
Package ‘greta.dynamics’
July 22, 2025

Type Package

Title Modelling Structured Dynamical Systems in 'greta'

Version 0.2.2

Description A 'greta' extension for analysing transition matrices and
ordinary differential equations representing dynamical systems. Provides
functions for analysing transition matrices by iteration, and solving
ordinary differential equations. This is an extension to the 'greta'
software, Golding (2019) <doi:10.21105/joss.01601>.

License Apache License (>= 2)

URL https://github.com/greta-dev/greta.dynamics,

https://greta-dev.github.io/greta.dynamics/

BugReports https://github.com/greta-dev/greta.dynamics/issues

Imports cli (>= 3.6.3), glue, rlang (>= 1.1.4), tensorflow (>= 1.14.0)

Depends greta (>= 0.5.0), R (>= 4.1.0)

Suggests covr, knitr, rmarkdown, spelling, testthat (>= 3.1.0),
deSolve, abind

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

RoxygenNote 7.3.2

SystemRequirements Python (>= 3.7.0) with header files and shared
library; TensorFlow (>= v2.0.0; https://www.tensorflow.org/);
TensorFlow Probability (v0.8.0;
https://www.tensorflow.org/probability/)

NeedsCompilation no

Author Nick Golding [aut, cph] (ORCID:
<https://orcid.org/0000-0001-8916-5570>),

Nicholas Tierney [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1460-8722>)

1

https://doi.org/10.21105/joss.01601
https://github.com/greta-dev/greta.dynamics
https://greta-dev.github.io/greta.dynamics/
https://github.com/greta-dev/greta.dynamics/issues
https://orcid.org/0000-0001-8916-5570
https://orcid.org/0000-0003-1460-8722

2 greta.dynamics

Maintainer Nicholas Tierney <nicholas.tierney@gmail.com>

Repository CRAN

Date/Publication 2024-11-14 04:50:02 UTC

Contents

greta.dynamics . 2
iterate_dynamic_function . 3
iterate_dynamic_matrix . 4
iterate_matrix . 6
ode_solve . 8

Index 12

greta.dynamics greta.dynamics: a greta extension for modelling dynamical systems

Description

an extension to greta with functions for simulating dynamical systems, defined by of ordinary dif-
ferential equations (see ode_solve()) or transition matrices (iterate_matrix()).

Author(s)

Maintainer: Nicholas Tierney <nicholas.tierney@gmail.com> (ORCID)

Authors:

• Nick Golding <nick.golding.research@gmail.com> (ORCID) [copyright holder]

See Also

Useful links:

• https://github.com/greta-dev/greta.dynamics

• https://greta-dev.github.io/greta.dynamics/

• Report bugs at https://github.com/greta-dev/greta.dynamics/issues

https://greta-stats.org/
https://orcid.org/0000-0003-1460-8722
https://orcid.org/0000-0001-8916-5570
https://github.com/greta-dev/greta.dynamics
https://greta-dev.github.io/greta.dynamics/
https://github.com/greta-dev/greta.dynamics/issues

iterate_dynamic_function 3

iterate_dynamic_function

iterate dynamic transition functions

Description

Calculate the stable population size for a stage-structured dynamical system, encoded by a transition
function, the value of which changes at each iteration, given by function of the previous state:
state[t] = f(state[t-1]).

Usage

iterate_dynamic_function(
transition_function,
initial_state,
niter,
tol,
...,
parameter_is_time_varying = c(),
state_limits = c(-Inf, Inf)

)

Arguments

transition_function

a function taking in the previous population state and the current iteration (and
possibly other greta arrays) and returning the population state at the next itera-
tion. The first two arguments must be named ’state’ and ’iter’, the state vector
and scalar iteration number respectively. The remaining parameters must be
named arguments representing (temporally static) model parameters. Variables
and distributions cannot be defined inside the function.

initial_state either a column vector (with m elements) or a 3D array (with dimensions n x m
x 1) giving one or more initial states from which to iterate the matrix

niter a positive integer giving the maximum number of times to iterate the matrix
tol a scalar giving a numerical tolerance, below which the algorithm is determined

to have converged to a stable population size in all stages
... optional named arguments to matrix_function, giving greta arrays for addi-

tional parameters
parameter_is_time_varying

a character vector naming the parameters (ie. the named arguments of the func-
tion that are passed via ...) that should be considered to be time-varying. That
is, at each iteration only the corresponding slice from the first dimension of the
object passed in should be used at that iteration.

state_limits a numeric vector of length 2 giving minimum and maximum values at which to
clamp the values of state after each iteration to prevent numerical under/overflow;
i.e. elements with values below the minimum (maximum) will be set to the min-
imum (maximum).

