
Package ‘growR’
July 22, 2025

Type Package

Version 1.3.0

Date 2024-05-23

Title Implementation of the Vegetation Model ModVege

Description Run grass growth simulations using a grass growth model based
on ModVege (Jouven, M., P. Carrère, and R. Baumont ``Model Predicting
Dynamics of Biomass, Structure and Digestibility of Herbage in Managed
Permanent Pastures. 1. Model Description.'' (2006)
<doi:10.1111/j.1365-2494.2006.00515.x>). The implementation in
this package contains a few additions to the above cited version of ModVege,
such as simulations of management decisions, and influences of snow cover.
As such, the model is fit to simulate grass growth in mountainous
regions, such as the Swiss Alps. The package also contains routines for
calibrating the model and helpful tools for analysing model outputs and
performance.

URL https://github.com/kuadrat/growR, https://kuadrat.github.io/growR/

BugReports https://github.com/kuadrat/growR/issues

License MIT + file LICENSE

RoxygenNote 7.2.3

Encoding UTF-8

Imports rlang, R6, utils, Rdpack

Suggests ggplot2, knitr, patchwork, rmarkdown, testthat (>= 3.0.0)

Depends R (>= 2.10)

RdMacros Rdpack

LazyData true

Config/testthat/edition 3

Config/testthat/start-first setup, pscan, run

VignetteBuilder knitr

NeedsCompilation no

1

https://doi.org/10.1111/j.1365-2494.2006.00515.x
https://github.com/kuadrat/growR
https://kuadrat.github.io/growR/
https://github.com/kuadrat/growR/issues

2 Contents

Author Kevin Kramer [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-5523-6924>)

Maintainer Kevin Kramer <kevin.pasqual.kramer@protonmail.ch>

Repository CRAN

Date/Publication 2024-05-23 14:30:03 UTC

Contents
aCO2_inverse . 3
add_lines . 4
analyze_parameter_scan . 5
append_to_table . 6
atmospheric_CO2 . 7
autocut . 8
box_smooth . 8
browse . 9
build_functional_group . 10
check_for_package . 11
Combinator . 12
compare.R . 13
create_combinations . 13
create_example_environment . 15
ensure_table_columns . 16
ensure_unique_filename . 16
fCO2_growth_mod . 17
fCO2_transpiration_mod . 18
FG_A . 19
FG_B . 19
FG_C . 20
FG_D . 20
fPAR . 21
fT . 21
FunctionalGroup . 22
fW . 24
get_annual_gross_yield . 25
get_bias . 26
get_end_of_cutting_season . 27
get_expected_n_cuts . 28
get_relative_cut_contribution . 29
get_site_name . 30
growR_package_options . 30
growR_run_loop . 31
load_measured_data . 32
logger . 33
make_yearDOY . 34
ManagementData . 34
management_parameters . 36

https://orcid.org/0000-0001-5523-6924

aCO2_inverse 3

metric_map . 37
ModvegeEnvironment . 37
ModvegeParameters . 40
ModvegeSite . 43
parameter_scan_example . 50
parse_year_strings . 51
plot.ModvegeSite . 52
plot_parameter_scan . 52
posieux_weather . 53
PscanPlotter . 54
read_config . 56
run_parameter_scan . 57
SEA . 58
setup_directory . 59
set_growR_verbosity . 60
start_of_growing_season . 61
start_of_growing_season_mtd . 61
WeatherData . 62
weighted_temperature_sum . 65
willmott . 66
yield_parameters . 67

Index 68

aCO2_inverse Concentration representative year

Description

Inverse of ‘atmospheric_CO2‘: retrieve the year by which a given CO2 concentration is reached.

Usage

aCO2_inverse(aCO2)

Arguments

aCO2 Target CO2 concentration in ppm.

Details

Does not give a reasonable result for values below 317ppm, corresponding to the year 1949, as this
is where the minimum of the parabola is located in the second order fit to the data that was used in
aCO2.fct.

Value

year Approximate year (as floating point number) by which target concentration is reached.

4 add_lines

Examples

aCO2_inverse(420)
aCO2_inverse(700)
Insensible
aCO2_inverse(100)

add_lines Add data to a ggplot

Description

Add a lineplot of the *x_key* and *y_key* columns in *data* to the supplied ggplot object *ax*.
If none is supplied, a new one is created.

Usage

add_lines(
data,
ax = NULL,
y_key = "dBM_smooth",
x_key = "DOY",
style = "line",
label = NULL,
...

)

Arguments

data data.frame or similar object interpretable by ggplot.

ax list as returned by ggplot() and related functions.

x_key, y_key Column names in *data* to be plotted.

style XXX in ggplot geom_XXX to use.

label Codename for this line to be used in legend creation. If NULL, use *y_key*.

... All further arguments are passed to the selected ggplot geom.

Value

ax A ggplot list (like the input *ax*).

analyze_parameter_scan 5

Examples

library(ggplot2)
Add first set of data
ax = add_lines(mtcars, x_key = "wt", y_key = "mpg", label = "First Line")

Add one more line to the plot
ax = add_lines(mtcars, ax = ax, x_key = "wt", y_key = "qsec",
label = "Second Line")

print(ax)

analyze_parameter_scan

Analyze results of a parameter scan

Description

Analyze results of a parameter scan

Usage

analyze_parameter_scan(
parameter_scan_results,
datafile = "",
smooth_interval = 28

)

Arguments

parameter_scan_results

String or List. If a string, it is interpreted as the name of a rds file that contains
the results of a parameter scan which is then loaded using readRDS(). Other-
wise, it should be the output of run_parameter_scan() directly.

datafile Name or path to a file containing measured data. The model results in parame-
ter_scan_results are compared to the data therein. If empty, the site is inferred
from the ModvegeSite objects in parameter_scan_results and a corresponding
data file is searched for in ‘getOption("growR.data_dir", default = "data").

smooth_interval

Int. Number of days over which the variable dBM is smoothened. Should be set
to make experimental data and simulated data to be as comparable as possible.

Value

analyzed A list with five keys: dBM, cBM, cBM_end, metrics and params.

6 append_to_table

dBM A data.frame with 1 + n_params + n_metrics columns where each row represents a different
parameter combination. The first column (n) gives the row number and is used to identify a
parameter combination. The subsequent n_params columns give the values of the parameters
used in this combination. The final n_metrics columns give the resulting performance score
of the model run with these parameters for each metric applied to model variable dBM.

cBM A data.frame of same format as for the key dBM. The first n_params + 1 columns are identical
to the data.frame in dBM. The difference is that the final n_metrics columns give performance
scores with respect to the model variable cBM.

cBM_end A data.frame analogous to dBM and cBM, only this time the last n_metrics columns
give performance scores with respect to the variable cBM_end, which is the final value of cBM,
i.e. the cumulative grown biomass at the end of the year.

params A vector containing the names of the scanned parameters. These are also the column
names of columns 2:(n_params+1) in results.

metrics A vector containing the names of the employed performance metrics. These are also the
column names of the last n_metrics columns in results.

See Also

run_parameter_scan(), readRDS()

Examples

There needs to be data available with which the model is to be compared.
For this example, use data provided by the package.
path = system.file("extdata", package = "growR")
datafile = file.path(path, "posieux1.csv")

We also use example parameter scan data provided by the package.
In the real world, you would generally create your own data using
`run_parameter_scan()`.
analyze_parameter_scan(parameter_scan_example, datafile = datafile)

append_to_table Write *data* to supplied file in append mode without generating a
warning message.

Description

This function essentially wraps ‘write.table‘ with a calling handler that suppresses appending warn-
ings that would appear with the argument ‘col.names = TRUE‘.

Usage

append_to_table(data, filename, ...)

atmospheric_CO2 7

Arguments

data Any object which can be handled by ‘write.table‘.

filename Name of file to append to.

... All additional arguments are passed to ‘write.table‘.

atmospheric_CO2 Atmospheric CO2 concentration

Description

Retrieve CO2 concentration (in ppm) for given calendar year.

Usage

atmospheric_CO2(year)

Arguments

year Calender year for which to extract CO2 concentration.

Details

This function defines the CO2 concentration as a function of calendar year. it is based on a polyno-
mial fit to the annual CO2 data published by NOAA <https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_annmean_gl.txt>

Value

Approximate CO2 concentration in ppm for given year.

Note

This is only approximately valid for years in the range 1949 - 2020

Examples

atmospheric_CO2(1990)
atmospheric_CO2(2020)
Insensible
atmospheric_CO2(1800)

8 box_smooth

autocut autocut

Description

Simulation routine to realistically predict grass cutting events. This follows an implementation
described in Petersen et al. (2021).

The decision to cut is made based on two criteria. First, it is checked whether a *target biomass* is
reached on given DOY. The defined target depends on the DOY and is given through :func:‘get_target_biomass‘.
If said biomass is present, return ‘TRUE‘.

Otherwise, it is checked whether a given amount of time has passed since the last cut. Depending on
whether this is the first cut of the season or not, the relevant parameters are :int:‘last_DOY_for_initial_cut‘
and :int:‘max_cut_period‘. If that amount of time has passed, return ‘TRUE‘, otherwise return
‘FALSE‘.

The target biomass for a given day is determined following the principles described in Petersen et
al.

The exact regression for the target biomass is based on Fig. S2 in the supplementary material of
Petersen et al.

A refinement to expected yield as function of altitude has been implemented according to Table 1a
in Huguenin et al. (2017).

References

Petersen K, Kraus D, Calanca P, Semenov MA, Butterbach-Bahl K, Kiese R (2021). “Dynamic
Simulation of Management Events for Assessing Impacts of Climate Change on Pre-Alpine Grass-
land Productivity.” European Journal of Agronomy, 128, 126306. ISSN 1161-0301, doi:10.1016/
j.eja.2021.126306, https://www.sciencedirect.com/science/article/pii/S1161030121000782.

Huguenin-Elie IEMPSALWK, Jeangros B (2017). “Grundlagen für die Düngung landwirtschaftlicher
Kulturen in der Schweiz (GRUD), Kapitel 9: Düngung von Grasland.” Agrarforschung Schweiz.
https://www.agrarforschungschweiz.ch/2017/06/9-duengung-von-grasland-grud-2017/.

box_smooth Endpoint smoother

Description

Smooth data in vector x to its endpoint.

Usage

box_smooth(x, box_width = 28)

https://doi.org/10.1016/j.eja.2021.126306
https://doi.org/10.1016/j.eja.2021.126306
https://www.sciencedirect.com/science/article/pii/S1161030121000782
https://www.agrarforschungschweiz.ch/2017/06/9-duengung-von-grasland-grud-2017/

browse 9

Arguments

x 1D data to be smoothed.

box_width Width (in units of vector steps) of the box used for smoothing.

Details

Employ an endpoint box filter (aka "running mean" or endpoint smoother) to the 1-D data in x:

x_smoothed[i] = mean(x[i-box_width:i])

Where x is considered to be zero-padded vor values of i-box_width < 1.

Value

x_smooth Smoothened version of x.

Examples

Create a sine wave with noise
x = seq(0, 4*pi, 0.1)
y = sin(x) + runif(length(x))
Apply endpoint smoothing
y_smooth = box_smooth(y, box_width = 5)

browse Debugging utilities

Description

Debug specified function func by entering a browser() right at the beginning (browse()) or end
(browse_end()) of the function.

Usage

browse(func, ...)

browse_end(func, ...)

Arguments

func An R function to be browsed.

... Arguments to the function func that is to be browsed.

Details

These are convenience shorthands for R’s builtin debug tools, like debugonce() and the trace()/untrace()
combination.

