Type: | Package |
Title: | Inference and Clustering of Functional Data |
Version: | 1.0.1 |
Author: | Andrea Martino [aut, cre], Andrea Ghiglietti [aut], Francesca Ieva [aut], Anna Maria Paganoni [aut] |
Maintainer: | Andrea Martino <andrea.martino@polimi.it> |
Description: | Some methods for the inference and clustering of univariate and multivariate functional data, using a generalization of Mahalanobis distance, along with some functions useful for the analysis of functional data. For further details, see Martino A., Ghiglietti, A., Ieva, F. and Paganoni A. M. (2017) <doi:10.48550/arXiv.1708.00386>. |
Depends: | R (≥ 3.3.0) |
License: | GPL-3 |
LazyData: | true |
Encoding: | UTF-8 |
RoxygenNote: | 6.0.1.9000 |
Imports: | graphics, stats |
Suggests: | knitr, rmarkdown |
VignetteBuilder: | knitr |
NeedsCompilation: | no |
Packaged: | 2018-04-06 08:42:12 UTC; Andrea |
Repository: | CRAN |
Date/Publication: | 2018-04-06 09:34:16 UTC |
S3
Class for functional datasets.
A class for univariate or multivariate functional dataset.
Description
S3
Class for functional datasets.
A class for univariate or multivariate functional dataset.
Usage
funData(grid, data)
Arguments
grid |
the grid over which the functional dataset is defined. |
data |
a vector, a matrix or a |
Value
The function returns a S3
object of class funData
, containing
the grid
over which the functional dataset is defined and a matrix or a list
of vectors or matrices containing the functional data
See Also
Examples
# Define parameters
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
m1 <- t^2 * ( 1 - t )
m2 <- t * ( 1 - t )^2
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
# Simulate the functional data
x1 <- gmfd_simulate( n, m1, rho = rho, theta = theta )
x2 <- gmfd_simulate( n, m2, rho = rho, theta = theta )
FD <- funData( t, list( x1, x2 ) )
Distance function
Description
This function allows you to compute the distance between two curves with the chosen metric.
Usage
funDist(FD1, FD2, metric, p = NULL, lambda = NULL, phi = NULL,
k_trunc = NULL)
Arguments
FD1 |
a functional data object of type |
FD2 |
a functional data object of type |
metric |
the chosen distance to be used: |
p |
a positive numeric value containing the parameter of the regularizing function for the generalized Mahalanobis distance. |
lambda |
a vector containing the eigenvalues in descending order of the functional data from which the curves are extracted. |
phi |
a matrix containing the eigenfunctions of the functional data in its columns from which the curves are extracted. |
k_trunc |
a positive numeric value representing the number of components at which the truncated mahalanobis distance must be truncated |
Value
The function returns a numeric value indicating the distance between the two curves.
References
Ghiglietti A., Ieva F., Paganoni A. M. (2017). Statistical inference for stochastic processes: Two-sample hypothesis tests, Journal of Statistical Planning and Inference, 180:49-68.
Ghiglietti A., Paganoni A. M. (2017). Exact tests for the means of gaussian stochastic processes. Statistics & Probability Letters, 131:102–107.
Examples
# Define parameters:
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
m1 <- t^2 * ( 1 - t )
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K ) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
# Simulate the functional data
z <- gmfd_simulate( n, m1, rho = rho, theta = theta )
# Extract two rows of the functional data
x <- funData( t, z[1, ] )
y <- funData( t, z[2, ] )
lambda <- eigen(cov(z))$values
phi <- eigen(cov(z))$vectors
d <- funDist( x, y, metric = "mahalanobis", p = 1, lambda = lambda, phi = phi )
Dissimilarity matrix function
Description
This function computes the dissimilarity matrix containing the distances between the curves of the functional dataset
Usage
gmfd_diss(FD, metric, p = NULL, k_trunc = NULL)
Arguments
FD |
a functional data object of type |
metric |
the chosen distance to be used. Choose |
p |
a positive numeric value containing the parameter of the regularizing function for the generalized Mahalanobis distance. |
k_trunc |
a positive numeric value representing the number of components at which the truncated mahalanobis distance must be truncated |
Value
The function returns a matrix of numeric values containing the distances between the curves.
References
Ghiglietti A., Ieva F., Paganoni A. M. (2017). Statistical inference for stochastic processes: Two-sample hypothesis tests, Journal of Statistical Planning and Inference, 180:49-68.
Ghiglietti A., Paganoni A. M. (2017). Exact tests for the means of gaussian stochastic processes. Statistics & Probability Letters, 131:102–107.
Examples
# Define parameters
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
m1 <- t^2 * ( 1 - t )
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K ) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
# Simulate the functional data
x <- gmfd_simulate( n, m1, rho = rho, theta = theta )
FD <- funData( t, x )
D <- gmfd_diss( FD, metric = "L2" )
k-means clustering algorithm
Description
This function performs a k-means clustering algorithm on an univariate or multivariate functional data using a generalization of Mahalanobis distance.