4 iterate_dynamic_matrix

Details

Like iterate_dynamic_matrix this converges to absolute population sizes. The convergence cri-
terion is therefore based on growth rates converging on 0.

The greta array returned by transition_function must have the same dimension as the state input
and initial_state should be shaped accordingly, as detailed in iterate_matrix.

To ensure the matrix is iterated for a specific number of iterations, you can set that number as niter,
and set tol to 0 or a negative number to ensure that the iterations are not stopped early.

Value

a named list with four greta arrays:

• stable_state a vector or matrix (with the same dimensions as initial_state) giving the
state after the final iteration.

• all_states an n x m x niter matrix of the state values at each iteration. This will be 0 for all
entries after iterations.

• converged an integer scalar indicating whether all the matrix iterations converged to a toler-
ance less than tol (1 if so, 0 if not) before the algorithm finished.

• iterations a scalar of the maximum number of iterations completed before the algorithm
terminated. This should match niter if converged is FALSE

Note

because greta vectorises across both MCMC chains and the calculation of greta array values, the
algorithm is run until all chains (or posterior samples), sites and stages have converged to stable
growth. So a single value of both converged and iterations is returned, and the value of this
will always have the same value in an mcmc.list object. So inspecting the MCMC trace of these
parameters will only tell you whether the iteration converged in all posterior samples, and the
maximum number of iterations required to do so across all these samples

iterate_dynamic_matrix

iterate dynamic transition matrices

Description

Calculate the stable population size for a stage-structured dynamical system, encoded by a transi-
tion matrix, the value of which changes at each iteration, given by function of the previous state:
state[t] = f(state[t-1]) %*% state[t-1].

iterate_dynamic_matrix 5

Usage

iterate_dynamic_matrix(
matrix_function,
initial_state,
niter,
tol,
...,
state_limits = c(-Inf, Inf)

)

Arguments

matrix_function

a function taking in the previous population state and the current iteration (and
possibly other greta arrays) and returning a transition matrix to use for this iter-
ation. The first two arguments must be named ’state’ and ’iter’, the state vector
and scalar iteration number respectively. The remaining parameters must be
named arguments representing (temporally static) model parameters. Variables
and distributions cannot be defined inside the function.

initial_state either a column vector (with m elements) or a 3D array (with dimensions n x m
x 1) giving one or more initial states from which to iterate the matrix

niter a positive integer giving the maximum number of times to iterate the matrix

tol a scalar giving a numerical tolerance, below which the algorithm is determined
to have converged to a stable population size in all stages

... optional named arguments to matrix_function, giving greta arrays for addi-
tional parameters

state_limits a numeric vector of length 2 giving minimum and maximum values at which to
clamp the values of state after each iteration to prevent numerical under/overflow;
i.e. elements with values below the minimum (maximum) will be set to the min-
imum (maximum).

Details

Because iterate_matrix iterates with a static transition matrix, it converges to a stable growth
rate and relative population sizes for a dynamical system. iterate_dynamic_matrix instead uses
a matrix which changes at each iteration, and can be dependent on the population sizes after the
previous iteration, and the iteration number. Because this can encode density-dependence, the dy-
namics can converge to absolute population sizes. The convergence criterion is therefore based on
growth rates converging on 0.

As in iterate_matrix, the greta array returned by matrix_function can either be a square matrix,
or a 3D array representing (on the first dimension) n different matrices. initial_state should be
shaped accordingly, as detailed in iterate_matrix.

To ensure the matrix is iterated for a specific number of iterations, you can set that number as niter,
and set tol to 0 or a negative number to ensure that the iterations are not stopped early.

6 iterate_matrix

Value

a named list with four greta arrays:

• stable_state a vector or matrix (with the same dimensions as initial_state) giving the
state after the final iteration.

• all_states an n x m x niter matrix of the state values at each iteration. This will be 0 for all
entries after iterations.

• converged an integer scalar indicating whether all the matrix iterations converged to a toler-
ance less than tol (1 if so, 0 if not) before the algorithm finished.