10 build_functional_group

Value

Returns the result of func(...). Enters a browser().

Functions

• browse_end(): Enter browser() at the end of the function call to func(...). This only
works, if the function can execute without error until its end. Otherwise, the error will be
thrown.

See Also

browser(), debugonce(), trace()

trace()

Examples

Define a simple function for this example
my_func = function(a) { for (i in 1:5) { a = a + i }; return(a) }

Enter a browser at the beginning of the function
browse(my_func, 0)

Enter a browser at the end of the function. This allows us to inspect
the function's local variables without having to go through the whole loop.
browse_end(my_func, 0)

build_functional_group

Build the effective functional group as a weighted linear combination.

Description

Uses the weights found in :param:P to construct the effective functional groups and updates func-
tional group parameters in P.

Usage

build_functional_group(P)

Arguments

P list; name-value pairs of parameters. Should contain at least one non-zero func-
tional group weight w_FGX with X in (A, B, C, D). Any weights not present are
assumed to be 0.

check_for_package 11

Value

A FunctionalGroup object composed of a linear combination of the four groups FG_A, FG_B,
FG_C and FG_D.

See Also

FunctionalGroup

Examples

parameters = list(w_FGA = 0.5, w_FGB = 0.5)
build_functional_group(parameters)

The w_FGX weights in the input are interpreted as relative to each other.
Thus, they do not need to satisfy the sum rule. The following is
equivalent to the previous example:
parameters = list(w_FGA = 1, w_FGB = 1)
build_functional_group(parameters)

check_for_package Check if *package* is available

Description

Some functions not pertaining to the package core require additional libraries. These libraries are
listed as *suggested* in the ‘DESCRIPTION‘ When such a function is called by a user who does
not have the respective libraries installed, we should notice that and notify the user. This is the
purpose of this *function* ‘check_for_package‘.

Usage

check_for_package(package, stop = TRUE)

Arguments

package Name of the package to check for.
stop Toggle whether an error should be thrown (‘TRUE‘) or a warning generated

(‘FALSE‘).

Details

The function checks if *package* is installed and loaded. If not, it either produces a warning or
throws an error, depending on the value of *stop*.

Value

‘TRUE‘ if the package was found. ‘FALSE‘ if it wasn’t found and *stop* is ‘FALSE‘. Otherwise,
an error will be thrown.

12 Combinator

Combinator Combinator

Description

Helps to find all possible combinations for a given set of values.

Public fields

combinations list Once run, holds all valid parameter combinations as named lists.

eps float Numerical precision to require when checking the functional group weight sum criterion.

Methods

Public methods:
• Combinator$create_combinations()

• Combinator$clone()

Method create_combinations(): Find possible combinations

Usage:
Combinator$create_combinations(param_values)

Arguments:
param_values A list giving all options for the parameter values which are to be combined. As

an example:
list(w_FGA = c(0, 0.5, 1), w_FGB = c(0, 0.5, 1), NI = c(0.5, 0.9))

This would generate the combinations

w_FGA w_FGB NI
0 1 0.5
0 1 0.9
0.5 0.5 0.5
0.5 0.5 0.9
1 0 0.5
1 0 0.9

eps Precision to be used when checking if the sum citerion of the functional groups (w_FGA +
w_FGB + w_FGC + w_FGD = 1) is fulfilled.

Returns: combinations A list containing vectors of parameter value combinations.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Combinator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

compare.R 13

See Also

create_combinations()

compare.R Compare simulation results

Description

The script compare.R which ships with the growR package and is automatically put into the work-
ing directory with setup_directory() can be used to compare results of growR simulation runs.

It is a simple script, so it can and should be adjusted to your personal needs.

Details

The script makes use of the packages ggplot2, patchwork and some growR functions which facilitate
data loading and plotting, like load_measured_data() and add_lines().

create_combinations Create Valid Combinations

Description

Generate a list which contains all possible combinations of the provided parameter values. This
excludes combinations that are invalid because the sum criterion for functional groups w_FGA +
w_FGB + w_FGC + w_FGD = 1 is not fulfilled.

Usage

create_combinations(param_values, eps = 0.02)

Arguments

param_values A list giving all options for the parameter values which are to be combined.
The format is list[[param_name]] = param_values where param_values is
a vector with the values for the respective parameter. The parameter names for
functional group weights (w_FGX with X in (A, B, C, D)) receive special treatment
and therefore need to be spelled correctly.

eps Float specifying the precision to which the sum criterion for functional group
has to be satisfied. The criterion is considered satisfied, if “‘ abs(w_FGA +
w_FGB + w_FGC + w_FGD) - 1) <= eps

14 create_combinations

Details

Assume for example the following list as argument param_values:

list(w_FGA = c(0, 0.5, 1), w_FGB = c(0, 0.5, 1), NI = c(0.5, 0.9))

This would generate the combinations

w_FGA w_FGB NI
0 1 0.5
0 1 0.9
0.5 0.5 0.5
0.5 0.5 0.9
1 0 0.5
1 0 0.9

One can see that the input param_values has to be set up carefully: one has to ensure that the given
w_FGX values can actually add up to 1. The following would be a bad counterexample, where only
one single valid combination is found, even though many values for w_FGA and w_FGB are provided:

list(w_FGA = seq(0.5, 1, 0.01), w_FGB = c(0.5, 1, 0.01))

Similarly, if the steps in the w_FGX don’t match, we might not end up with many valid combinations,
even though the ranges are reasonabl:

list(w_FGA = seq(0.5, 1, 0.1), w_FGB = c(0, 0.5, 0.25))

Here, no combination can be made with w_FGA in c(0.6, 0.7, 0.8, 0.9) or w_FGB = 0.25.

Value

combinations An unnamed list where every entry is a list containing the parameter values (named
as in the input param_values) for a valid combination.

Examples

Define the parameter steps you want to explore. This is a minimal example.
A more realistic one follows below.
param_values = list(w_FGA = c(0, 0.5, 1),

w_FGB = c(0, 0.5, 1),
NI = c(0.5, 0.9)

)
Create all valid combinations of the defined steps
create_combinations(param_values)

More realistic example for an initial exploration of parameter space,
where we suspect that functional groups A and B should be more prevalent
than C and D. This produces 54 parameter combinations, which is a number
of model evaluations that can run within a reasonable timeframe

create_example_environment 15

(depending on your system).
param_values = list(w_FGA = seq(0, 1, 0.33),

w_FGB = seq(0, 1, 0.33),
w_FGC = seq(0, 0.7, 0.33),
w_FGD = seq(0, 0.7, 0.33),
NI = seq(0.5, 1.0, 0.25)

)
length(create_combinations(param_values))

The default value for *eps* made sure that combinations of 0.33 + 0.66 =
0.99 etc. are considered "valid". If we make *eps* too small, no valid
combinations can be found:
length(create_combinations(param_values, eps = 1e-3))

create_example_environment

Provide an example ModvegeEnvironment

Description

This is intended for testing and for the examples in the documentation.

Usage

create_example_environment(site = "posieux")

Arguments

site Choose for which example site an environment is to be created. Options: "posieux",
"sorens".

Value

E A [ModvegeEnvironment] instance based on the example data for site which is shipped with this
package.

Examples

extdata = system.file("extdata", package = "growR")
print(extdata)
list.files(extdata, recursive = TRUE)
create_example_environment()

16 ensure_unique_filename

ensure_table_columns Check if supplied table contains all *required* variables.

Description

Logs an error if any variable is missing and lists the missing variables in the error message along
with *data_name*.

Usage

ensure_table_columns(required, data, data_name = "the data table")

Arguments

required List of names of required variables.

data data.frame or similar object to be checked.

data_name Name to be displayed in the error message if any variable is missing.

ensure_unique_filename

Replace given filename by a version that contains an incremental num-
ber in order to prevent overwriting existing files.

Description

Replace given filename by a version that contains an incremental number in order to prevent over-
writing existing files.

Usage

ensure_unique_filename(path, add_num = TRUE)

Arguments

path string; Filename including path for which to check uniqueness.

add_num boolean; if TRUE, add the incremental number anyways, even if no filename
conflict exists.

Value

A unique filename.

fCO2_growth_mod 17

fCO2_growth_mod CO2 growth modifier

Description

Function describing the effects of elevated CO2 on growth.

Usage

fCO2_growth_mod(c_CO2, b = 0.5, c_ref = 360)

Arguments

c_CO2 numeric Atmospheric CO2 concentration in ppm

b numeric Strength of CO2 effect on growth. Kellner et al. report values bewtween
0 and 2 with the interval of highest likelihood (0.1, 0.3). However, Soltani and
Sinclair discuss that b = 0.4 in C4 plants and b = 0.8 in C3 plants. The difference
on the output of this function of choosing a small (0.1) and large (0.8) value for
b has an effect on the result for an atmospheric concentration of 700 ppm of
roughly 40 percent!.

c_ref numeric Reference CO2 concentration in ppm.

Details

The function for the effects on growth is as proposed by Soltani et al (2012) and later adapted by
equation (5) in Kellner et al. (2017)

References

Soltani A, Sinclair TR (2012). Modeling Physiology of Crop Development, Growth and Yield.
CABI. ISBN 978-1-84593-971-7, xnHT6YOlk00C.

Kellner J, Multsch S, Houska T, Kraft P, Müller C, Breuer L (2017). “A Coupled Hydrological-Plant
Growth Model for Simulating the Effect of Elevated CO2 on a Temperate Grassland.” Agricul-
tural and Forest Meteorology, 246, 42–50. ISSN 0168-1923, doi:10.1016/j.agrformet.2017.05.017,
https://www.sciencedirect.com/science/article/pii/S0168192317301831.

Examples

fCO2_growth_mod(420)
The modifier is always relative to *c_ref*. This returns 1.
fCO2_growth_mod(420, c_ref = 420)

https://doi.org/10.1016/j.agrformet.2017.05.017
https://www.sciencedirect.com/science/article/pii/S0168192317301831

18 fCO2_transpiration_mod

fCO2_transpiration_mod

CO2 transpiration modifier

Description

Function describing the effects of elevated CO2 on transpiration.

Usage

fCO2_transpiration_mod(c_CO2, c_ref = 360)

Arguments

c_CO2 numeric Atmospheric CO2 concentration in ppm

c_ref numeric Reference CO2 concentration in ppm.

Details

The function for the effect on transpiration is from equations (2-6) in Kruijt et al.

It appears in this paper that there is a small formal mistake in said equations. With the stated values,
it is not possible to reproduce the tabulated values of c close to 1, as in their table 3. Instead, we
conclude that equation (4) should read:

c = 1 + s_gs * s_T * F_T * deltaCO2

with the multiplicative terms giving small negative numbers. The factors s_gs, s_T and F_T
for grasslands are taken from pages 260 and 261 in Kruijt et al. where we averaged over the stated
ranges to get:

c ~= 1 + 0.0001 * deltaCO2

References

Kruijt B, Witte JM, Jacobs CMJ, Kroon T (2008). “Effects of Rising Atmospheric CO2 on Evap-
otranspiration and Soil Moisture: A Practical Approach for the Netherlands.” Journal of Hy-
drology, 349(3), 257–267. ISSN 0022-1694, doi:10.1016/j.jhydrol.2007.10.052, https://www.
sciencedirect.com/science/article/pii/S0022169407006373.

