Type: | Package |
Title: | Nonlinear Growth Models |
Version: | 1.3.1 |
Date: | 2023-05-22 |
Author: | Daniel Rodriguez |
Maintainer: | Daniel Rodriguez <daniel.rodriguez.perez@gmail.com> |
Description: | A compilation of nonlinear growth models. |
License: | GPL-3 |
URL: | https://github.com/drodriguezperez/growthmodels |
BugReports: | https://github.com/drodriguezperez/growthmodels/issues |
Suggests: | testthat |
RoxygenNote: | 7.2.3 |
Encoding: | UTF-8 |
NeedsCompilation: | no |
Packaged: | 2023-05-22 16:22:29 UTC; daniel |
Repository: | CRAN |
Date/Publication: | 2023-05-22 19:00:02 UTC |
growthmodels: Nonlinear Growth Models
Description
A compilation of nonlinear growth models.
Details
Package: | growthmodels |
Version: | 1.2.0 |
License: | GPL-3 |
Author(s)
Daniel Rodriguez daniel.rodriguez.perez@gmail.com
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.
A. Tsoularis and J. Wallace, "Analysis of logistic growth models.," Math Biosci, vol. 179, no. 1, pp. 21-55, Jul. 2002.
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
Michael J. Panik, "Growth Curve Modeling: Theory and Applications", John Wiley & Sons, December 2013.
http://en.wikipedia.org/wiki/Generalised_logistic_function
Blumberg growth model
Description
Computes the Blumberg growth model and its inverse
y(t) = \frac{\alpha * (t + t_0)^m}{w_0 + (t + t_0)^m}
Usage
blumberg(t, alpha, w0, m, t0 = 0)
blumberg.inverse(x, alpha, w0, m, t0 = 0)
Arguments
t |
time |
alpha |
upper asymptote |
w0 |
a reference value at t = t0 |
m |
slope of growth |
t0 |
time shift (default 0) |
x |
size |
Author(s)
Daniel Rodriguez
References
A. Tsoularis and J. Wallace, "Analysis of logistic growth models.," Math Biosci, vol. 179, no. 1, pp. 21-55, Jul. 2002.
Examples
growth <- blumberg(0:10, 10, 2, 0.5)
# Calculate inverse function
time <- blumberg.inverse(growth, 12, 2, 0.5)
Brody growth model
Description
Computes the Brody growth model and its inverse
y(t) = \alpha - (\alpha - w_0) exp(- k t)
Usage
brody(t, alpha, w0, k)
brody.inverse(x, alpha, w0, k)
Arguments
t |
time |
alpha |
upper asymptote |
w0 |
the value at t = 0 |
k |
growth rate |
x |
size |
Author(s)
Daniel Rodriguez
References
M. M. Kaps, W. O. W. Herring, and W. R. W. Lamberson, "Genetic and environmental parameters for traits derived from the Brody growth curve and their relationships with weaning weight in Angus cattle.," Journal of Animal Science, vol. 78, no. 6, pp. 1436-1442, May 2000.
Examples
growth <- brody(0:10, 10, 5, 0.3)
# Calculate inverse function
time <- brody.inverse(growth, 10, 5, 0.3)
Chapman-Richards growth model
Description
Computes the Chapman-Richards growth model and its inverse
y(t) = \alpha (1 - \beta exp(-k t)^{1/(1-m)})
Usage
chapmanRichards(t, alpha, beta, k, m)
chapmanRichards.inverse(x, alpha, beta, k, m)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
m |
slope of growth |
x |
size |
Author(s)
Daniel Rodriguez
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Examples
growth <- chapmanRichards(0:10, 10, 0.5, 0.3, 0.5)
# Calculate inverse function
time <- chapmanRichards.inverse(growth, 10, 0.5, 0.3, 0.5)
Generalised Logistic growth model
Description
Computes the Generalised Logistic growth model
y(t) = A + \frac{U - A}{1 + \beta exp(-k (t- t_0))}
Usage
generalisedLogistic(t, A, U, k, beta, t0)
generalisedLogistic.inverse(x, A, U, k, beta, t0 = 0)
Arguments
t |
time |
A |
the lower asymptote |
U |
the upper asymptote |
k |
growth range |
beta |
growth range |
t0 |
time shift (default 0) |
x |
size |
Author(s)
Daniel Rodriguez
References
http://en.wikipedia.org/wiki/Generalised_logistic_function
Examples
growth <- generalisedLogistic(0:10, 5, 10, 0.3, 0.5, 3)
# Calculate inverse function
time <- generalisedLogistic.inverse(growth, 5, 10, 0.3, 0.5, 3)
