Type: | Package |
Title: | Make 'ggplot2' Graphics Interactive |
Version: | 0.8.13 |
Description: | Create interactive 'ggplot2' graphics using 'htmlwidgets'. |
License: | GPL-3 |
URL: | https://davidgohel.github.io/ggiraph/ |
BugReports: | https://github.com/davidgohel/ggiraph/issues |
Imports: | cli, ggplot2 (≥ 3.5.1), grid, htmltools, htmlwidgets (≥ 1.5), purrr, Rcpp (≥ 1.0), rlang, stats, systemfonts, uuid, vctrs |
Suggests: | dplyr, gdtools (≥ 0.3.0), ggrepel (≥ 0.9.1), hexbin, knitr, maps, quantreg, rmarkdown, sf (≥ 1.0), shiny, tinytest, xml2 (≥ 1.0) |
LinkingTo: | Rcpp, systemfonts |
VignetteBuilder: | knitr |
Copyright: | See file COPYRIGHTS. |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
SystemRequirements: | libpng |
Collate: | 'RcppExports.R' 'ipar.R' 'utils_ggplot2_performance.R' 'utils_ggplot2.R' 'utils.R' 'annotate_interactive.R' 'annotation_raster_interactive.R' 'utils_css.R' 'fonts.R' 'girafe_options.R' 'default.R' 'dsvg.R' 'dsvg_view.R' 'element_interactive.R' 'facet_interactive.R' 'geom_abline_interactive.R' 'geom_path_interactive.R' 'geom_polygon_interactive.R' 'geom_rect_interactive.R' 'geom_bar_interactive.R' 'geom_bin_2d_interactive.R' 'geom_boxplot_interactive.R' 'geom_col_interactive.R' 'geom_contour_interactive.R' 'geom_count_interactive.R' 'geom_crossbar_interactive.R' 'geom_curve_interactive.R' 'geom_density_2d_interactive.R' 'geom_density_interactive.R' 'geom_dotplot_interactive.R' 'geom_errorbar_interactive.R' 'geom_errorbarh_interactive.R' 'geom_freqpoly_interactive.R' 'geom_hex_interactive.R' 'geom_histogram_interactive.R' 'geom_hline_interactive.R' 'geom_jitter_interactive.R' 'geom_label_interactive.R' 'geom_linerange_interactive.R' 'geom_map_interactive.R' 'geom_point_interactive.R' 'geom_pointrange_interactive.R' 'geom_quantile_interactive.R' 'geom_raster_interactive.R' 'geom_ribbon_interactive.R' 'geom_segment_interactive.R' 'geom_sf_interactive.R' 'geom_smooth_interactive.R' 'geom_spoke_interactive.R' 'geom_text_interactive.R' 'geom_text_repel_interactive.R' 'geom_tile_interactive.R' 'geom_violin_interactive.R' 'geom_vline_interactive.R' 'ggiraph.R' 'girafe.R' 'grob_interactive.R' 'guide_bins_interactive.R' 'guide_colourbar_interactive.R' 'guide_coloursteps_interactive.R' 'guide_interactive.R' 'guide_legend_interactive.R' 'interactive_circle_grob.R' 'interactive_curve_grob.R' 'interactive_path_grob.R' 'interactive_points_grob.R' 'interactive_polygon_grob.R' 'interactive_polyline_grob.R' 'interactive_raster_grob.R' 'interactive_rect_grob.R' 'interactive_roundrect_grob.R' 'interactive_segments_grob.R' 'interactive_text_grob.R' 'labeller_interactive.R' 'layer_interactive.R' 'scale_alpha_interactive.R' 'scale_brewer_interactive.R' 'scale_colour_interactive.R' 'scale_gradient_interactive.R' 'scale_interactive.R' 'scale_linetype_interactive.R' 'scale_manual_interactive.R' 'scale_shape_interactive.R' 'scale_size_interactive.R' 'scale_steps_interactive.R' 'scale_viridis_interactive.R' 'tracers.R' |
NeedsCompilation: | yes |
Packaged: | 2025-03-28 09:26:51 UTC; davidgohel |
Author: | David Gohel [aut, cre], Panagiotis Skintzos [aut], Mike Bostock [cph] (d3.js), Speros Kokenes [cph] (d3-lasso), Eric Shull [cph] (saveSvgAsPng js library), Lee Thomason [cph] (TinyXML2), Vladimir Agafonkin [cph] (Flatbush), Eric Book [ctb] (hline and vline geoms) |
Maintainer: | David Gohel <david.gohel@ardata.fr> |
Repository: | CRAN |
Date/Publication: | 2025-03-28 10:20:02 UTC |
ggproto classes for ggiraph
Description
ggproto classes for ggiraph
Geoms
All geom_*_interactive
functions (like geom_point_interactive
) return a layer that
contains a GeomInteractive*
object (like GeomInteractivePoint
). The Geom*
object is responsible for rendering the data in the plot.