Examples

fCO2_transpiration_mod(420)
The modifier is always relative to *c_ref*. This returns 1.
fCO2_transpiration_mod(420, c_ref = 420)

https://doi.org/10.1016/j.jhydrol.2007.10.052
https://www.sciencedirect.com/science/article/pii/S0022169407006373
https://www.sciencedirect.com/science/article/pii/S0022169407006373

FG_A 19

FG_A Functional group A

Description

Functional group A

Usage

FG_A

Format

An object of class FunctionalGroup (inherits from R6) of length 23.

See Also

[FunctionalGroup]

FG_B Functional group B

Description

Functional group B

Usage

FG_B

Format

An object of class FunctionalGroup (inherits from R6) of length 23.

See Also

[FunctionalGroup]

20 FG_D

FG_C Functional group C

Description

Functional group C

Usage

FG_C

Format

An object of class FunctionalGroup (inherits from R6) of length 23.

See Also

[FunctionalGroup]

FG_D Functional group D

Description

Functional group D

Usage

FG_D

Format

An object of class FunctionalGroup (inherits from R6) of length 23.

See Also

[FunctionalGroup]

fPAR 21

fPAR Radiation limitation

Description

Threshold function representing growth limitation due to lack of photosynthetically active radiation
(PAR).

Usage

fPAR(PAR)

Arguments

PAR float Photosynthetically active radiation in MJ/m^2

Value

A value in the range [0, 1], acting as a multiplicative factor to plant growth.

Examples

fPAR(4)

fT Temperature limitation

Description

Threshold function representing growth limitation by temperature.

Usage

fT(t, T0 = 4, T1 = 10, T2 = 20)

Arguments

t float Temperature in degree Celsius.

T0 float Photosynthesis activation temperature in degree Celsius.

T1 float Photosynthesis plateau temperature in degree Celsius.

T2 float Photosynthesis max temperature in degree Celsius.

22 FunctionalGroup

Details

Photosynthesis is suppressed below T0, increases until it reaches its maximum at temperatures in
the interval (T1, T2). For temperatures exceeding T2, photosynthetic activity decreases again until
it reaches 0 at a final temperature of 40 degree Celsius.

Value

A value in the range (0, 1), acting as a multiplicative factor to plant growth.

Examples

fT(4)
fT(10)
fT(15)

FunctionalGroup Representation of a grassland plant population

Description

A functional group is a representation of a grassland plant population with certain functional at-
tributes.

It contains many plant parameters that are collected under the hood of functional groups. The class
implements S3 style operator overloading such that one can do things like

mixed_functional_group = 0.8 * FG_A + 0.2 * FG_B

Public fields

• SLA Specific Leaf Area in m^2^ per g.

• pcLAM Percentage of laminae (number between 0 and 1).

• ST1 Temperature sum in degree Celsiues days after which the seasonality function SEA starts
to decrease from its maximum plateau. See also SEA().

• ST2 Temperature sum in degree Celsiues days after which the seasonality function SEA has
decreased back to its minimum value. See also SEA().

• maxSEA Maximum value of the seasonality function SEA()

• minSEA Minimum value of the seasonality function SEA(). Usually, minSEA = 1 - (maxSEA -
1).

• maxOMDGV Maximum organic matter digestability for green vegetative matter in arbitrary units.

• minOMDGV Minimum organic matter digestability for green vegetative matter in arbitrary units.

• maxOMDGR Maximum organic matter digestability for green reproductive matter in arbitrary
units.

FunctionalGroup 23

• minOMDGR Minimum organic matter digestability for green reproductive matter in arbitrary
units.

• BDGV Bulk density of green vegetative dry matter in g per m^3^.

• BDDV Bulk density of dead vegetative dry matter in g per m^3^.

• BDGR Bulk density of green reproductive dry matter in g per m^3^.

• BDDR Bulk density of dead reproductive dry matter in g per m^3^.

• fg_parameter_names Vector of strings of the variable names of all vegetation parameters
governed by functional group composition.

Default values for parameters are taken from functional group A in Jouven et al.

Public fields

fg_parameter_names Names of the vegetation parameters governed by functional group compo-
sition.

Methods

Public methods:
• FunctionalGroup$new()

• FunctionalGroup$get_parameters()

• FunctionalGroup$get_parameters_ordered()

• FunctionalGroup$set_parameters()

• FunctionalGroup$set_parameters_ordered()

• FunctionalGroup$clone()

Method new(): Constructor

Usage:
FunctionalGroup$new(...)

Arguments:
... Key-value pairs of parameters to be set.

Method get_parameters(): Convenient getter
Returns all parameters with their names in a list.

Usage:
FunctionalGroup$get_parameters()

Method get_parameters_ordered(): Ordered getter
Returns all parameters in reproducible order in a vector.

Usage:
FunctionalGroup$get_parameters_ordered()

Method set_parameters(): Convenient setter
Set all specified parameters.

Usage:

24 fW

FunctionalGroup$set_parameters(...)

Arguments:

... Key-value pairs of parameters to be set.

Method set_parameters_ordered(): Efficient setter, assumes parameters come in known
order.

Usage:
FunctionalGroup$set_parameters_ordered(ordered_parameter_values)

Arguments:

ordered_parameter_values Parameter values to be set. Need to be in the same order as
pFunctionalGroup]$fg_parameter_names.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FunctionalGroup$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

Jouven M, Carrère P, Baumont R (2006). “Model Predicting Dynamics of Biomass, Structure and
Digestibility of Herbage in Managed Permanent Pastures. 1. Model Description.” Grass and
Forage Science, 61(2), 112–124. ISSN 1365-2494, doi:10.1111/j.13652494.2006.00515.x, https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2494.2006.00515.x.

fW Water stress

Description

Threshold function representing growth limitation due to water stress.

Usage

fW(W, PET)

Arguments

W Water stress given as the ratio of water reserves to water holding capacity.

PET Potential evapotranspiration in mm per day.

Details

After equation (6) in McCall et al. (2003).#’

https://doi.org/10.1111/j.1365-2494.2006.00515.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2494.2006.00515.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2494.2006.00515.x

get_annual_gross_yield 25

Value

A value in the range (0, 1), acting as a multiplicative factor to plant growth.

References

McCall DG, Bishop-Hurley GJ (2003). “A Pasture Growth Model for Use in a Whole-Farm Dairy
Production Model.” Agricultural Systems, 76(3), 1183–1205. ISSN 0308-521X, doi:10.1016/
S0308521X(02)00104X, https://www.sciencedirect.com/science/article/pii/S0308521X0200104X.

Examples

fW(0.5, 7)
fW(0.5, 5)
fW(0.5, 3)

get_annual_gross_yield

Lookup table returning expected annual gross yields as function of
elevation and management intensity.

Description

Based on data from Table 1a in Lookup Table of expected yield as functions of height and manage-
ment intensity after Olivier Huguenin et al. (2017).

Usage

get_annual_gross_yield(elevation, intensity = "high")

Arguments

elevation The elevation of the considered site in meters above sea level.

intensity One of ("high", "middle", "low", "extensive"). Management intensity for con-
sidered site.

Value

Annual gross yield in t / ha (metric tons per hectare). Note that 1 t/ha = 0.1 kg/m^2.

References

Huguenin-Elie IEMPSALWK, Jeangros B (2017). “Grundlagen für die Düngung landwirtschaftlicher
Kulturen in der Schweiz (GRUD), Kapitel 9: Düngung von Grasland.” Agrarforschung Schweiz.
https://www.agrarforschungschweiz.ch/2017/06/9-duengung-von-grasland-grud-2017/.

https://doi.org/10.1016/S0308-521X%2802%2900104-X
https://doi.org/10.1016/S0308-521X%2802%2900104-X
https://www.sciencedirect.com/science/article/pii/S0308521X0200104X
https://www.agrarforschungschweiz.ch/2017/06/9-duengung-von-grasland-grud-2017/

26 get_bias

Examples

get_annual_gross_yield(1200)
get_annual_gross_yield(1200, intensity = "low")

get_bias Metric Functions

Description

Functions to calculate different performance metrics.

In the case of get_bias: Calculate the bias b, i.e. the average difference between predicted y and
observed z values:

bias = mean(y - z)

Usage

get_bias(predicted, observed, ...)

root_mean_squared(predicted, observed, ...)

mean_absolute_error(predicted, observed, ...)

Arguments

predicted Vector containing the predictions y.

observed Vector containing the observations z.

... relative Boolean. If true give the result as a ratio to the average observation
mean(ovserved).

Value

m A number representing the relative or absolute value for the metric.

Functions

• root_mean_squared(): Calculate the square root of the average squared difference between
prediction and observation:

RMSE = sqrt(sum(predicted - observed)^2) / length(predicted)

• mean_absolute_error(): Calculate the average of the absolute differences between predic-
tion and observation:

MAE = mean(abs(predicted - observed))

get_end_of_cutting_season 27

Note

NA values are completely ignored.

See Also

willmott()

Examples

predicted = c(21.5, 22.2, 19.1)
observed = c(20, 20, 20)
get_bias(predicted, observed)
get_bias(predicted, observed, relative = FALSE)

root_mean_squared(predicted, observed)
root_mean_squared(predicted, observed, relative = FALSE)

mean_absolute_error(predicted, observed)
mean_absolute_error(predicted, observed, relative = FALSE)

get_end_of_cutting_season

Last day of cutting season

Description

Estimate the last day on which it still makes sense to cut. This is done by checking at which point
the expected target biomass (see get_relative_cut_contribution()) goes below the minimally
harvestable standing biomass.

Usage

get_end_of_cutting_season(min_biomass, elevation, intensity = "high")

Arguments

min_biomass float A standing biomass below this value cannot even be harvested,

elevation float Altitude in m.a.s.l.

intensity string Management intensity. One of "high", "middle", "low"

Value

float Last (fractional) day of the year on which a cut still makes sense.

See Also

get_relative_cut_contribution()

28 get_expected_n_cuts

Examples

get_end_of_cutting_season(50, 1200)
get_end_of_cutting_season(50, 1200, intensity = "low")

get_expected_n_cuts Get number of expected cuts

Description

Return the number of expected cuts for a site at a given elevation and management intensity.

Usage

get_expected_n_cuts(elevation, intensity = "high")

Arguments

elevation The elevation of the considered site in meters above sea level.

intensity One of ("high", "middle", "low", "extensive"). Management intensity for con-
sidered site.

Details

This uses data.frame management_parameters as a lookup table and interpolates linearly in be-
tween the specified values.

Value

Number of expected cuts per season.

Examples

get_expected_n_cuts(1200)
get_expected_n_cuts(1200, intensity = "low")

get_relative_cut_contribution 29

get_relative_cut_contribution

Relative cut contribution

Description

Get the fraction of the total annual harvested biomass that a cut at given DOY is expected to con-
tribute.

Usage

get_relative_cut_contribution(DOY)

Arguments

DOY Integer representing the day of the year on which a cut occurs.

Details

The regression for the target biomass is based on Fig. S2 in the supplementary material of Petersen
et al. (2021).

Value

The fraction (between 0 and 1) of biomass harvested at the cut at given DOY divided by the total
annual biomass.

References

Petersen K, Kraus D, Calanca P, Semenov MA, Butterbach-Bahl K, Kiese R (2021). “Dynamic
Simulation of Management Events for Assessing Impacts of Climate Change on Pre-Alpine Grass-
land Productivity.” European Journal of Agronomy, 128, 126306. ISSN 1161-0301, doi:10.1016/
j.eja.2021.126306, https://www.sciencedirect.com/science/article/pii/S1161030121000782.