Generalised Richard growth model
Description
Computes the Generalised Richard growth model and its inverse
y(t) = A + \frac{U - A}{(1 + \beta exp(-k (t - t_0)))^{(1/m)} }
Usage
generalisedRichard(t, A, U, k, m, beta, t0)
generalisedRichard.inverse(x, A, U, k, m, beta, t0 = 0)
Arguments
t |
time |
A |
the lower asymptote |
U |
the upper asymptote |
k |
growth range |
m |
slope of growth |
beta |
growth range |
t0 |
time shift (default 0) |
x |
size |
Author(s)
Daniel Rodriguez
References
http://en.wikipedia.org/wiki/Generalised_logistic_function
Examples
growth <- generalisedRichard(0:10, 5, 10, 0.3, 0.5, 1, 3)
time <- generalisedRichard.inverse(growth, 5, 10, 0.3, 0.5, 1, 3)
Gompertz growth model
Description
Computes the Gompertz growth model and its inverse
y(t) = \alpha exp(-\beta exp(-k^t))
Usage
gompertz(t, alpha, beta, k)
gompertz.inverse(x, alpha, beta, k)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth displacement |
k |
growth rate |
x |
size |
Author(s)
Daniel Rodriguez
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Examples
growth <- gompertz(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- gompertz.inverse(growth, 10, 0.5, 0.3)
Janoschek growth model
Description
Computes the Janoschek growth model and its inverse
y(t) = \alpha *(\alpha - \beta) \exp(-b * t^c))
Usage
janoschek(t, alpha, beta, b, c)
janoschek.inverse(x, alpha, beta, b, c)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
lower asymptote |
b |
growth parameter |
c |
shape parameter |
x |
size |
Author(s)
Daniel Rodriguez
References
Michael J. Panik, "Growth Curve Modeling: Theory and Applications", John Wiley & Sons, December 2013.
Examples
growth <- janoschek(0:10, 10, 2, 0.5, 2)
# Calculate inverse function
time <- janoschek.inverse(growth, 12, 2, 0.5, 2)
Logistic growth model
Description
Computes the Logistic growth model
y(t) = \frac{\alpha}{1 + \beta exp(-k t)}
Usage
logistic(t, alpha, beta, k)
logistic.inverse(x, alpha, beta, k)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
x |
size |
Author(s)
Daniel Rodriguez
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Examples
growth <- logistic(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- logistic.inverse(growth, 10, 0.5, 0.3)
Log-logistic growth model
Description
Computes the Log-logistic growth model
y(t) = \frac{\alpha}{1 + \beta exp(-k log(t)}
Usage
loglogistic(t, alpha, beta, k)
loglogistic.inverse(x, alpha, beta, k)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
x |
size |
Author(s)
Daniel Rodriguez
References
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
Examples
growth <- loglogistic(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- loglogistic.inverse(growth, 10, 0.5, 0.3)
Mitcherlich growth model
Description
Computes the Mitcherlich growth model
y(t) = (\alpha - \beta k^t)
Usage
mitcherlich(t, alpha, beta, k)
mitcherlich.inverse(x, alpha, beta, k)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
x |
size |
Author(s)
Daniel Rodriguez
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Examples
growth <- mitcherlich(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- mitcherlich.inverse(growth, 10, 0.5, 0.3)
Morgan-Mercer-Flodin growth model
Description
Computes the Morgan-Mercer-Flodin growth model
y(t) = \frac{(w_0 \gamma + \alpha t^m)}{\gamma} +t^m
Usage
mmf(t, alpha, w0, gamma, m)
mmf.inverse(x, alpha, w0, gamma, m)
Arguments
t |
time |
alpha |
upper asymptote |
w0 |
the value at t = 0 |
gamma |
parameter that controls the point of inflection |
m |
growth rate |
x |
size |
Author(s)
Daniel Rodriguez
References
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
Examples
growth <- mmf(0:10, 10, 0.5, 4, 1)
# Calculate inverse function
time <- mmf.inverse(growth, 10, 0.5, 4, 1)
Monomolecular growth model