See Geom for more information.
Create interactive annotations
Description
The layer is based on ggplot2::annotate()
.
See the documentation for that function for more details.
Usage
annotate_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for annotate_*_interactive functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
girafe()
, interactive_parameters, annotation_raster_interactive()
Examples
# add interactive annotation to a ggplot -------
library(ggplot2)
library(ggiraph)
gg <- ggplot(mtcars, aes(x = disp, y = qsec )) +
geom_point(size=2) +
annotate_interactive(
"rect", xmin = 100, xmax = 400, fill = "red",
data_id = "an_id", tooltip = "a tooltip",
ymin = 18, ymax = 20, alpha = .5)
x <- girafe(ggobj = gg, width_svg = 5, height_svg = 4)
if( interactive() ) print(x)
Create interactive raster annotations
Description
The layer is based on ggplot2::annotation_raster()
.
See the documentation for that function for more details.
Usage
annotation_raster_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for annotate_*_interactive functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Examples
# add interactive raster annotation to a ggplot -------
library(ggplot2)
library(ggiraph)
# Generate data
rainbow <- matrix(hcl(seq(0, 360, length.out = 50 * 50), 80, 70), nrow = 50)
p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point() +
annotation_raster_interactive(rainbow, 15, 20, 3, 4, tooltip = "I am an image!")
x <- girafe(ggobj = p)
if( interactive() ) print(x)
# To fill up whole plot
p <- ggplot(mtcars, aes(mpg, wt)) +
annotation_raster_interactive(rainbow, -Inf, Inf, -Inf, Inf, tooltip = "I am an image too!") +
geom_point()
x <- girafe(ggobj = p)
if( interactive() ) print(x)
SVG Graphics Driver
Description
This function produces SVG files (compliant to the current w3 svg XML standard) where elements can be made interactive.
In order to generate the output, used fonts must be available on the computer used to create the svg, used fonts must also be available on the computer used to render the svg.
Usage
dsvg(
file = "Rplots.svg",
width = 6,
height = 6,
bg = "white",
pointsize = 12,
standalone = TRUE,
setdims = TRUE,
canvas_id = "svg_1",
title = NULL,
desc = NULL,
fonts = list()
)
Arguments
file |
the file where output will appear. | |||||||||||||||||||||
height , width |
Height and width in inches. | |||||||||||||||||||||
bg |
Default background color for the plot (defaults to "white"). | |||||||||||||||||||||
pointsize |
default point size. | |||||||||||||||||||||
standalone |
Produce a stand alone svg file? If | |||||||||||||||||||||
setdims |
If | |||||||||||||||||||||
canvas_id |
svg id within HTML page. | |||||||||||||||||||||
title |
A label for accessibility purposes (aria-label/aria-labelledby). Be aware that when using this, the browser will use it as a tooltip for the whole svg and it may class with the interactive elements' tooltip. | |||||||||||||||||||||
desc |
A longer description for accessibility purposes (aria-description/aria-describedby). | |||||||||||||||||||||
fonts |
Named list of font names to be aliased with
fonts installed on your system. If unspecified, the R default
families "sans", "serif", "mono" and "symbol"
are aliased to the family returned by If fonts are available, the default mapping will use these values:
As an example, using You can also use theme_minimal(base_family="Roboto"). |
See Also
Examples
fileout <- tempfile(fileext = ".svg")
dsvg(file = fileout)
plot(rnorm(10), main="Simple Example", xlab = "", ylab = "")
dev.off()
Run plotting code and view svg in RStudio Viewer or web broswer.