Examples

get_relative_cut_contribution(1)
get_relative_cut_contribution(150)
get_relative_cut_contribution(365)
DOYs larger than 365 are insensible
get_relative_cut_contribution(600)

https://doi.org/10.1016/j.eja.2021.126306
https://doi.org/10.1016/j.eja.2021.126306
https://www.sciencedirect.com/science/article/pii/S1161030121000782

30 growR_package_options

get_site_name Extract the name of a site from a filename

Description

This function assumes the filenames to begin with the site name, potentially followed by an under-
score and further characters.

Usage

get_site_name(filename)

Arguments

filename String of a ‘ModvegeSite‘ output filename.

growR_package_options Default options introduced by package growR

Description

These are the default options, set when the package is loaded by ‘library(growR)‘. To get or change
the current value of an option, use the ‘options()‘ function.

growR.verbosity Integer that controls how much console output is generated by growR functions.
Higher numbers mean more output. See [logger()].

growR.input_dir Name of the directory in which to look for input files.

growR.output_dir Name of the directory into which output files are written.

growR.data_dir Name of the directory in which to look for measured data files.

Usage

growR_package_options

Format

An object of class list of length 4.

See Also

[options()]

growR_run_loop 31

growR_run_loop Run growR simulations

Description

Start the loop over runs specified in the config file.

Usage

growR_run_loop(modvege_environments, output_dir = "", independent = TRUE)

Arguments

modvege_environments

A list of ModvegeEnvironment instances.

output_dir string; name of directory to which output files are to be written. If output_dir
== "" (default), no files are written.

independent boolean; If TRUE (default) the simulation for each year starts with the same ini-
tial conditions, as specified in the parameters of the modvege_environments. If
FALSE, initial conditions are taken as the final state values of the simulation of
the previous year.

Details

By default, returns an empty list but writes output to the output files as specified in the site_name and
run_name fields of the supplied ModvegeEnvironment instances. Change this behaviour through
the write_files and store_results arguments.

Value

A list of the format [[run]][[year]] containing clones of the ModvegeSite instances that were
run. Also write to files, if output_dir is nonempty.

Examples

env1 = create_example_environment(site = "posieux")
env2 = create_example_environment(site = "sorens")

growR_run_loop(c(env1, env2), output_dir = "")

32 load_measured_data

load_measured_data Load experimental data

Description

Load all datasets stored in the supplied files.

Upon loading, the cumulative biomass growth cBM is automatically calculated from the given daily
biomass growth dBM values.

Usage

load_measured_data(filenames, sep = ",")

load_data_for_sites(sites)

load_matching_data(filenames)

Arguments

filenames Vector of strings representing simulation output filenames for which matching
data files are searched and loaded.

sep String Field separator used in the datafiles.

sites Vector of site names for which data to load.

Details

load_matching_data() internally uses get_site_name() and makes the same assumptions about
the output filename formats. It further assumes measured data to be located in "data/" and adhere to
the filename format x.csv with x being the site name.

Value

measured_data list of data.frame each corresponding to one of the sites detected in filenames. Each
data.frame contains the keys

• dBM: average daily biomass growth since last observation in kg/ha.

• cBM: cumulative biomass growth up to this DOY in kg/ha.

• year: year of observation.

• DOY: day of year of observation.

Functions

• load_data_for_sites(): Data filenames are generated on the convention ‘SITE.csv‘ and
are searched for in the subdirectory ‘getOption("growR.data_dir")‘, which defaults to ‘data/‘.

• load_matching_data(): Accepts a vector of output filenames as generated by Modvege-
Site$write_output() out of which the site names are inferred.

logger 33

Data file format

The input data files are expected to consist of four columns containing the following fileds, in order:

date Date of measurement in yyyy-mm-dd format.

year Year of measurement. Identical to yyyy in date field.

DOY Day of year of the measurement. Jan 1st corresponds to 1, Dec 31st corresponds to 365
(except in gap years).

dBM Observed average daily biomass growth since last cut in kg/ha.

The first row is expected to be a header row containing the exact field names as in the description
above. Columns may be separated by an arbitrary character, specified by the sep argument. The
example data uses a comma (",").

logger Primitive logger for debugging.

Description

Primitive logger for debugging.

Usage

logger(msg = "", level = DEBUG, stop_on_error = TRUE)

Arguments

msg The message to print.

level The message will only be printed if its level is lower or equal to getOption("growR.verbosity").

stop_on_error Can be set to FALSE in order to continue execution despite emitting a message
of level ERROR.

Value

None Prints console output.

See Also

set_growR_verbosity()

Examples

logger("A standard message", level = 3)
logger("A debug message", level = 4)
logger("A deep debug message", level = 5)

34 ManagementData

make_yearDOY Create unique DOY + year identifier

Description

Return numbers of the form YYYYDDD where YYYY is the year and DDD the DOY.

Usage

make_yearDOY(years, DOYs)

Arguments

years int vector.

DOYs int vector of same length as *years*.

Value

int vector of same length as *years* containing numbers of the form YYYYDDD, where the first
four digits represent a year and the last four represent a DOY.

ManagementData Management Data Class

Description

Management Data Class

Management Data Class

Details

Data structure that contains management data which can serve as input to a ModvegeSite simulation
run.

Public fields

management_file string The file that was read.

is_empty boolean Used to determine if management data is present or not. In the latter case,
ModvegeSite will simulate management decisions automatically.

years List of unique years for which data is available.

cut_years numeric Vector of length N where N is the total number of cuts read from the input file.
Gives the year in which corresponding cut was made.

cut_DOY numeric Vector of length N giving the day of year (as an integer) on which a cut was
made.

intensity string Management intensity for "autocut". One of c("high", "middle", "low").

ManagementData 35

Methods

Public methods:
• ManagementData$new()

• ManagementData$read_management()

• ManagementData$ensure_file_integrity()

• ManagementData$get_management_for_year()

• ManagementData$clone()

Method new(): Create a new ManagementData object.

Usage:
ManagementData$new(management_file = NULL, years = NULL)

Arguments:
management_file string Path to file containing the management data to be read.
years numeric Vector of years for which the management is to be extracted.

Method read_management(): Read management data from supplied management_file.

Usage:
ManagementData$read_management(management_file, years = NULL)

Arguments:
management_file Path to or name of file containing management data.
years Years for which the management is to be extracted. Default (NULL) is to read in all

found years.

Returns: None The object’s field are filled.

Method ensure_file_integrity(): Check that all required columns are present and that cut
DOYs are only increasing in a given year.

Usage:
ManagementData$ensure_file_integrity(cut_data)

Arguments:
cut_data data.frame containing the cut data.

Method get_management_for_year(): Extract management data for given year
This simply filters out all data not matching year and returns a list with the relevant keys.

Usage:
ManagementData$get_management_for_year(year)

Arguments:
year integer Year for which to extract management data.

Returns: M A list containing the keys:
is_empty boolean Used to determine if management data is present or not. In the latter case,

ModvegeSite will simulate management decisions automatically.
cut_years numeric Vector of length N where N is the total number of cuts for this year, as read

from the input file. Gives the year in which corresponding cut was made.

36 management_parameters

cut_DOY numeric Vector of length N giving the day of year (as an integer) on which a cut was
made.

intensity string Management intensity for "autocut". One of c("high", "middle", "low").
n_cuts integer Number of cuts occurring in given year.
The two vectors in cut_DOY and cut_years differ from this object’s respective fields in that
only data for selected year is present.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ManagementData$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ManagementData$read_management()

management_parameters Management practices for Swiss grasslands

Description

Expected yields, uncertainties and average number of cuts as function of altitude and management
intensity.

Usage

management_parameters

Format

A data.frame with 15 rows and 5 variables:

intensity Management intensity

altitude Altitude in m.a.s.l.

n_cuts Average number of cuts

yield Expected gross dry matter yield in t / ha

sigma_yield Uncertainty on yield in t / ha

Details

Data after table 1b in

Olivier Huguenin et al.

metric_map 37

References

Huguenin-Elie IEMPSALWK, Jeangros B (2017). “Grundlagen für die Düngung landwirtschaftlicher
Kulturen in der Schweiz (GRUD), Kapitel 9: Düngung von Grasland.” Agrarforschung Schweiz.
https://www.agrarforschungschweiz.ch/2017/06/9-duengung-von-grasland-grud-2017/.

metric_map List of Performance Metrics

Description

This list provides some common metrics of model performance along with their "best value".

Usage

metric_map

Format

A list where each item is a sublist containing the keys func and target.

func The function used to calculate given metric.

target The value that would be reached in the case of optimal performance.

limits Reasonable limits to be used when plotting.

ModvegeEnvironment growR environment data

Description

Data structure that contains inputs (parameters pertaining to a site, to the vegetation, to the weather
and to the management) to growR simulations.

Details

This class contains site parameters, weather and management data for one simulation run of growR
on a given site over several years. Methods are provided to allow access to relevant data for a given
year.

All inputs are read in from data files through the respective data classes WeatherData, Management-
Data and ModvegeParameters. These parameters can be simultaneously specified through a config
file using read_config().

https://www.agrarforschungschweiz.ch/2017/06/9-duengung-von-grasland-grud-2017/

38 ModvegeEnvironment

Public fields

site_name Name of site to be simulated.

run_name Name of simulation run. Allows distinguishing between different simulations at the
same site. Defaults to "-" for no name.

run_name_in_filename How the run name will be represented in an output file. If run_name is
the default "-", indicating no name, this will be an empty string. Otherwise, it will be the
run_name prepended by and underscore _.

years Years for which environment data (weather & management) is present.

param_file Name of supplied parameter file.

weather_file Name of supplied weather file.

management_file Name of supplied management file.

parameters A ModvegeParameters object.

weather A WeatherData object.

management A ManagementData object.

input_dir Directory in which parameter, weather and management files are searched for. Defaults
to ‘getOption("growR.input_dir").

Methods

Public methods:
• ModvegeEnvironment$new()

• ModvegeEnvironment$set_run_name()

• ModvegeEnvironment$load_inputs()

• ModvegeEnvironment$make_filename_for_run()

• ModvegeEnvironment$get_environment_for_year()

• ModvegeEnvironment$clone()

Method new(): Instantiate a new ModvegeEnvironment

Usage:
ModvegeEnvironment$new(
site_name,
run_name = "-",
years = NULL,
param_file = "-",
weather_file = "-",
management_file = "-",
input_dir = NULL

)

Arguments:
site_name string Name of the simulated site.
run_name string Name of the simulation run. Used to differentiate between different simulation

conditions at the same site. Defaults to "-", which indicates no specific run name.
years numeric Vector of integer years to be simulated.

ModvegeEnvironment 39

param_file string Name of file that contains site and vegetation parameters. If default value
"-" is provided, it is assumed to be "SITENAME_parameters.csv".

weather_file string Analogous to param_file.
management_file string Analogous to param_file.
input_dir string Path to directory containing input files. Defaults to getOption("growR.input_dir").

Method set_run_name(): Set run name and update run_name_in_filename.
Usage:
ModvegeEnvironment$set_run_name(run_name)

Arguments:
run_name Str. New value of self$run_name.

Method load_inputs(): Load simulation inputs.
Stores parameters, management and weather data from files specified in self$parameter_file,
self$weather_file and self$management_file, respectively.

Usage:
ModvegeEnvironment$load_inputs()

Method make_filename_for_run(): Ensure a readable filename for given run_name.
Usage:
ModvegeEnvironment$make_filename_for_run(run_name)

Arguments:
run_name Name of run to be converted into a filename.

Returns: A version of run_name that can be used in a filename.

Method get_environment_for_year(): Get weather and environment for given year
Convenience function to retrieve environmental and management inputs for given year from
multi-year data containers self$weather and self$management.

