-as.integer(sample(1e3,1e4,TRUE))
system.time(a<-order(ints))
system.time(b<-order2(ints))
identical(ints[a],ints[b])

nums<-runif(1e4)
system.time(a<-order(nums))
system.time(b<-order2(nums))
identical(nums[a],nums[b])

logs<-as.logical(sample(0:1,1e6,TRUE))
system.time(a<-order(logs))
system.time(b<-order2(logs))
identical(logs[a],logs[b])

facts<-as.factor(as.character(sample(1e3,1e4,TRUE)))
system.time(a<-order(facts))
system.time(b<-order2(facts))
identical(facts[a],facts[b])

#How are special values like NA and Inf handled?
#For numerics, values sort intuitively, with the important note that NA and
#NaN will come after all real numbers but before Inf.
(function (x) x[order2(x)])(c(1,2,NA,NaN,Inf,-Inf))
#For characters, values sort correctly with NA at the end.
(function (x) x[order2(x)])(c('C','B',NA,'A'))
#For factors, values sort correctly with NA at the end.
(function (x) x[order2(x)])(as.factor(c('C','B',NA,'A')))


#Ordering a data frame using order2
df<-data.frame(one=as.character(1:4e5),
   two=sample(1:1e5,4e5,TRUE),
   three=sample(letters,4e5,TRUE),stringsAsFactors=FALSE)
system.time(a<-df[order(df$one),])  
system.time(b<-df[order2(df$one),])
system.time(a<-df[order(df$two),])  
system.time(b<-df[order2(df$two),])

## Not run: 
chars<-as.character(sample(1e5,1e6,TRUE))
system.time(a<-order(chars))
system.time(b<-order2(chars)) 

ints<-as.integer(sample(1e5,1e6,TRUE))
system.time(result<-order(ints))
system.time(result<-order2(ints))

nums<-runif(1e6)
system.time(result<-order(nums))
system.time(result<-order2(nums)) 

logs<-as.logical(sample(0:1,1e7,TRUE))
system.time(result<-order(logs))
system.time(result<-order2(logs))

facts<-as.factor(as.character(sample(1e5,1e6,TRUE)))
system.time(a<-order(facts))
system.time(b<-order2(facts))
identical(facts[a],facts[b])



## End(Not run)

A wrapper for sample.int and extract that makes it easy to quickly sample rows from any object, including Matrix and sparse matrix objects.

Description

Row names are not preserved.

Usage

sample2(x, size, replace = FALSE, prob = NULL)

Arguments

x

object from which to extract elements

size

a positive number, the number of items to choose.

replace

Should sampling be with replacement?

prob

A vector of probability weights for obtaining the elements of the vector being sampled.

Examples


#Sampling from a list
l1<-as.list(1:1e6)
b<-sample2(l1,1e5)

#Sampling from a data frame
orders<-data.frame(orderNum=sample(1e5, 1e6, TRUE),
   sku=sample(1e3, 1e6, TRUE),
   customer=sample(1e4,1e6,TRUE),stringsAsFactors=FALSE)
   
a<-sample2(orders,250000) 

#With oversampling sample2 can be much faster than the alternatives,
#with the caveat that it does not preserve row names.
system.time(a<-sample2(orders,2000000,TRUE))
system.time(b<-orders[sample.int(nrow(orders),2000000,TRUE),])
## Not run: 

system.time(c<-dplyr::sample_n(orders,2000000,replace=TRUE))

#Can quickly sample for sparse matrices while preserving sparsity
sm<-rsparsematrix(20000000,10000,density=.0001)
sm2<-sample2(sm,1000000)

## End(Not run)

Sorting vectors

Description

Simplified implementation of sort. For large vectors, typically is about 2x faster for numbers and 20x faster for characters and factors.

Usage

sort2(x)

Arguments

x

a vector of class numeric, integer, character, factor, or logical. Long vectors are not supported.

Examples

chars<-as.character(sample(1e3,1e4,TRUE))
system.time(a<-sort(chars))
system.time(b<-sort2(chars))
identical(a,b)  
 
ints<-as.integer(sample(1e3,1e4,TRUE))
system.time(a<-sort(ints))
system.time(b<-sort2(ints))
identical(a,b)
 
nums<-runif(1e4)
system.time(a<-sort(nums))
system.time(b<-sort2(nums))
identical(a,b)

logs<-as.logical(sample(0:1,1e6,TRUE))
system.time(result<-sort(logs))
system.time(result<-sort2(logs))

facts<-as.factor(as.character(sample(1e3,1e4,TRUE)))
system.time(a<-sort(facts))
system.time(b<-sort2(facts))
identical(a,b)

#How are special values like NA and Inf handled?
#For numerics, values sort intuitively, with the important note that NA and
#NaN will come after all real numbers but before Inf.
sort2(c(1,2,NA,NaN,Inf,-Inf))
#For characters, values sort correctly with NA at the end.
sort2(c('C','B',NA,'A'))
#For factors, values sort correctly with NA at the end
sort2(as.factor(c('C','B',NA,'A')))

## Not run: 
chars<-as.character(sample(1e5,1e6,TRUE))
system.time(a<-sort(chars))
system.time(b<-sort2(chars))

ints<-as.integer(sample(1e5,1e6,TRUE))
system.time(result<-sort(ints))
system.time(result<-sort2(ints))

nums<-runif(1e6)
system.time(result<-sort(nums))
system.time(result<-sort2(nums))

logs<-as.logical(sample(0:1,1e7,TRUE))
system.time(result<-sort(logs))
system.time(result<-sort2(logs))

facts<-as.factor(as.character(sample(1e5,1e6,TRUE)))
system.time(a<-sort(facts))
system.time(b<-sort2(facts))

## End(Not run)