Description
This is useful primarily for testing. Requires the htmltools
package.
Usage
dsvg_view(code, ...)
Arguments
code |
Plotting code to execute. |
... |
Other arguments passed on to |
Examples
dsvg_view(plot(1:10))
dsvg_view(hist(rnorm(100)))
Create interactive theme elements
Description
With these functions the user can add interactivity to various ggplot2::theme()
elements.
They are based on ggplot2::element_rect()
,
ggplot2::element_line()
and ggplot2::element_text()
See the documentation for those functions for more details.
Usage
element_line_interactive(...)
element_rect_interactive(...)
element_text_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for element_*_interactive functions
The interactive parameters can be supplied as arguments in the relevant function and they should be scalar values.
For theme text elements (element_text_interactive()
), the interactive parameters
can also be supplied while setting a label value, via the ggplot2::labs()
family
of functions or when setting a scale/guide title or key label.
Instead of setting a character value for the element, function
label_interactive()
can be used to define interactive parameters
to go along with the label.
When the parameters are supplied that way, they override the default values
that are set at the theme via element_text_interactive()
or via the guide
's
theme parameters.
See Also
Examples
# add interactive theme elements -------
library(ggplot2)
library(ggiraph)
dataset <- structure(list(qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22
), disp = c(160, 160, 108, 258, 360, 225), carname = c("Mazda RX4",
"Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "Hornet Sportabout",
"Valiant"), wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46)), row.names = c("Mazda RX4",
"Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "Hornet Sportabout",
"Valiant"), class = "data.frame")
# plots
gg_point = ggplot(data = dataset) +
geom_point_interactive(aes(
x = wt,
y = qsec,
color = disp,
tooltip = carname,
data_id = carname
)) +
theme_minimal() +
theme(
plot.title = element_text_interactive(
data_id = "plot.title",
tooltip = "plot title",
hover_css = "fill:red;stroke:none;font-size:12pt"
),
plot.subtitle = element_text_interactive(
data_id = "plot.subtitle",
tooltip = "plot subtitle",
hover_css = "fill:none;"
),
axis.title.x = element_text_interactive(
data_id = "axis.title.x",
tooltip = "Description for x axis",
hover_css = "fill:red;stroke:none;"
),
axis.title.y = element_text_interactive(
data_id = "axis.title.y",
tooltip = "Description for y axis",
hover_css = "fill:red;stroke:none;"
),
panel.grid.major = element_line_interactive(
data_id = "panel.grid",
tooltip = "Major grid lines",
hover_css = "fill:none;stroke:red;"
)
) +
labs(
title = "Interactive points example!",
subtitle = label_interactive(
"by ggiraph",
tooltip = "Click me!",
onclick = "window.open(\"https://davidgohel.github.io/ggiraph/\")",
hover_css = "fill:magenta;cursor:pointer;"
)
)
x <- girafe(ggobj = gg_point)
if( interactive() ) print(x)
Create interactive grid facets
Description
These facets are based on
ggplot2::facet_grid()
.
To make a facet interactive, it is mandatory to use
labeller_interactive()
for argument labeller
.
Usage
facet_grid_interactive(..., interactive_on = "text")
Arguments
... |
arguments passed to base function and
|
interactive_on |
one of 'text' (only strip text are made interactive), 'rect' (only strip rectangles are made interactive) or 'both' (strip text and rectangles are made interactive). |
Value
An interactive facetting object.