Usage:
ModvegeEnvironment$get_environment_for_year(year)

Arguments:
year int; year for which to extract data.

Returns: list(W, M) where W is the WeatherData and M the ManagementData object for given
year.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ModvegeEnvironment$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

read_config()

WeatherData$get_weather_for_year(), ManagementData$get_management_for_year()

40 ModvegeParameters

ModvegeParameters Parameter Data Object

Description

Data structure that contains site and vegetation parameters necessary for the configuration of an
growR simulation run.

Parameter description

The following is a list and description of model parameters, including the vegetation parameters,
which are defined through the functional group composition.

Site and model parameters:

• LON geographic longitude of site in degree.
• LAT geographic latitude of site in degree.
• ELV geographic elevation of site in m.a.s.l.
• WHC water-holding capacity of site in mm.
• NI site nutritional index (dimensionless).
• RUEmax maximum radiuation use efficiency in g DM per MJ.
• w_FGA relative weight of functional group A.
• w_FGB relative weight of functional group B.
• w_FGC relative weight of functional group C.
• w_FGD relative weight of functional group D.
• sigmaGV rate of GV respirative biomass loss (dimensionless).
• sigmaGR rate of GR respirative biomass loss (dimensionless).
• T0 photosynthesis activation temperature (degree C).
• T1 photosynthesis plateau temperature (degree C).
• T2 photosynthesis max temperature (degree C).
• KGV basic senescence rate GV (dimensionless).
• KGR basic senescence rate GR (dimensionless).
• KlGV basic abscission rate GV (dimensionless).
• KlGR basic abscission rate GR (dimensionless).
• maxOMDDV organic matter digestibility in gram per gram DV.
• minOMDDR organic matter digestibility in gram per gram DR.
• CO2_growth_factor strength of effect of CO2 concentration on growth. See parameter b in
fCO2_growth_mod().

• crop_coefficient multiplicative factor K~c~ by which reference evapotranspiration ET~0~
has to be multiplied to get the crop evapotranspiration ET~c~: ET~c~ = K~c~ ET~0~

• senescence_cap fraction c~s~ of GRO to which SEN is limited: SEN~i~^max^ = c~s~
GRO~i~ for i in GV, GR. Makes it less likely for grass population to die out. Can be set to
large values in order to effectively disable senescence capping.

ModvegeParameters 41

• stubble_height float. Minimum height the grass can assume. The biomass will not fall
below that height. This effectively presents a simple model of plant reserves.

• SGS_method string. Choice of method to determine the start of the growing season. Can be ei-
ther "MTD" for the multicriterial thermal definition (see start_of_growing_season_mtd())
or "simple" for a commonly used approach as described in start_of_growing_season()).

Initial conditions:
• AgeGV Age of green vegetative matter in degree Celsius days.
• AgeGR Age of green reproductive matter in degree Celsius days.
• AgeDV Age of dead vegetative matter in degree Celsius days.
• AgeDR Age of dead reproductive matter in degree Celsius days.
• BMGV biomass of GV (kg DM per ha).
• BMGR biomass of GR (kg DM per ha).
• BMDV biomass of DV (kg DM per ha).
• BMDR biomass of DR (kg DM per ha).
• BMDR biomass of DR (kg DM per ha).
• SENG senescence of GV (kg DM per ha).
• SENG senescence of GR (kg DM per ha).
• ABSG abscission of DV (kg DM per ha).
• ABSG abscission of DR (kg DM per ha).
• ST thermal time (degree days).
• cBM cumulative total biomass (kg per ha).

Vegetation parameters:
• SLA Specific Leaf Area in m^2^ per g.
• pcLAM Percentage of laminae (number between 0 and 1).
• ST1 Temperature sum in degree Celsiues days after which the seasonality function SEA starts

to decrease from its maximum plateau. See also SEA().
• ST2 Temperature sum in degree Celsiues days after which the seasonality function SEA has

decreased back to its minimum value. See also SEA().
• maxSEA Maximum value of the seasonality function SEA()

• minSEA Minimum value of the seasonality function SEA(). Usually, minSEA = 1 - (maxSEA -
1).

• maxOMDGV Maximum organic matter digestability for green vegetative matter in arbitrary
units.

• minOMDGV Minimum organic matter digestability for green vegetative matter in arbitrary
units.

• maxOMDGR Maximum organic matter digestability for green reproductive matter in arbitrary
units.

• minOMDGR Minimum organic matter digestability for green reproductive matter in arbitrary
units.

• BDGV Bulk density of green vegetative dry matter in g per m^3^.
• BDDV Bulk density of dead vegetative dry matter in g per m^3^.
• BDGR Bulk density of green reproductive dry matter in g per m^3^.

42 ModvegeParameters

• BDDR Bulk density of dead reproductive dry matter in g per m^3^.
• fg_parameter_names Vector of strings of the variable names of all vegetation parameters

governed by functional group composition.

Public fields

required_parameter_names Names of parameters that do not have a default value and are there-
fore strictly required.

parameter_names Names of all required and optional parameters and state variables.

n_parameters Number of total parameters.

functional_group The FunctionalGroup instance holding the vegetation parameters.

fg_parameter_names Names of vegetation parameters defined by the functional group composi-
tion.

initial_condition_names Names of initial conditions.

param_file Name of the parameter file from which initial parameter values were read.

Methods

Public methods:
• ModvegeParameters$new()

• ModvegeParameters$read_parameters()

• ModvegeParameters$set_parameters()

• ModvegeParameters$update_functional_group()

• ModvegeParameters$check_parameters()

• ModvegeParameters$clone()

Method new(): Constructor

Usage:
ModvegeParameters$new(param_file = NULL)

Arguments:
param_file Name of file containing the site and vegetation parameters.

Method read_parameters(): Read parameters from parameter file
Reads in parameters from the supplied param_file and stores them in internal fields.
This function carries out some basic sanity checks of the supplied param_file and reports on
unidentified and missing parameter names.

Usage:
ModvegeParameters$read_parameters(param_file)

Arguments:
param_file Path or name of file to read parameters from.

Returns: P List with field names as in the class variable parameter_names.

Method set_parameters(): Savely update the given parameters
This is the preferred method for changing the internal parameter values, because special care is
taken to account for potential changes to functional group weights.

ModvegeSite 43

Usage:
ModvegeParameters$set_parameters(params)

Arguments:
params List of name-value pairs of the parameters to update.

Method update_functional_group(): Update functional group parameters
Should be run whenever the functional group composition is changed in order to reflect the
changes in the parameter list self$P.

Usage:
ModvegeParameters$update_functional_group()

Method check_parameters(): Parameter Sanity Check Ensure that the supplied params are
valid ModVege parameters and, if requested, check that all required parameters are present. Issues
a warning for any invalid parameters and throws an error if completeness is not satisfied (only
when check_for_completeness = TRUE).

Usage:
ModvegeParameters$check_parameters(param_names, check_for_completeness = TRUE)

Arguments:
param_names A list of parameter names to be checked.
check_for_completeness Boolean Toggle whether only the validity of supplied param_names

is checked or whether we want to check that all required parameters to be present (default).
In the latter case, if any required parameter is missing, an error is thrown.

Returns: not_known The list of unrecognized parameter names.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ModvegeParameters$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Note

Programmatically speaking, all parameters described under Parameter description are also fields of
this R6Class.

ModvegeSite ModvegeSite

Description

Implements the ModVege grass growth model based off of Jouven et al. (2006).

This class contains model and site parameters and state variables as attributes and has methods for
running ModVege with weather and management input.

Use the run() method to carry out a simulation for a given year. The results are stored in the state
variables in this instance and can be written to file using write_output().

44 ModvegeSite

Model variables

See Jouven et al. (2006) for a thorough description of all model variables.

State Variables:
• BM Standing biomass in kg DM per ha.
• BMG Standing green biomass (kg DM / ha).
• cBM Cumulativeley grown biomass (kg DM / ha).
• dBM Daily grown biomass (kg DM / ha).
• hvBM Cumulative harvested biomass (kg DM / ha).
• OMD Organic matter digestibility (kg / kg).
• OMDG OMD of green matter (kg / kg).
• ST Temperature sum in degree Celsius days.
• REP Reproductive function. Gives the fraction of growth that is assigned to reproductive

growth. The remainder goes into vegetative growth. Dimensionless.
• PGRO Potential growth in kg DM / ha.
• GRO Effective growth in kg DM / ha.
• LAI Leaf area index, accounting for the proportion of light intercepted by the sward. Dimen-

sionless.
• LAIGV LAI of green vegetative biomass. Dimensionless.
• AET Actual evapotranspiration in mm.
• WR Water reserves in mm.
• ENV Function representing environmental effects on growth. Acts as a multiplicative factor.

Dimensionless.
• ENVfPAR Part of ENV due to strength of incident radiation. Dimensionless.
• ENVfT Part of ENV due to temperature. Dimensionless.
• ENVfW Part of ENV due to water limitation. Dimensionless.

Initial conditions:
• AgeGV Age of green vegetative matter in degree Celsius days.
• AgeGR Age of green reproductive matter in degree Celsius days.
• AgeDV Age of dead vegetative matter in degree Celsius days.
• AgeDR Age of dead reproductive matter in degree Celsius days.
• BMGV biomass of GV (kg DM per ha).
• BMGR biomass of GR (kg DM per ha).
• BMDV biomass of DV (kg DM per ha).
• BMDR biomass of DR (kg DM per ha).
• BMDR biomass of DR (kg DM per ha).
• SENG senescence of GV (kg DM per ha).
• SENG senescence of GR (kg DM per ha).
• ABSG abscission of DV (kg DM per ha).
• ABSG abscission of DR (kg DM per ha).
• ST thermal time (degree days).
• cBM cumulative total biomass (kg per ha).

ModvegeSite 45

Public fields

time_step Used time step in the model in days (untested).

state_variable_names Vector containing the names of the model’s state variables.

n_state_variables Number of state variables.

version Version number of the growR package. Is written into output files.

site_name Name of the site to be simulated.

run_name Name of the simulation run. Used to distinguish between different runs at the same site.

year Year to be simulated.

days_per_year Number of days in this year.

j_start_of_growing_season Index (DOY) of the day the growing season was determined to
begin.

cut_height Height of remaining grass after cut in m.

parameters A ModvegeParameters object.

determine_cut Function used to decide whether a cut occurs on a given DOY. Is overloaded de-
pending on whether management data is provided or not.

cut_DOYs List of DOYs on which a cut occurred.

cut_during_growth_preriod Boolean to indicate whether a cut occurred during the growth pe-
riod, in which case reproductive growth is stopped.

last_DOY_for_initial_cut autocut Start cutting after this DOY, even if yield target is not reached.

max_cut_period autocut Maximum period to wait between subsequent cuts.

dry_precipitation_limit autocut Maximum amount of allowed precipitation (mm) to consider
a day.

dry_days_before_cut autocut Number of days that shold be dry before a cut is made.

dry_days_after_cut autocut Number of days that shold be dry after a cut is made.

max_cut_delay autocut Number of days a farmer is willing to wait for dry conditions before a cut
is made anyways.

cut_delays autocut Vector to keep track of cut delay times. wait for dry conditions before a cut is
made anyways.

dry_window autocut Logical that indicates if DOY at index is considered dry enough to cut.

target_biomass autocut Biomass amount that should to be reached by given DOY for a cut to be
made.

end_of_cutting_season autocut Determined DOY after which no more cuts are made.

