Title: | Estimate Functional and Stochastic Parameters of Linear Models with Correlated Residuals and Missing Data |
Version: | 0.0.2 |
Description: | Implements the Generalized Method of Wavelet Moments with Exogenous Inputs estimator (GMWMX) presented in Voirol, L., Xu, H., Zhang, Y., Insolia, L., Molinari, R. and Guerrier, S. (2024) <doi:10.48550/arXiv.2409.05160>. The GMWMX estimator allows to estimate functional and stochastic parameters of linear models with correlated residuals in presence of missing data. The 'gmwmx2' package provides functions to load and plot Global Navigation Satellite System (GNSS) data from the Nevada Geodetic Laboratory and functions to estimate linear model model with correlated residuals in presence of missing data. |
License: | AGPL-3 |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.1 |
Language: | en-US |
Depends: | R (≥ 4.0.0) |
VignetteBuilder: | knitr |
LinkingTo: | Rcpp, RcppArmadillo |
Imports: | Rcpp, data.table, dplyr, magrittr, wv, Matrix, httr2, rlang |
Suggests: | knitr, rmarkdown, knitcitations, raster, rnaturalearth, shape, tibble, tidygeocoder, sf, geodata |
URL: | https://github.com/SMAC-Group/gmwmx2 |
BugReports: | https://github.com/SMAC-Group/gmwmx2/issues |
LazyData: | true |
NeedsCompilation: | yes |
Packaged: | 2025-04-10 21:56:28 UTC; lionel |
Author: | Lionel Voirol |
Maintainer: | Lionel Voirol <lionelvoirol@hotmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-04-10 22:20:02 UTC |
Estimated northward and eastward velocity and their standard deviation using the GMWMX estimator
Description
Estimated northward and eastward velocity and standard deviation for a subset of 1202 GNSS station with more than 10 years of daily data.
Usage
df_estimated_velocities_gmwmx
Format
A data frame with 1202 rows and 12 variables:
- station_name
Name of the GNSS station.
- estimated_trend_N
Estimated northward velocity trend (in meters per day).
- std_estimated_trend_N
Standard deviation of the estimated northward velocity trend.
- estimated_trend_E
Estimated eastward velocity trend (in meters per day).
- std_estimated_trend_E
Standard deviation of the estimated eastward velocity trend.
- length_signal
Length of the signal (in days).
- estimated_trend_N_scaled
Scaled estimated northward velocity trend (multiplying by 365.25 for yearly values).
- std_estimated_trend_N_scaled
Scaled standard deviation of the estimated northward velocity trend.
- estimated_trend_E_scaled
Scaled estimated eastward velocity trend (multiplying by 365.25 for yearly values).
- std_estimated_trend_E_scaled
Scaled standard deviation of the estimated eastward velocity trend.
- latitude
Latitude of the GNSS station.
- longitude
Longitude of the GNSS station.
Download all stations name and location from the Nevada Geodetic Laboratory
Description
Download all stations name and location from the Nevada Geodetic Laboratory
Usage
download_all_stations_ngl(verbose = FALSE)
Arguments
verbose |
A |
Value
Return a data.frame
with all stations name, latitude, longitude and heights.
Examples
df_all_stations <- download_all_stations_ngl()
head(df_all_stations)
Download estimated velocities provided by the Nevada Geodetic Laboratory for all stations.
Description
Download estimated velocities provided by the Nevada Geodetic Laboratory for all stations.
Usage
download_estimated_velocities_ngl(verbose = FALSE)
Arguments
verbose |
A |
Value
Return a data.frame
with all stations name, information about the time series for each station, estimated velocities and estimated standard deviation of the estimated velocities.
Examples
df_estimated_velocities <- download_estimated_velocities_ngl()
head(df_estimated_velocities)
Download GNSS position time series and steps reference from the Nevada Geodetic Laboratory with IGS14 reference frame.
Description
Download GNSS position time series and steps reference from the Nevada Geodetic Laboratory with IGS14 reference frame.
Usage
download_station_ngl(station_name, verbose = FALSE)
Arguments
station_name |
A |
verbose |
A |
Value
A list
of class gnss_ts_ngl
that contains three data.frame
: The data.frame
df_position
which contains the position time series extracted from the .tenv3 file available from the Nevada Geodetic Laboratory, the
data.frame
df_equipment_software_changes
which specify the equipment or software changes for that stations and the data.frame
df_earthquakes
that specify the earthquakes associated with that station.
Examples
station_1LSU <- download_station_ngl("1LSU")
attributes(station_1LSU)
Estimate a trajectory model for a gnss_ts_ngl
object considering a white noise plus colored noise as the stochastic model for the residuals and model missingness with a Markov process using the GMWMX estimator.
Description
Estimate a trajectory model for a gnss_ts_ngl
object considering a white noise plus colored noise as the stochastic model for the residuals and model missingness with a Markov process using the GMWMX estimator.
Usage
gmwmx2(
x,
n_seasonal = 2,
vec_earthquakes_relaxation_time = NULL,
component = "N",
toeplitz_approx_var_cov_wv = TRUE,
stochastic_model = "wn + fl"
)
Arguments
x |
A |
n_seasonal |
An |
vec_earthquakes_relaxation_time |
A |
component |
A |
toeplitz_approx_var_cov_wv |
A |
stochastic_model |
A |
Examples
x <- download_station_ngl("CHML")
fit <- gmwmx2(x, n_seasonal = 2, component = "N")
Plot a fit_gnss_ts_ngl
object
Description
Plot a fit_gnss_ts_ngl
object
Usage
## S3 method for class 'fit_gnss_ts_ngl'
plot(x, ...)
Arguments
x |
A |
... |
Additional graphical parameters. |
Value
No return value. Plot a fit_gnss_ts_ngl
object.
Examples
x <- download_station_ngl("0AMB")
fit_N <- gmwmx2(x, n_seasonal = 2, component = "N")
plot(fit_N)
fit_E <- gmwmx2(x, n_seasonal = 2, component = "E")
plot(fit_E)
Plot a gnss_ts_ngl
object
Description
Plot a gnss_ts_ngl
object
Usage
## S3 method for class 'gnss_ts_ngl'
plot(x, component = NULL, ...)
Arguments
x |
A |
component |
A |
... |
Additional graphical parameters. |
Value
No return value. Plot a gnss_ts_ngl
object.
Examples
station_1LSU <- download_station_ngl("1LSU")
plot(station_1LSU)
plot(station_1LSU, component = "N")
plot(station_1LSU, component = "E")
plot(station_1LSU, component = "V")
Extract estimated parameters from a fit_gnss_ts_ngl
Description
Extract estimated parameters from a fit_gnss_ts_ngl
Usage
## S3 method for class 'fit_gnss_ts_ngl'
summary(object, scale_parameters = FALSE, ...)
Arguments
object |
A |
scale_parameters |
A |
... |
Additional parameters. |
Examples
x <- download_station_ngl("P820")
fit1 <- gmwmx2(x, n_seasonal = 2, component = "N", stochastic_model = "wn + pl")
summary(fit1)
summary(fit1, scale_parameters = TRUE)
fit2 <- gmwmx2(x, n_seasonal = 2, component = "N", stochastic_model = "wn + fl")
summary(fit2)