See Also
Create interactive wraped facets
Description
These facets are based on
ggplot2::facet_wrap()
.
To make a facet interactive, it is mandatory to use
labeller_interactive()
for argument labeller
.
Usage
facet_wrap_interactive(..., interactive_on = "text")
Arguments
... |
arguments passed to base function and
|
interactive_on |
one of 'text' (only strip text are made interactive), 'rect' (only strip rectangles are made interactive) or 'both' (strip text and rectangles are made interactive). |
Value
An interactive facetting object.
See Also
Check if font family exists.
Description
Check if a font family exists in system fonts.
Usage
font_family_exists(font_family = "sans")
Arguments
font_family |
font family name (case sensitive) |
Value
A logical value
See Also
Other functions for font management:
match_family()
,
validated_fonts()
Examples
font_family_exists("sans")
font_family_exists("Arial")
font_family_exists("Courier")
Create interactive reference lines
Description
These geometries are based on ggplot2::geom_abline()
,
ggplot2::geom_hline()
and ggplot2::geom_vline()
.
Usage
geom_abline_interactive(...)
geom_hline_interactive(...)
geom_vline_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add diagonal interactive reference lines to a ggplot -------
library(ggplot2)
library(ggiraph)
p <- ggplot(mtcars, aes(wt, mpg)) + geom_point()
g <- p + geom_abline_interactive(intercept = 20, tooltip = 20)
x <- girafe(ggobj = g)
if (interactive())
print(x)
l <- coef(lm(mpg ~ wt, data = mtcars))
g <- p + geom_abline_interactive(
intercept = l[[1]],
slope = l[[2]],
tooltip = paste("intercept:", l[[1]], "\nslope:", l[[2]]),
data_id="abline"
)
x <- girafe(ggobj = g)
x <- girafe_options(x = x,
opts_hover(css = "cursor:pointer;fill:orange;stroke:orange;"))
if (interactive())
print(x)
# add horizontal interactive reference lines to a ggplot -------
library(ggplot2)
library(ggiraph)
if( requireNamespace("dplyr", quietly = TRUE)){
g1 <- ggplot(economics, aes(x = date, y = unemploy)) +
geom_point() + geom_line()
gg_hline1 <- g1 + geom_hline_interactive(
aes(yintercept = mean(unemploy),
tooltip = round(mean(unemploy), 2)), size = 3)
x <- girafe(ggobj = gg_hline1)
if( interactive() ) print(x)
}
dataset <- data.frame(
x = c(1, 2, 5, 6, 8),
y = c(3, 6, 2, 8, 7),
vx = c(1, 1.5, 0.8, 0.5, 1.3),
vy = c(0.2, 1.3, 1.7, 0.8, 1.4),
year = c(2014, 2015, 2016, 2017, 2018)
)
dataset$clickjs <- rep(paste0("alert(\"", mean(dataset$y), "\")"), 5)
g2 <- ggplot(dataset, aes(x = year, y = y)) +
geom_point() + geom_line()
gg_hline2 <- g2 + geom_hline_interactive(
aes(yintercept = mean(y),
tooltip = round(mean(y), 2),
data_id = y, onclick = clickjs))
x <- girafe(ggobj = gg_hline2)
if( interactive() ) print(x)
# add vertical interactive reference lines to a ggplot -------
library(ggplot2)
library(ggiraph)
if (requireNamespace("dplyr", quietly = TRUE)) {
g1 <- ggplot(diamonds, aes(carat)) +
geom_histogram()
gg_vline1 <- g1 + geom_vline_interactive(
aes(xintercept = mean(carat),
tooltip = round(mean(carat), 2),
data_id = carat), size = 3)
x <- girafe(ggobj = gg_vline1)
if( interactive() ) print(x)
}
dataset <- data.frame(x = rnorm(100))
dataset$clickjs <- rep(paste0("alert(\"",
round(mean(dataset$x), 2), "\")"), 100)
g2 <- ggplot(dataset, aes(x)) +
geom_density(fill = "#000000", alpha = 0.7)
gg_vline2 <- g2 + geom_vline_interactive(
aes(xintercept = mean(x), tooltip = round(mean(x), 2),
data_id = x, onclick = clickjs), color = "white")
x <- girafe(ggobj = gg_vline2)
x <- girafe_options(x = x,
opts_hover(css = "cursor:pointer;fill:orange;stroke:orange;") )
if( interactive() ) print(x)
Create interactive bars
Description
The geometries are based on ggplot2::geom_bar()
and ggplot2::geom_col()
.