BM_after_cut autocut Amount of biomass that remains after a cut (determined through cut_height
and biomass densities BDGV, BDDV, BDGR, BDDR).

weather A list created by a WeatherData object’s get_weather_for_year() method.

management A list containing management data as returned by ModvegeEnvironment’s get_environment_for_year()
method. If its is_empty field is TRUE, the autocut routine will be employed.

46 ModvegeSite

Methods

Public methods:
• ModvegeSite$new()

• ModvegeSite$get_weather()

• ModvegeSite$get_management()

• ModvegeSite$set_SGS_method()

• ModvegeSite$determine_cut_from_input()

• ModvegeSite$determine_cut_automatically()

• ModvegeSite$get_target_biomass()

• ModvegeSite$run()

• ModvegeSite$write_output()

• ModvegeSite$set_parameters()

• ModvegeSite$plot()

• ModvegeSite$plot_bm()

• ModvegeSite$plot_limitations()

• ModvegeSite$plot_water()

• ModvegeSite$plot_growth()

• ModvegeSite$plot_var()

• ModvegeSite$clone()

Method new(): Constructor

Usage:
ModvegeSite$new(parameters, site_name = "-", run_name = "-")

Arguments:

parameters A ModvegeParameters object.
site_name string Name of the simulated site.
run_name string Name of the simulation run. Used to differentiate between different simulation

conditions at the same site. Defaults to "-", which indicates no specific run name.

Method get_weather(): Return weather data if it exists

Usage:
ModvegeSite$get_weather()

Returns: The WeatherData object, if it exists.

Method get_management(): Return management data if it exists

Usage:
ModvegeSite$get_management()

Returns: The ManagementData object, if it exists.

Method set_SGS_method(): Choose which method to be used for determination of SGS
Options for the determination of the start of growing season (SGS) are:

MTD Multicriterial thermal definition, start_of_growing_season_mtd()

ModvegeSite 47

simple Commonly used, simple SGS definition based on temperature sum, start_of_growing_season()

Usage:
ModvegeSite$set_SGS_method(method)

Arguments:
method str Name of the method to use. Options: "MTD", "simple".

Returns: none

Method determine_cut_from_input(): Read from the input whether a cut occurs on day
DOY.

Usage:
ModvegeSite$determine_cut_from_input(DOY)

Arguments:
DOY Integer day of the year for which to check.

Returns: Boolean TRUE if a cut happens on day DOY.

Method determine_cut_automatically(): Decide based on simple criteria whether day of
year DOY would be a good day to cut.
This follows an implementation described in Petersen, Krischan, David Kraus, Pierluigi Calanca,
Mikhail A. Semenov, Klaus Butterbach-Bahl, and Ralf Kiese. “Dynamic Simulation of Manage-
ment Events for Assessing Impacts of Climate Change on Pre-Alpine Grassland Productivity.” Eu-
ropean Journal of Agronomy 128 (August 1, 2021): 126306. https://doi.org/10.1016/j.eja.2021.126306.
The decision to cut is made based on two criteria. First, it is checked whether a target biomass is
reached on given DOY. The defined target depends on the DOY and is given through :func:get_target_biomass.
If said biomass is present, return TRUE.
Otherwise, it is checked whether a given amount of time has passed since the last cut. Depending
on whether this is the first cut of the season or not, the relevant parameters are :int:last_DOY_for_initial_cut
and :int:max_cut_period. If that amount of time has passed, return TRUE, otherwise return FALSE.

Usage:
ModvegeSite$determine_cut_automatically(DOY)

Arguments:
DOY Integer day of the year for which to make a cut decision.

Returns: Boolean TRUE if a cut happens on day DOY.

Method get_target_biomass(): Get target value of biomass on given DOY, which determines
whether a cut is to occur.
The regression for the target biomass is based on Fig. S2 in the supplementary material of Pe-
tersen, Krischan, David Kraus, Pierluigi Calanca, Mikhail A. Semenov, Klaus Butterbach-Bahl,
and Ralf Kiese. “Dynamic Simulation of Management Events for Assessing Impacts of Climate
Change on Pre-Alpine Grassland Productivity.” European Journal of Agronomy 128 (August 1,
2021): 126306. https://doi.org/10.1016/j.eja.2021.126306.
A refinement to expected yield as function of altitude has been implemented according to Table
1a in Huguenen-Elie et al. "Düngung von Grasland", Agrarforschung Schweiz, 8, (6), 2017,
https://www.agrarforschungschweiz.ch/2017/06/9-duengung-von-grasland-grud-2017/

Usage:

48 ModvegeSite

ModvegeSite$get_target_biomass(DOY, intensity = "high")

Arguments:
DOY Integer day of the year to consider.
intensity One of ("high", "middle", "low") specifying management intensity.

Returns: target Biomass (kg / ha) that should be reached on day DOY for this management
intensity.

Method run(): Carry out a ModVege simulation for one year.

Usage:
ModvegeSite$run(year, weather, management)

Arguments:
year Integer specifying the year to consider.
weather Weather list for given year as returned by WeatherData$get_weather_for_year.
management Management list for given year as provided by ModvegeEnvironment$get_environment_for_year().

Returns: None Fills the state variables of this instance with the simulated values. Access them
programmatically or write them to file using write_output().

Method write_output(): Write values of ModVege results into given file.
A header with metadata is prepended to the actual data.

Usage:
ModvegeSite$write_output(filename, force = FALSE)

Arguments:
filename Path or name of filename to be created or overwritten.
force Boolean If TRUE, do not prompt user before writing.

Returns: None Writes simulation results to file filename.

Method set_parameters(): Savely update the values in self$parameters.
This is just a shorthand to the underlying ModvegeParameters object’s set_parameters() func-
tion. Special care is taken to account for potential changes to functional group weights.

Usage:
ModvegeSite$set_parameters(params)

Arguments:
params List of name-value pairs of the parameters to update.

Returns: None Updates this object’s parameter values.

Method plot(): Create an overview plot for 16 state variables.
Creates a simple base R plot showing the temporal evolution of 16 modeled state variables.
Can only be sensibly run after a simulation has been carried out, i.e. after this instance’s run()
method has been called.

Usage:
ModvegeSite$plot(...)

Arguments:

ModvegeSite 49

... Further arguments are discarded.

Returns: NULL Creates a plot of the result in the active device.

Method plot_bm(): Create an overview plot for biomass.
Creates a simple base R plot showing the BM with cutting events and, if applicable, target
biomass, dBM, cBM and hvBM. Can only be sensibly run after a simulation has been carried
out, i.e. after this instance’s run() method has been called.

Usage:
ModvegeSite$plot_bm(smooth_interval = 28, ...)

Arguments:

smooth_interval Int. Number of days over which the variable dBM is smoothened.
... Further arguments are discarded.

Returns: NULL Creates a plot of the result in the active device.

Method plot_limitations(): Create an overview plot of limiting factors.
Creates a simple base R plot showing the different environmental limitation functions over time.
Can only be sensibly run after a simulation has been carried out, i.e. after this instance’s run()
method has been called.

Usage:
ModvegeSite$plot_limitations(...)

Arguments:

... Further arguments are discarded.

Returns: NULL Creates a plot of the result in the active device.

Method plot_water(): Create an overview plot of the water balance.
Creates a simple base R plot showing different variables pertaining to the water balance, namely
water reserves WR, actual evapotranspiration AET, leaf area index LAI and LAI of the green
vegetative compartment LAIGV.
Can only be sensibly run after a simulation has been carried out, i.e. after this instance’s run()
method has been called.

Usage:
ModvegeSite$plot_water(...)

Arguments:

... Further arguments are discarded.

Returns: NULL Creates a plot of the result in the active device.

Method plot_growth(): Create an overview plot of growth dynamics.
Creates a simple base R plot showing different variables pertaining to the growth dynamics,
namely potential growth PGRO, effective growth GRO, the reproductive function REP and the
temperature sum ST.
Can only be sensibly run after a simulation has been carried out, i.e. after this instance’s run()
method has been called.

Usage:

50 parameter_scan_example

ModvegeSite$plot_growth(...)

Arguments:
... Further arguments are discarded.

Returns: NULL Creates a plot of the result in the active device.

Method plot_var(): Plot the temporal evolution of a modeled state variable.

Usage:
ModvegeSite$plot_var(var, ...)

Arguments:
var String. Name of the state variable to plot.
... Further arguments are passed to the base plot() function.

Returns: None, but plots to the current device.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ModvegeSite$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

References

Jouven M, Carrère P, Baumont R (2006). “Model Predicting Dynamics of Biomass, Structure and
Digestibility of Herbage in Managed Permanent Pastures. 1. Model Description.” Grass and
Forage Science, 61(2), 112–124. ISSN 1365-2494, doi:10.1111/j.13652494.2006.00515.x, https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2494.2006.00515.x.

See Also

autocut

start_of_growing_season_mtd(), start_of_growing_season()

get_target_biomass()

ModvegeParameters$set_parameters()

parameter_scan_example

Example results of a parameter scan

Description

The function run_parameter_scan() can take a significant time to execute, as it typically requires
a few dozen model evaluations or more. In order to still showcase what its output can look like, and
to facilitate testing and giving examples in the documentation of tools that make use of the output
of run_parameter_scan() (such as e.g. analyze_parameter_scan()), this example dataset is
provided.

https://doi.org/10.1111/j.1365-2494.2006.00515.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2494.2006.00515.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2494.2006.00515.x

parse_year_strings 51

Usage

parameter_scan_example

Format

A list containing an entry for each supplied parameter set in param_values. Each entry is itself a
list containing the following keys:

params The parameter set that was used to run growR for this entry.

data A list containing for each simulated year a ModvegeSite object which was run for the respec-
tive year and therefore carries the respective results.

Details

The input for the parameter scan that produced this output was:

• w_FGB = seq(0.25, 1, 0.25),
w_FGC = seq(0, 0.25, 0.25),
w_FGD = c(0),
NI = seq(0.75, 1.0, 0.25)

- `eps = 2e-2`
)

See Also

run_parameter_scan()

parse_year_strings Parse and generate lists of years.

Description

Parse and generate lists of years.

Usage

parse_year_strings(year_strings)

Arguments

year_strings A vector of strings that each either represents a single year or a sequence of year
in the format ‘start:stop‘.

Value

run_years List of integer vectors, representing the years to simulate for each run.

52 plot_parameter_scan

plot.ModvegeSite Plot ModVege simulation result overview

Description

This wraps the ModvegeSite instance’s plot() method.

Usage

S3 method for class 'ModvegeSite'
plot(x, ...)

Arguments

x A ModvegeSite instance.

... Arguments are passed on to ModvegeSite$plot().

Value

NULL, but plots to the active device.

See Also

The different [modvegeSite]$plot_XXX() methods.

plot_parameter_scan Plot Parameter Scan Results

Description

Visualize the results of a parameter scan and allow interactive inspection of model performance in
parameter space.

Usage

plot_parameter_scan(analyzed, variable = "dBM", interactive = TRUE)

Arguments

analyzed List; Output of analyze_parameter_scan().

variable Str; Name of variable in analyzed to visualize. Can be changed later with
PscanPlotter$set_variable(). Allowed values are the keys in analyzed ex-
cept for params and metrics.

interactive boolean; Toggle between just creating a static plot (interactive = FALSE) or
entering a small, interactive analysis setting (interactive = TRUE, default).

posieux_weather 53

Details

Under the hood this function just creates a PscanPlotter object and calls its analyze method.

Value

A PscanPlotter object.