Description
Computes the monomolecular growth model
y(t) = \alpha ( 1 - \beta exp(-k t))
Usage
monomolecular(t, alpha, beta, k)
monomolecular.inverse(x, alpha, beta, k)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
x |
size |
Author(s)
Daniel Rodriguez
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Examples
growth <- monomolecular(0:10, 10, 0.5, 0.3)
# Calculate inverse function
time <- monomolecular.inverse(growth, 10, 0.5, 0.3)
Negative exponential growth model
Description
Computes the negative exponential growth model
y(t) = \alpha ( 1 - exp(-k t))
Usage
negativeExponential(t, alpha, k)
negativeExponential.inverse(x, alpha, k)
Arguments
t |
time |
alpha |
upper asymptote |
k |
growth rate |
x |
size |
Author(s)
Daniel Rodriguez
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Examples
growth <- negativeExponential(0:10, 1, 0.3)
# Calculate inverse function
time <- negativeExponential.inverse(growth, 10, 0.3)
Richard growth model
Description
Computes the Richard growth model and its inverse
y(t) = \frac{\alpha}{(1 + \beta exp(-k t))^{(1/m)}}
Usage
richard(t, alpha, beta, k, m)
richard.inverse(x, alpha, beta, k, m)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
m |
slope of growth |
x |
size |
Author(s)
Daniel Rodriguez
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Examples
growth <- richard(0:10, 10, 0.5, 0.3, 0.5)
time <- richard.inverse(growth, 10, 0.5, 0.3, 0.5)
Schnute growth model
Description
Computes the Schnute growth model
y(t) = \left[ r_0 + \beta exp(k t) \right]^m
Usage
schnute(t, r0, beta, k, m)
schnute.inverse(x, r0, beta, k, m)
Arguments
t |
time |
r0 |
reference value |
beta |
growth displacement |
k |
growth rate |
m |
slope of growth |
x |
size |
Author(s)
Daniel Rodriguez
References
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
Examples
growth <- schnute(0:10, 10, 5, .5, .5)
# Calculate inverse function
time <- schnute.inverse(growth, 10, 5, .5, .5)
Stannard growth model
Description
Computes the Stannard growth model
y(t) = \alpha \left[ 1 + exp(-(\beta + k t)/m) \right]^{-m}
Usage
stannard(t, alpha, beta, k, m)
stannard.inverse(x, alpha, beta, k, m)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth displacement |
k |
growth rate |
m |
slope of growth |
x |
size |
Author(s)
Daniel Rodriguez
References
A. Khamiz, Z. Ismail, and A. T. Muhammad, "Nonlinear growth models for modeling oil palm yield growth," Journal of Mathematics and Statistics, vol. 1, no. 3, p. 225, 2005.
Examples
growth <- stannard(0:10, 1, .2, .1, .5)
# Calculate inverse function
time <- stannard.inverse(growth, 1, .2, .1, .5)
von Bertalanffy growth model
Description
Computes the von Bertalanffy growth model
y(t) = (\alpha^(1-m) - \beta * exp(-k t))^(1/(1-m))
Usage
vonBertalanffy(t, alpha, beta, k, m)
vonBertalanffy.inverse(x, alpha, beta, k, m)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
m |
slope of growth |
x |
size |
Author(s)
Daniel Rodriguez
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Examples
growth <- vonBertalanffy(0:10, 10, 0.5, 0.3, 0.5)
# Calculate inverse function
time <- vonBertalanffy.inverse(growth, 10, 0.5, 0.3, 0.5)
Weibull growth model
Description
Computes the Weibull growth model
y(t) = \alpha - \beta exp(-k * t^m)
Usage
weibull(t, alpha, beta, k, m)
weibull.inverse(x, alpha, beta, k, m)
Arguments
t |
time |
alpha |
upper asymptote |
beta |
growth range |
k |
growth rate |
m |
slope of growth |
x |
size |
Author(s)
Daniel Rodriguez
References
D. Fekedulegn, M. Mac Siurtain, and J. Colbert, "Parameter estimation of nonlinear growth models in forestry," Silva Fennica, vol. 33, no. 4, pp. 327-336, 1999.
Examples
growth <- weibull(0:10, 10, 0.5, 0.3, 0.5)
# Calculate inverse function
time <- weibull.inverse(growth, 10, 0.5, 0.3, 0.5)