See the documentation for those functions for more details.
Usage
geom_bar_interactive(...)
geom_col_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive bar -------
library(ggplot2)
library(ggiraph)
p <- ggplot(mpg, aes( x = class, tooltip = class,
data_id = class ) ) +
geom_bar_interactive()
x <- girafe(ggobj = p)
if( interactive() ) print(x)
dat <- data.frame( name = c( "David", "Constance", "Leonie" ),
gender = c( "Male", "Female", "Female" ),
height = c(172, 159, 71 ) )
p <- ggplot(dat, aes( x = name, y = height, tooltip = gender,
data_id = name ) ) +
geom_col_interactive()
x <- girafe(ggobj = p)
if( interactive() ) print(x)
# an example with interactive guide ----
dat <- data.frame(
name = c( "Guy", "Ginette", "David", "Cedric", "Frederic" ),
gender = c( "Male", "Female", "Male", "Male", "Male" ),
height = c(169, 160, 171, 172, 171 ) )
p <- ggplot(dat, aes( x = name, y = height, fill = gender,
data_id = name ) ) +
geom_bar_interactive(stat = "identity") +
scale_fill_manual_interactive(
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = c(Female = "Female", Male = "Male"),
tooltip = c(Male = "Male", Female = "Female")
)
x <- girafe(ggobj = p)
if( interactive() ) print(x)
Create interactive heatmaps of 2d bin counts
Description
The geometry is based on ggplot2::geom_bin_2d()
.
See the documentation for those functions for more details.
Usage
geom_bin_2d_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive bin2d heatmap to a ggplot -------
library(ggplot2)
library(ggiraph)
p <- ggplot(diamonds, aes(x, y, fill=cut)) + xlim(4, 10) + ylim(4, 10)+
geom_bin2d_interactive(aes(tooltip = cut), bins = 30)
x <- girafe(ggobj = p)
if( interactive() ) print(x)
Create interactive boxplot
Description
The geometry is based on ggplot2::geom_boxplot()
.
See the documentation for that function for more details.
Usage
geom_boxplot_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details
You can supply interactive parameters
for the outlier points by prefixing them
with outlier.
prefix. For example: aes(outlier.tooltip = 'bla', outlier.data_id = 'blabla').
IMPORTANT: when supplying outlier interactive parameters,
the correct group
aesthetic must be also supplied. Otherwise the default group calculation
will be incorrect, which will result in an incorrect plot.
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive boxplot -------
library(ggplot2)
library(ggiraph)
p <- ggplot(mpg, aes(x = class, y = hwy, tooltip = class)) +
geom_boxplot_interactive()
x <- girafe(ggobj = p)
if (interactive()) print(x)
p <- ggplot(mpg) +
geom_boxplot_interactive(
aes(
x = drv, y = hwy,
fill = class,
data_id = class,
tooltip = after_stat({
paste0(
"class: ", .data$fill,
"\nQ1: ", prettyNum(.data$lower),
"\nQ3: ", prettyNum(.data$upper),
"\nmedian: ", prettyNum(.data$middle)
)
})
),
outlier.colour = "red"
) +
guides(fill = "none") +
theme_minimal()
x <- girafe(ggobj = p)
if (interactive()) print(x)
p <- ggplot(mpg) +
geom_boxplot_interactive(
aes(
x = drv, y = hwy,
fill = class, group = paste(drv, class),
data_id = class,
tooltip = after_stat({
paste0(
"class: ", .data$fill,
"\nQ1: ", prettyNum(.data$lower),
"\nQ3: ", prettyNum(.data$upper),
"\nmedian: ", prettyNum(.data$middle)
)
}),
outlier.tooltip = paste(
"I am an outlier!\nhwy:", hwy, "\ndrv:", drv, "\nclass:", class
)
),
outlier.colour = "red"
) +
guides(fill = "none") +
theme_minimal()
x <- girafe(ggobj = p)
if (interactive()) print(x)
Create interactive 2d contours of a 3d surface
Description
These geometries are based on ggplot2::geom_contour()
and ggplot2::geom_contour_filled()
.