• iterations a scalar of the maximum number of iterations completed before the algorithm
terminated. This should match niter if converged is FALSE

Note

because greta vectorises across both MCMC chains and the calculation of greta array values, the
algorithm is run until all chains (or posterior samples), sites and stages have converged to stable
growth. So a single value of both converged and iterations is returned, and the value of this
will always have the same value in an mcmc.list object. So inspecting the MCMC trace of these
parameters will only tell you whether the iteration converged in all posterior samples, and the
maximum number of iterations required to do so across all these samples

iterate_matrix iterate transition matrices

Description

Calculate the intrinsic growth rate(s) and stable stage distribution(s) for a stage-structured dynami-
cal system, encoded as state_t = matrix \%*\% state_tm1.

Usage

iterate_matrix(
matrix,
initial_state = rep(1, ncol(matrix)),
niter = 100,
tol = 1e-06

)

Arguments

matrix either a square 2D transition matrix (with dimensions m x m), or a 3D array
(with dimensions n x m x m), giving one or more transition matrices to iterate

initial_state either a column vector (with m elements) or a 3D array (with dimensions n x m
x 1) giving one or more initial states from which to iterate the matrix

niter a positive integer giving the maximum number of times to iterate the matrix
tol a scalar giving a numerical tolerance, below which the algorithm is determined

to have converged to the same growth rate in all stages

iterate_matrix 7

Details

iterate_matrix can either act on a single transition matrix and initial state (if matrix is 2D and
initial_state is a column vector), or it can simultaneously act on n different matrices and/or n
different initial states (if matrix and initial_state are 3D arrays). In the latter case, the first
dimension of both objects should be the batch dimension n.

To ensure the matrix is iterated for a specific number of iterations, you can set that number as niter,
and set tol to 0 or a negative number to ensure that the iterations are not stopped early.

Value

a named list with five greta arrays:

• lambda a scalar or vector giving the ratio of the first stage values between the final two itera-
tions.

• stable_state a vector or matrix (with the same dimensions as initial_state) giving the
state after the final iteration, normalised so that the values for all stages sum to one.

• all_states an n x m x niter matrix of the state values at each iteration. This will be 0 for all
entries after iterations.

• converged an integer scalar or vector indicating whether the iterations for each matrix have
converged to a tolerance less than tol (1 if so, 0 if not) before the algorithm finished.

• iterations a scalar of the maximum number of iterations completed before the algorithm
terminated. This should match niter if converged is FALSE.

Note

because greta vectorises across both MCMC chains and the calculation of greta array values, the
algorithm is run until all chains (or posterior samples), sites and stages have converged to stable
growth. So a single value of both converged and iterations is returned, and the value of this
will always have the same value in an mcmc.list object. So inspecting the MCMC trace of these
parameters will only tell you whether the iteration converged in all posterior samples, and the
maximum number of iterations required to do so across all these samples

Examples

Not run:
simulate from a probabilistic 4-stage transition matrix model
k <- 4

component variables
survival probability for all stages
survival <- uniform(0, 1, dim = k)
conditional (on survival) probability of staying in a stage
stasis <- c(uniform(0, 1, dim = k - 1), 1)
marginal probability of staying/progressing
stay <- survival * stasis
progress <- (survival * (1 - stay))[1:(k - 1)]
recruitment rate for the largest two stages
recruit <- exponential(c(3, 5))

8 ode_solve

combine into a matrix:
tmat <- zeros(k, k)
diag(tmat) <- stay
progress_idx <- row(tmat) - col(tmat) == 1
tmat[progress_idx] <- progress
tmat[1, k - (1:0)] <- recruit

analyse this to get the intrinsic growth rate and stable state
iterations <- iterate_matrix(tmat)
iterations$lambda
iterations$stable_distribution
iterations$all_states

Can also do this simultaneously for a collection of transition matrices
k <- 2
n <- 10
survival <- uniform(0, 1, dim = c(n, k))
stasis <- cbind(uniform(0, 1, dim = n), rep(1, n))
stay <- survival * stasis
progress <- (survival * (1 - stasis))[, 1]
recruit_rate <- 1 / seq(0.1, 5, length.out = n)
recruit <- exponential(recruit_rate, dim = n)
tmats <- zeros(10, 2, 2)
tmats[, 1, 1] <- stasis[, 1]
tmats[, 2, 2] <- stasis[, 2]
tmats[, 2, 1] <- progress
tmats[, 1, 2] <- recruit

iterations <- iterate_matrix(tmats)
iterations$lambda
iterations$stable_distribution
iterations$all_states

End(Not run)

ode_solve solve ODEs

Description

Solve a system of ordinary differential equations.