See Also

analyze_parameter_scan(), PscanPlotter$analyze()

Examples

There needs to be data available with which the modle is to be compared.
For this example, use data provided by the package.
path = system.file("extdata", package = "growR")
datafile = file.path(path, "posieux1.csv")

Analyze example output of `run_parameter_scan()`.
results = analyze_parameter_scan(parameter_scan_example, datafile = datafile)
The following plots the results.
psp = plot_parameter_scan(results, interactive = FALSE)

The interactive session can still be entered later from the returned
PscanPlotter object
psp$analyze()

posieux_weather Example Weather Data

Description

Datasets containing the weather input parameters as used by growR. The same data is made avail-
able as plain text files by the package and automatically found in the input directory created by
setup_directory() if the include_examples option is set to TRUE (default).

Usage

posieux_weather

Format

A data.frame with 3652 rows and 10 variables:

year Year as an integer

DOY Day of year as an integer

Ta Average temperature of the day in degree Celsius

54 PscanPlotter

Tmin Minimum temperature of the day in degree Celsius
Tmax Maximum temperature of the day in degree Celsius
precip Daily precipitation in mm
rSSD Relative sunshine duration in percent
SRad Sun irradiance in J / s / m^2. This can be converted into photosynthetically active radiation

(PAR) in MJ / m^2 as: PAR = SRad * 0.47 * 24 * 60 * 60 / 1e6
ET0 Evapotranspiration in mm.
snow Precipitation in the form of snow in mm

Details

For use in growR, a WeatherData object has to be created from a plain text file. Therefore, this
dataset is only provided for convenient inspection. In order to run growR, use the plain text files
provided by the package. Use system.file("extdata", package = "growR") to locate them.

The snow column is not actually used by growR but rather calculated through precipitation and
temperatures in WeatherData$read_weather().

Likewise, the rSSD column is deprecated, currently unused and only kept for backwards compati-
bility.

See Also

setup_directory(), WeatherData

PscanPlotter Plot Parameter Scan Results

Description

This class facilitates interactive visual analysis of parameter scan results.

Public fields

analyzed List, as output by analyze_parameter_scan().
params Vector of names of scanned parameters.
metrics Vector of names of model performance metrics to use.
n_params Number of scanned parameters.
n_metrics Number of performance metrics to apply.
res data.frame holding parameter scan results. It contains n_params + n_metrics + 1 columns:

one column for each scanned parameter, one for each employed metric and an additional
column (name n) to give each parameter combination (i.e. each row) an identifying number.

n_combinations Number of rowns in res.
sorted List containing copies of res which are each sorted by a different performance metric. List

keys are the values in self$metrics.
selection Vector of integers corresponding to the ID number of combinations (column n in

self$res) that is to be highlighted.

PscanPlotter 55

Methods

Public methods:
• PscanPlotter$new()

• PscanPlotter$set_variable()

• PscanPlotter$analyze()

• PscanPlotter$plot()

• PscanPlotter$print_info()

• PscanPlotter$clone()

Method new(): Construct and set up a PscanPlotter instance.

Usage:
PscanPlotter$new(analyzed, variable = "dBM")

Arguments:

analyzed List; Output of analyze_parameter_scan().
variable Str; Name of variable in analyzed to visualize. Can be changed later with set_variable().

Allowed values are the keys in analyzed except for params and metrics.

Method set_variable(): Choose which variable to visualize.

Usage:
PscanPlotter$set_variable(variable)

Arguments:

variable Chosen variable name. One of "dBM", "cBM", "cBM_end"

Method analyze(): Enter analysis loop.
This plots the analysis results and enters a simple command-line interface through which more
insights can be gathered. Particularly, it allows highlighting specific parameter combinations,
either by their index number or by selecting the best performers according to a given metric.

Usage:
PscanPlotter$analyze()

Method plot(): Plot parameter scan results.
For every combination of scanned parameter and metric, a subplot is generated in which the
parameter values are plotted against performance score in that metric for every parameter combi-
nation.
The result of this is static. Use PscanPlotter$analyze() for an interactive version.

Usage:
PscanPlotter$plot()

Method print_info(): Print information on selected parameter combinations.
The parameter values and performance scores of all combinations referred to by the integers in
selection are printed to console.

Usage:
PscanPlotter$print_info(selection)

56 read_config

Arguments:

selection Vector of integers representing IDs of parameter combinations (i.e. column n in
self$res).

Method clone(): The objects of this class are cloneable with this method.

Usage:
PscanPlotter$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

plot_parameter_scan()

analyze_parameter_scan()

PscanPlotter$plot()

read_config Read simulation run configurations from file

Description

The format of the configuration file is expected to contain 6 space-separated columns representing,
in order:

site_name Name of simulated site. This is used, for example, when an output file is created.

run_name Name of this simulation run. Used to differentiate between different runs at the same
site. Can be - to indicate no particular name, in which case nothing will be appended in the
resulting output file.

year(s) Specification of years to be simulated. Either a single number or a sequence in R’s :
notation, i.e. 2013:2022 to indicate all years from 2013 to (including) 2022.

param_file Filename (not full path) of parameter file to use. The file is assumed to be located in
input_dir (confer documentation for that parameter).

weather_file Filename (not full path) of weather file. See also param_file.

management_file Filename (not full path) of management file. See also param_file. Can be set to
high, middle, low or - if no management data is to be used and the autocut routine shall be
employed to simulate cutting events.

Rows starting with a # are skipped.

Usage

read_config(config_file, input_dir = NULL)

run_parameter_scan 57

Arguments

config_file Path to the configuration file to be read.
input_dir Path to directory where input files are located. Defaults to getOptions("growR.input_dir",

default = file.path("input")).

Value

A list of ModvegeEnvironment instances corresponding to the configurations in the order they ap-
pear in config_file.

Examples

First, we set up the expected directory structure in a temporary place
tmp = file.path(tempdir(), "test-read_config")
dir.create(tmp)

We need `force = TRUE` here in order to make the example work in
non-interactive settings.
setup_directory(root = tmp, include_examples = TRUE, force = TRUE)

Now we can test `read_config`.
read_config(file.path(tmp, "example_config.txt"),

input_dir = file.path(tmp, "input"))

run_parameter_scan Parameter Scan

Description

Run ModVege for a different sets of parameters.

Usage

run_parameter_scan(environment, param_values, force = FALSE, outfilename = "")

Arguments

environment Either a ModvegeEnvironment instance with all the site, management and weather
inputs expected by ModvegeSite$run() or a string representing the name of a
config file to read in order to generate the ModvegeEnvironment with read_config().
Note that, in the latter case, only the first found configuration is used if there are
more than one valid uncommented lines in the config file.

param_values A named list where each key stands for a ModVege parameter, i.e. a member of
ModvegeParameters$parameter_names. Each list entry then has to be a vector
containing the allowed values for the respective parameter. All possible allowed
combinations of these parameter values are then generated and fed into a Mod-
Vege run.

58 SEA

force Boolean. By default (force = FALSE), the function first counts the number of
parameter combinations that need to be run and asks the user, if it should pro-
ceed. This can be suppressed by letting force = TRUE.

outfilename String. If nonempty, the results are stored as an rds file with filename outfile-
name using the saveRDS() function.

Value

results A list containing an entry for each supplied parameter set in param_values. Each entry is
itself a list containing the following keys:

params The parameter set that was used to run ModVege for this entry.

data A list containing for each simulated year a ModvegeSite object which was run for the respec-
tive year and therefore carries the respective results.

Note

Special care has to be taken in the creation of the param_values argument. It’s possible to choose
values that do not allow for any valid combination. Confer create_combinations().

See Also

ModvegeParameters, saveRDS(), create_combinations()

Examples

env = create_example_environment()
We're creating a trivial list of parameters to explore here in order to
prevent the example from requiring a long time to execute. See
[create_combinations()] for more realistic uses of param_values.
param_values = list(w_FGA = c(0, 1), w_FGB = c(0, 1))
run_parameter_scan(env, param_values, force = TRUE)

SEA Seasonal effect on growth

Description

Function representing the strategy of plants adjusting their roots:shoots ratios during the season.

Usage

SEA(ST, minSEA = 0.65, maxSEA = 1.35, ST1 = 800, ST2 = 1450)

setup_directory 59

Arguments

ST float Temperature sum in degree(C)-days.

minSEA float < 1. Minimum value of SEA.

maxSEA float > 1. Maximum value of SEA.

ST1 float Temperature sum after which SEA declines from the maximum plateau.

ST2 float Temperature sum after which SEA reaches and remains at its minimum.

Examples

SEA(800)

setup_directory Initialize growR directory structure

Description

Creates directories in which growR by default looks for or deposits certain files. Also, option-
ally populates these directories with example files, which are useful to familiarize oneself with the
growR simulation framework.

Usage

setup_directory(root, include_examples = TRUE, force = FALSE)

Arguments

root Path to directory in which to initialize.
include_examples

If TRUE (default), include example data and input parameters in the appropriate
directories.

force boolean If TRUE, the user will not be asked for permission before we write to the
filesystem.

Examples

Prepare a temporary directory to write to
tmp = file.path(tempdir(), "test-setup_directory")
dir.create(tmp)

We need `force = TRUE` here in order to make the example work in
non-interactive settings.
setup_directory(root = tmp, include_examples = FALSE, force = TRUE)

The `input`, `output` and `data` directories are now present.
list.files(tmp)

60 set_growR_verbosity

Warnings are issued if directories are already present. Example files
are still copied and potentially overwritten.
setup_directory(root = tmp, include_examples = TRUE, force = TRUE)

Example files are now present
list.files(tmp, recursive = TRUE)

End of the example. The following code is for cleaning up.
unlink(tmp, recursive = TRUE)

set_growR_verbosity Set verbosity of growR output.

Description

Set verbosity of growR output.

Usage

set_growR_verbosity(level = 3)

Arguments

level Integer representing one of the following levels: 1: ERROR, 2: WARNING, 3:
INFO, 4: DEBUG, 5: TRACE Messages with a level higher than the specified
level are suppressed. In other words, higher values of level lead to more output
and vice versa.

Value

None Sets the option “"growR.verbosity"‘.

Examples

At level 3, only one of the three following messages are printed.
set_growR_verbosity(3)
logger("Message on level 5.", level = 5)
logger("Message on level 4.", level = 4)
logger("Message on level 3.", level = 3)
At level 5, all three are printed.
set_growR_verbosity(5)
logger("Message on level 5.", level = 5)
logger("Message on level 4.", level = 4)
logger("Message on level 3.", level = 3)
Reset to default.
set_growR_verbosity()

start_of_growing_season 61

start_of_growing_season

Determine start of growing season

Description

This implements a conventional method for the determination of the start of the growing season
(SGS) based on daily average temperatures.

Usage

start_of_growing_season(temperatures)

Arguments

temperatures vector Daily average temperatures in degree Celsius.

Details

A temperature sum is constructed using [weighted_temperature_sum()], i.e. by summing the av-
erage daily temperature for each day, but applying a weight factor of 0.5 for January and 0.75 for
February.

The SGS is defined as the first day where the so constructed temperature sum crosses 200 degree
days.

See Also

[start_of_growing_season_mtd()], [weighted_temperature_sum()]

Examples

ts = rep(2, 365)
start_of_growing_season(ts)

start_of_growing_season_mtd

Multicriterial Thermal Definition

Description

Find the start of the growing season based on daily average temperatures.

Usage

start_of_growing_season_mtd(temperatures, first_possible_DOY = 1)

62 WeatherData

Arguments

temperatures vector Daily average temperatures in degree Celsius.
first_possible_DOY

int Only consider days of the year from this value onward.