See the documentation for those functions for more details.
Usage
geom_contour_interactive(...)
geom_contour_filled_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive contours to a ggplot -------
library(ggplot2)
library(ggiraph)
v <- ggplot(faithfuld, aes(waiting, eruptions, z = density))
p <- v + geom_contour_interactive(aes(
colour = after_stat(level),
tooltip = paste("Level:", after_stat(level))
))
x <- girafe(ggobj = p)
if (interactive()) print(x)
if (packageVersion("grid") >= numeric_version("3.6")) {
p <- v + geom_contour_filled_interactive(aes(
colour = after_stat(level),
fill = after_stat(level),
tooltip = paste("Level:", after_stat(level))
))
x <- girafe(ggobj = p)
if (interactive()) print(x)
}
Create interactive point counts
Description
The geometry is based on ggplot2::geom_bin2d()
.
See the documentation for those functions for more details.
Usage
geom_count_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive point counts to a ggplot -------
library(ggplot2)
library(ggiraph)
p <- ggplot(mpg, aes(cty, hwy)) +
geom_count_interactive(aes(tooltip=after_stat(n)))
x <- girafe(ggobj = p)
if( interactive() ) print(x)
p2 <- ggplot(diamonds, aes(x = cut, y = clarity)) +
geom_count_interactive(aes(size = after_stat(prop),
tooltip = after_stat(round(prop, 3)), group = 1)) +
scale_size_area(max_size = 10)
x <- girafe(ggobj = p2)
if (interactive()) print(x)
Create interactive vertical intervals: lines, crossbars & errorbars
Description
These geometries are based on ggplot2::geom_crossbar()
, ggplot2::geom_errorbar()
,
ggplot2::geom_linerange()
and ggplot2::geom_pointrange()
.
See the documentation for those functions for more details.
Usage
geom_crossbar_interactive(...)
geom_errorbar_interactive(...)
geom_linerange_interactive(...)
geom_pointrange_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive intervals -------
library(ggplot2)
library(ggiraph)
# Create a simple example dataset
df <- data.frame(
trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1, 2)),
upper = c(1.1, 5.3, 3.3, 4.2),
lower = c(0.8, 4.6, 2.4, 3.6)
)
p <- ggplot(df, aes(trt, resp, colour = group))
g <- p + geom_linerange_interactive(aes(ymin = lower, ymax = upper, tooltip = group))
x <- girafe(ggobj = g)
if( interactive() ) print(x)
g <- p + geom_pointrange_interactive(aes(ymin = lower, ymax = upper, tooltip = group))
x <- girafe(ggobj = g)
if( interactive() ) print(x)
g <- p + geom_crossbar_interactive(aes(ymin = lower, ymax = upper, tooltip = group), width = 0.2)
x <- girafe(ggobj = g)
if( interactive() ) print(x)
g <- p + geom_errorbar_interactive(aes(ymin = lower, ymax = upper, tooltip = group), width = 0.2)
x <- girafe(ggobj = g)
if( interactive() ) print(x)
Create interactive line segments and curves
Description
The geometries are based on ggplot2::geom_segment()
and ggplot2::geom_curve()
.
See the documentation for those functions for more details.