Usage
gmfd_kmeans(FD, n.cl = 2, metric, p = NULL, k_trunc = NULL)
Arguments
FD |
a functional data object of type |
n.cl |
an integer representing the number of clusters. |
metric |
the chosen distance to be used: |
p |
a positive numeric value containing the parameter of the regularizing function for the generalized Mahalanobis distance. |
k_trunc |
a positive numeric value representing the number of components at which the truncated mahalanobis distance must be truncated |
Value
The function returns a list with the following components:
cluster
: a vector of integers (from 1
to n.cl
) indicating the cluster to which each curve is allocated;
centers
: a list of d
matrices (k
x T
) containing the centroids of the clusters
References
Martino A., Ghiglietti A., Ieva F., Paganoni A. M. (2017). A k-means procedure based on a Mahalanobis type distance for clustering multivariate functional data, MOX report 44/2017
Ghiglietti A., Ieva F., Paganoni A. M. (2017). Statistical inference for stochastic processes: Two-sample hypothesis tests, Journal of Statistical Planning and Inference, 180:49-68.
Ghiglietti A., Paganoni A. M. (2017). Exact tests for the means of gaussian stochastic processes. Statistics & Probability Letters, 131:102–107.
See Also
Examples
# Define parameters
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
m1 <- t^2 * ( 1 - t )
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
s <- 0
for (k in 4:K) {
s <- s + sqrt( rho[k] ) * theta[k, ]
}
m2 <- m1 + s
# Simulate the functional data
x1 <- gmfd_simulate( n, m1, rho = rho, theta = theta )
x2 <- gmfd_simulate( n, m2, rho = rho, theta = theta )
# Create a single functional dataset containing the simulated datasets:
FD <- funData(t, rbind( x1, x2 ) )
output <- gmfd_kmeans( FD, n.cl = 2, metric = "mahalanobis", p = 10^6 )
Simulation of a functional sample
Description
Simulate a univariate functional sample using a Karhunen Loeve expansion.
Usage
gmfd_simulate(size, mean, covariance = NULL, rho = NULL, theta = NULL)
Arguments
size |
a positive integer indicating the size of the functional sample to simulate. |
mean |
a vector representing the mean of the sample. |
covariance |
a matrix from which the eigenvalues and eigenfunctions must be extracted. |
rho |
a vector of the eigenvalues in descending order to be used for the simulation. |
theta |
a matrix containing the eigenfunctions in its columns to be used for the simulation. |
Value
The function returns a functional data object of type funData
.
Examples
# Define parameters
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
# with the Karhunen - Loève expansion
m1 <- t^2 * ( 1 - t )
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K ) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
# Simulate the functional data
x <- gmfd_simulate( n, m1, rho = rho, theta = theta )
Two-sample hypotesis tests
Description
Performs a two sample hypotesis tests on two samples of functional data.
Usage
gmfd_test(FD1, FD2, conf.level = 0.95, stat_test, p = NULL,
k_trunc = NULL)
Arguments
FD1 |
a functional data object of type |
FD2 |
a functional data object of type |
conf.level |
confidence level of the test. |
stat_test |
the chosen test statistic to be used: |
p |
a vector of positive numeric value containing the parameters of the regularizing function for the generalized Mahalanobis distance. |
k_trunc |
a positive numeric value representing the number of components at which the truncated mahalanobis distance must be truncated |
Value
The function returns a list with the following components:
statistic
the value of the test statistic.
quantile
the value of the quantile.
p.value
the p-value for the test.
References
Ghiglietti A., Ieva F., Paganoni A. M. (2017). Statistical inference for stochastic processes: Two-sample hypothesis tests, Journal of Statistical Planning and Inference, 180:49-68.
Ghiglietti A., Paganoni A. M. (2017). Exact tests for the means of gaussian stochastic processes. Statics & Probability Letters, 131:102–107.
See Also
Examples
# Define parameters
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
m1 <- t^2 * ( 1 - t )
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
s <- 0
for ( k in 4:K ) {
s <- s + sqrt( rho[k] ) * theta[k,]
}
m2 <- m1 + 0.1 * s
# Simulate the functional data
x1 <- gmfd_simulate( n, m1, rho = rho, theta = theta )
x2 <- gmfd_simulate( n, m2, rho = rho, theta = theta )
FD1 <- funData( t, x1 )
FD2 <- funData( t, x2 )
output <- gmfd_test( FD1, FD2, 0.95, "mahalanobis", p = 10^5 )
A method to plot funData
objects
Description
This function performs the plot of a functional dataset stored in
an object of class funData
.
Usage
## S3 method for class 'funData'
plot(x, ...)
Arguments
x |
the univariate functional dataset in form of |
... |
additional graphical parameters to be used in plotting functions |
See Also
Examples
# Define parameters
n <- 50
P <- 100
K <- 150
# Grid of the functional dataset
t <- seq( 0, 1, length.out = P )
# Define the means and the parameters to use in the simulation
m1 <- t^2 * ( 1 - t )
m2 <- t * ( 1 - t )^2
rho <- rep( 0, K )
theta <- matrix( 0, K, P )
for ( k in 1:K) {
rho[k] <- 1 / ( k + 1 )^2
if ( k%%2 == 0 )
theta[k, ] <- sqrt( 2 ) * sin( k * pi * t )
else if ( k%%2 != 0 && k != 1 )
theta[k, ] <- sqrt( 2 ) * cos( ( k - 1 ) * pi * t )
else
theta[k, ] <- rep( 1, P )
}
# Simulate the functional data
x1 <- gmfd_simulate( n, m1, rho = rho, theta = theta )
x2 <- gmfd_simulate( n, m2, rho = rho, theta = theta )
FD <- funData( t, list( x1, x2 ) )
plot(FD)