Details

This function implements the *multicriterial thermal definition* (MTD) as described in chapter
2.3.1.3 of the dissertation of Andreas Schaumberger: Räumliche Modelle zur Vegetations- und
Ertragsdynamik im Wirtschaftsgrünland, 2011, ISBN-13: 978-3-902559-67-8

Value

int DOY of the growing season start according to the MTD.

See Also

[start_of_growing_season()]

Examples

Create fake temperatures
ts = c(0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 6, 6, 6, 6, 3, 3, 3, 3, 3, 6, 6, 6,
6, 5, 6, 7, 8, 9, 10, 11, 12)
start_of_growing_season_mtd(ts)

WeatherData Weather Data Object

Description

Data structure containing weather data for a given site for several years.

Details

All fields representing weather variables are vectors of length 365 times N, where N is the number
of years for which weather data is stored. In other words, every variable has one value for each of
the 365 of each of the N years.

Weather inputs

The weather input file should be organized as space separated columns with a year column and at
least the following parameters as headers (further columns are ignored):

• DOY day of year in given year

• Ta average temperature of given day (Celsius).

WeatherData 63

• precip precipitation in millimeter per day.

• PAR photosynthetically active radiation in MJ/m^2^. Can be calculated from average sunlight
irradiance SRad in J/s/m^2^ as: PAR = SRad * 0.47 * 24 * 60 * 60 / 1e6

• ET0 evapotranspiration in mm.

These parameters are stored in this object in the respective PARAM_vec fields.

Snow model

The precipitation and temperature inputs are used in order to estimate the snow cover for each day
by use of a snow model. The employed model is as formulated by Kokkonen et al. 2006 and makes
use of parameters from Rango and Martinec, 1995.

Public fields

weather_file Name of provided weather data file.

years numeric Integer representation of the contained years.

vec_size Length of the PARAM_vec vectors, which is equal to number of contained years times
365.

year_vec Vector of length vec_size, holding the year for the respective index.

W A list generated by get_weather_for_year() which contains weather data only for a given year.
The keys in the list are:

• aCO2 (atmospheric CO2 concentration in ppm)
• year
• DOY
• Ta
• Ta_sm (smoothed daily average temperature)
• PAR
• PP
• PET
• liquidP
• melt
• snow
• ndays (number of days in this year)

Methods

Public methods:
• WeatherData$new()

• WeatherData$read_weather()

• WeatherData$ensure_file_integrity()

• WeatherData$calculate_day_length()

• WeatherData$get_weather_for_year()

• WeatherData$clone()

64 WeatherData

Method new(): Create a new WeatherData object.

Usage:
WeatherData$new(weather_file = NULL, years = NULL)

Arguments:
weather_file string Path to file containing the weather data to be read.
years numeric Vector of years for which the weather is to be extracted.

Method read_weather(): Read weather data from supplied weather_file.

Usage:
WeatherData$read_weather(weather_file, years = NULL)

Arguments:
weather_file Path to or name of file containing weather data.
years Years for which the weather is to be extracted. Default (NULL) is to read in all found

years.

Method ensure_file_integrity(): Check if supplied input file is formatted correctly.
Check if required column names are present and fix NA entries.

Usage:
WeatherData$ensure_file_integrity(weather)

Arguments:
weather data.table of the read input file with header = TRUE.

Method calculate_day_length(): Calculate the expected length of day based on a site’s
geographical latitude.

Usage:
WeatherData$calculate_day_length(latitude)

Arguments:
latitude numeric; geographical latitude in degrees.

Method get_weather_for_year(): Extract state variables to the weather data for given year
and return them as a list.

Usage:
WeatherData$get_weather_for_year(year)

Arguments:
year integer Year for which to extract weather data.

Returns: W List containing the keys aCO2, year, DOY, Ta, Ta_sm, PAR, PP, PET, liquidP, melt,
snow, ndays.

Method clone(): The objects of this class are cloneable with this method.

Usage:
WeatherData$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

weighted_temperature_sum 65

References

Rango A, Martinec J (1995). “Revisiting the Degree-Day Method for Snowmelt Computations.”
JAWRA Journal of the American Water Resources Association, 31(4), 657–669. ISSN 1752-1688,
doi:10.1111/j.17521688.1995.tb03392.x.

Kokkonen T, Koivusalo H, Jakeman A, Norton J (2006). “Construction of a Degree-Day Snow
Model in the Light of the Ten Iterative Steps in Model Development.” In iEMSs Third Biennial
Meeting: "Summit on Environmental Modelling and Software". International Environmental Mod-
elling and Software Society, Burlington, USA, July 2006.

See Also

WeatherData$read_weather()

weighted_temperature_sum

Create a weighted temperature sum

Description

A temperature sum is constructed by summing the average daily temperature for each day, but
applying a weight factor of 0.5 for January and 0.75 for February.

Usage

weighted_temperature_sum(temperatures, negative = FALSE)

Arguments

temperatures vector Daily average temperatures in degree Celsius.

negative boolean Whether to include negative temperature values in the summation. By
default, negative values are set to 0, meaning that the temperature sum is mono-
tonically increasing.

Value

Weighted temperature sum.

Examples

Use fake temperatures
ts = rep(2, 365)
weighted_temperature_sum(ts)

https://doi.org/10.1111/j.1752-1688.1995.tb03392.x

66 willmott

willmott Willmott Index

Description

Willmott’s index of model performance as described in Willmott (2012).

Usage

willmott(predicted, observed, ...)

Arguments

predicted Vector containing the predictions y.

observed Vector containing the observations z.

... Scaling factor c in the denominator in the Willmott index. The originally pro-
posed value of 2 should be fine.

Details

This index takes on values from -1 to 1, where values closer to 1 are generally indicating better
model performance. Values close to -1 can either mean that the model predictions differ strongly
from the observation, or that the observations show small variance (or both).

Value

willmott Value between -1 and 1

References

Willmott CJ, Robeson SM, Matsuura K (2012). “A Refined Index of Model Performance.” In-
ternational Journal of Climatology, 32(13), 2088–2094. ISSN 1097-0088, doi:10.1002/joc.2419,
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.2419.

See Also

get_bias()

Examples

predicted = c(21.5, 22.2, 19.1)
observed = c(20, 20, 20)
The Willmott index "fails" in this case, as the variance in the
observation is 0.
willmott(predicted, observed)

Try with more realistic observations
observed = c(20.5, 19.5, 20.0)

https://doi.org/10.1002/joc.2419
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.2419

yield_parameters 67

willmott(predicted, observed)

yield_parameters Parameters for expected yields in Switzerland

Description

The dataset contains the parameters a and b used to model the expected gross dry matter yield (in t
/ ha) as a function of altitude (in m.a.s.l.) as yield = a + b * altitude.

Usage

yield_parameters

Format

A data.frame with 4 rows and 3 variables:

intensity Management intensity

a Offset a in t / ha

b Slope b in t / ha / m

Details

Lookup Table of expected yield as functions of height and management intensity after table 1a in
Olivier Huguenin et al.

References

Huguenin-Elie IEMPSALWK, Jeangros B (2017). “Grundlagen für die Düngung landwirtschaftlicher
Kulturen in der Schweiz (GRUD), Kapitel 9: Düngung von Grasland.” Agrarforschung Schweiz.
https://www.agrarforschungschweiz.ch/2017/06/9-duengung-von-grasland-grud-2017/.

https://www.agrarforschungschweiz.ch/2017/06/9-duengung-von-grasland-grud-2017/

Index

∗ datasets
FG_A, 19
FG_B, 19
FG_C, 20
FG_D, 20
growR_package_options, 30
management_parameters, 36
metric_map, 37
parameter_scan_example, 50
posieux_weather, 53
yield_parameters, 67

aCO2_inverse, 3
add_lines, 4
add_lines(), 13
analyze_parameter_scan, 5
analyze_parameter_scan(), 50, 52–56
append_to_table, 6
atmospheric_CO2, 7
autocut, 8, 45, 50

box_smooth, 8
browse, 9
browse(), 9
browse_end (browse), 9
browse_end(), 9
browser(), 9, 10
build_functional_group, 10

check_for_package, 11
Combinator, 12
compare.R, 13
create_combinations, 13
create_combinations(), 13, 58
create_example_environment, 15

debugonce(), 9, 10

ensure_table_columns, 16
ensure_unique_filename, 16

fCO2_growth_mod, 17
fCO2_growth_mod(), 40
fCO2_transpiration_mod, 18
FG_A, 19
FG_B, 19
FG_C, 20
FG_D, 20
fPAR, 21
fT, 21
FunctionalGroup, 11, 22, 42
fW, 24

get_annual_gross_yield, 25
get_bias, 26
get_bias(), 66
get_end_of_cutting_season, 27
get_expected_n_cuts, 28
get_relative_cut_contribution, 29
get_relative_cut_contribution(), 27
get_site_name, 30
get_site_name(), 32
growR_package_options, 30
growR_run_loop, 31

load_data_for_sites
(load_measured_data), 32

load_matching_data
(load_measured_data), 32

load_measured_data, 32
load_measured_data(), 13
logger, 33

make_yearDOY, 34
management_parameters, 36
ManagementData, 34, 36–39
mean_absolute_error (get_bias), 26
metric_map, 37
ModvegeEnvironment, 31, 37, 45, 48, 57
ModvegeParameters, 37, 38, 40, 45, 46, 57, 58

68

INDEX 69

ModvegeSite, 5, 31, 32, 34, 35, 43, 51, 52, 57,
58

parameter_scan_example, 50
parse_year_strings, 51
plot(), 50
plot.ModvegeSite, 52
plot_parameter_scan, 52
plot_parameter_scan(), 56
posieux_weather, 53
PscanPlotter, 53, 54, 55

read_config, 56
read_config(), 37, 39, 57
readRDS(), 5, 6
root_mean_squared (get_bias), 26
run_parameter_scan, 57
run_parameter_scan(), 5, 6, 50, 51

saveRDS(), 58
SEA, 58
SEA(), 22, 41
set_growR_verbosity, 60
set_growR_verbosity(), 33
setup_directory, 59
setup_directory(), 13, 53, 54
start_of_growing_season, 61
start_of_growing_season(), 41, 47, 50
start_of_growing_season_mtd, 61
start_of_growing_season_mtd(), 41, 46,

50

trace(), 9, 10

untrace(), 9

WeatherData, 37–39, 45, 48, 54, 62, 65
weighted_temperature_sum, 65
willmott, 66
willmott(), 27

yield_parameters, 67

	aCO2_inverse
	add_lines
	analyze_parameter_scan
	append_to_table
	atmospheric_CO2
	autocut
	box_smooth
	browse
	build_functional_group
	check_for_package
	Combinator
	compare.R
	create_combinations
	create_example_environment
	ensure_table_columns
	ensure_unique_filename
	fCO2_growth_mod
	fCO2_transpiration_mod
	FG_A
	FG_B
	FG_C
	FG_D
	fPAR
	fT
	FunctionalGroup
	fW
	get_annual_gross_yield
	get_bias
	get_end_of_cutting_season
	get_expected_n_cuts
	get_relative_cut_contribution
	get_site_name
	growR_package_options
	growR_run_loop
	load_measured_data
	logger
	make_yearDOY
	ManagementData
	management_parameters
	metric_map
	ModvegeEnvironment
	ModvegeParameters
	ModvegeSite
	parameter_scan_example
	parse_year_strings
	plot.ModvegeSite
	plot_parameter_scan
	posieux_weather
	PscanPlotter
	read_config
	run_parameter_scan
	SEA
	setup_directory
	set_growR_verbosity
	start_of_growing_season
	start_of_growing_season_mtd
	WeatherData
	weighted_temperature_sum
	willmott
	yield_parameters
	Index