Usage
geom_curve_interactive(...)
geom_segment_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive segments and curves to a ggplot -------
library(ggplot2)
library(ggiraph)
counts <- as.data.frame(table(x = rpois(100,5)))
counts$x <- as.numeric( as.character(counts$x) )
counts$xlab <- paste0("bar",as.character(counts$x) )
gg_segment_1 <- ggplot(data = counts, aes(x = x, y = Freq,
yend = 0, xend = x, tooltip = xlab ) ) +
geom_segment_interactive( size = I(10))
x <- girafe(ggobj = gg_segment_1)
if( interactive() ) print(x)
dataset = data.frame(x=c(1,2,5,6,8),
y=c(3,6,2,8,7),
vx=c(1,1.5,0.8,0.5,1.3),
vy=c(0.2,1.3,1.7,0.8,1.4),
labs = paste0("Lab", 1:5))
dataset$clickjs = paste0("alert(\"",dataset$labs, "\")" )
gg_segment_2 = ggplot() +
geom_segment_interactive(data=dataset, mapping=aes(x=x, y=y,
xend=x+vx, yend=y+vy, tooltip = labs, onclick=clickjs ),
arrow=grid::arrow(length = grid::unit(0.03, "npc")),
size=2, color="blue") +
geom_point(data=dataset, mapping=aes(x=x, y=y),
size=4, shape=21, fill="white")
x <- girafe(ggobj = gg_segment_2)
if( interactive() ) print(x)
df <- data.frame(x1 = 2.62, x2 = 3.57, y1 = 21.0, y2 = 15.0)
p <- ggplot(df, aes(x = x1, y = y1, xend = x2, yend = y2)) +
geom_curve_interactive(aes(colour = "curve", tooltip=I("curve"))) +
geom_segment_interactive(aes(colour = "segment", tooltip=I("segment")))
x <- girafe(ggobj = p)
if( interactive() ) print(x)
Create interactive contours of a 2d density estimate
Description
The geometries are based on ggplot2::geom_density_2d()
and ggplot2::geom_density_2d_filled()
.
See the documentation for those functions for more details.
Usage
geom_density_2d_interactive(...)
geom_density_2d_filled_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive contours to a ggplot -------
library(ggplot2)
library(ggiraph)
m <- ggplot(faithful, aes(x = eruptions, y = waiting)) +
geom_point_interactive(aes(tooltip = paste("Waiting:", waiting, "\neruptions:", eruptions))) +
xlim(0.5, 6) +
ylim(40, 110)
p <- m + geom_density_2d_interactive(aes(tooltip = paste("Level:", after_stat(level))))
x <- girafe(ggobj = p)
if (interactive()) print(x)
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000), ]
d <- ggplot(dsmall, aes(x, y))
p <- d + geom_density_2d_interactive(aes(colour = cut, tooltip = cut, data_id = cut))
x <- girafe(ggobj = p)
x <- girafe_options(x = x,
opts_hover(css = "stroke:red;stroke-width:3px;") )
if (interactive()) print(x)
p <- d + geom_density_2d_filled_interactive(aes(colour = cut, tooltip = cut, data_id = cut),
contour_var = "count") + facet_wrap(vars(cut))
x <- girafe(ggobj = p)
x <- girafe_options(x = x,
opts_hover(css = "stroke:red;stroke-width:3px;") )
if (interactive()) print(x)
p <- d + stat_density_2d(aes(fill = after_stat(nlevel),
tooltip = paste("nlevel:", after_stat(nlevel))),
geom = "interactive_polygon") +
facet_grid(. ~ cut) + scale_fill_viridis_c_interactive(tooltip = "nlevel")
x <- girafe(ggobj = p)
if (interactive()) print(x)
Create interactive smoothed density estimates
Description
The geometry is based on ggplot2::geom_density()
.
See the documentation for those functions for more details.