Usage

ode_solve(derivative, y0, times, ..., method = c("dp", "bdf"))

Arguments

derivative a derivative function. The first two arguments must be ’y’ and ’t’, the state
parameter and scalar timestep respectively. The remaining parameters must be

ode_solve 9

named arguments representing (temporally static) model parameters. Variables
and distributions cannot be defined in the function.

y0 a greta array for the value of the state parameter y at time 0

times a column vector of times at which to evaluate y

... named arguments giving greta arrays for the additional (fixed) parameters

method which solver to use. Default is "dp", which is similar to deSolve’s "ode45".
Currently implemented is "dp", and "bdf".The "dp" solver is Dormand-Prince
explicit solver for non-stiff ODEs. The "bdf" solver is Backward Differentiation
Formula (BDF) solver for stiff ODEs. Currently no arguments for "bdf" or "dp"
are able to be specified.

Value

greta array

Examples

Not run:
replicate the Lotka-Volterra example from deSolve
library(deSolve)
LVmod <- function(Time, State, Pars) {

with(as.list(c(State, Pars)), {
Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey / K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

return(list(c(dPrey, dPredator)))
})

}

pars <- c(
rIng = 0.2, # /day, rate of ingestion
rGrow = 1.0, # /day, growth rate of prey
rMort = 0.2, # /day, mortality rate of predator
assEff = 0.5, # -, assimilation efficiency
K = 10

) # mmol/m3, carrying capacity

yini <- c(Prey = 1, Predator = 2)
times <- seq(0, 30, by = 1)
out <- ode(yini, times, LVmod, pars)

simulate observations
jitter <- rnorm(2 * length(times), 0, 0.1)
y_obs <- out[, -1] + matrix(jitter, ncol = 2)

~~~~~~~~~
fit a greta model to infer the parameters from this simulated data

10 ode_solve

greta version of the function
lotka_volterra <- function(y, t, rIng, rGrow, rMort, assEff, K) {

Prey <- y[1, 1]
Predator <- y[1, 2]

Ingestion <- rIng * Prey * Predator
GrowthPrey <- rGrow * Prey * (1 - Prey / K)
MortPredator <- rMort * Predator

dPrey <- GrowthPrey - Ingestion
dPredator <- Ingestion * assEff - MortPredator

cbind(dPrey, dPredator)
}

priors for the parameters
rIng <- uniform(0, 2) # /day, rate of ingestion
rGrow <- uniform(0, 3) # /day, growth rate of prey
rMort <- uniform(0, 1) # /day, mortality rate of predator
assEff <- uniform(0, 1) # -, assimilation efficiency
K <- uniform(0, 30) # mmol/m3, carrying capacity

initial values and observation error
y0 <- uniform(0, 5, dim = c(1, 2))
obs_sd <- uniform(0, 1)

solution to the ODE
y <- ode_solve(lotka_volterra, y0, times, rIng, rGrow, rMort, assEff, K)

sampling statement/observation model
distribution(y_obs) <- normal(y, obs_sd)

we can use greta to solve directly, for a fixed set of parameters (the true
ones in this case)
values <- c(

list(y0 = t(1:2)),
as.list(pars)

)
vals <- calculate(y, values = values)[[1]]
plot(vals[, 1] ~ times, type = "l", ylim = range(vals))
lines(vals[, 2] ~ times, lty = 2)
points(y_obs[, 1] ~ times)
points(y_obs[, 2] ~ times, pch = 2)

or we can do inference on the parameters:

build the model (takes a few seconds to define the tensorflow graph)
m <- model(rIng, rGrow, rMort, assEff, K, obs_sd)

compute MAP estimate
o <- opt(m)
o

ode_solve 11

End(Not run)

Index

greta.dynamics, 2
greta.dynamics-package

(greta.dynamics), 2

iterate_dynamic_function, 3
iterate_dynamic_matrix, 4
iterate_matrix, 6
iterate_matrix(), 2

ode_solve, 8
ode_solve(), 2

12

	greta.dynamics
	iterate_dynamic_function
	iterate_dynamic_matrix
	iterate_matrix
	ode_solve
	Index