Usage
geom_density_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive bar -------
library(ggplot2)
library(ggiraph)
p <- ggplot(diamonds, aes(carat)) +
geom_density_interactive(tooltip="density", data_id="density")
x <- girafe(ggobj = p)
x <- girafe_options(x = x,
opts_hover(css = "stroke:orange;stroke-width:3px;") )
if( interactive() ) print(x)
p <- ggplot(diamonds, aes(depth, fill = cut, colour = cut)) +
geom_density_interactive(aes(tooltip=cut, data_id=cut), alpha = 0.1) +
xlim(55, 70)
x <- girafe(ggobj = p)
x <- girafe_options(x = x,
opts_hover(css = "stroke:yellow;stroke-width:3px;fill-opacity:0.8;") )
if( interactive() ) print(x)
p <- ggplot(diamonds, aes(carat, fill = cut)) +
geom_density_interactive(aes(tooltip=cut, data_id=cut), position = "stack")
x <- girafe(ggobj = p)
if( interactive() ) print(x)
p <- ggplot(diamonds, aes(carat, after_stat(count), fill = cut)) +
geom_density_interactive(aes(tooltip=cut, data_id=cut), position = "fill")
x <- girafe(ggobj = p)
if( interactive() ) print(x)
Create interactive dot plots
Description
This geometry is based on ggplot2::geom_dotplot()
.
See the documentation for those functions for more details.
Usage
geom_dotplot_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive dot plots to a ggplot -------
library(ggplot2)
library(ggiraph)
p <- ggplot(mtcars, aes(x = mpg, fill = factor(cyl))) +
geom_dotplot_interactive(
aes(tooltip = row.names(mtcars)),
stackgroups = TRUE, binwidth = 1, method = "histodot"
)
x <- girafe(ggobj = p)
if( interactive() ) print(x)
gg_point = ggplot(
data = mtcars,
mapping = aes(
x = factor(vs), fill = factor(cyl), y = mpg,
tooltip = row.names(mtcars))) +
geom_dotplot_interactive(binaxis = "y",
stackdir = "center", position = "dodge")
x <- girafe(ggobj = gg_point)
if( interactive() ) print(x)
Create interactive horizontal error bars
Description
This geometry is based on ggplot2::geom_errorbarh()
.
See the documentation for those functions for more details.
Usage
geom_errorbarh_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add horizontal error bars -------
library(ggplot2)
library(ggiraph)
df <- data.frame(
trt = factor(c(1, 1, 2, 2)),
resp = c(1, 5, 3, 4),
group = factor(c(1, 2, 1, 2)),
se = c(0.1, 0.3, 0.3, 0.2)
)
# Define the top and bottom of the errorbars
p <- ggplot(df, aes(resp, trt, colour = group))
g <- p + geom_point() +
geom_errorbarh_interactive(aes(xmax = resp + se, xmin = resp - se, tooltip = group))
x <- girafe(ggobj = g)
if( interactive() ) print(x)
g <- p + geom_point() +
geom_errorbarh_interactive(aes(xmax = resp + se, xmin = resp - se, height = .2, tooltip = group))
x <- girafe(ggobj = g)
if( interactive() ) print(x)
Create interactive histograms and frequency polygons
Description
The geometries are based on ggplot2::geom_histogram()
and ggplot2::geom_freqpoly()
.
See the documentation for those functions for more details.
This interactive version is only providing a single tooltip per
group of data (same for data_id
). It means it is only possible
to associate a single tooltip to a set of bins.
Usage
geom_freqpoly_interactive(...)
geom_histogram_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive histogram -------
library(ggplot2)
library(ggiraph)
p <- ggplot(diamonds, aes(carat)) +
geom_histogram_interactive(bins=30, aes(tooltip = after_stat(count),
group = 1L) )
x <- girafe(ggobj = p)
if( interactive() ) print(x)
p <- ggplot(diamonds, aes(price, colour = cut, tooltip = cut, data_id = cut)) +
geom_freqpoly_interactive(binwidth = 500)
x <- girafe(ggobj = p)
x <- girafe_options(x = x,
opts_hover(css = "stroke-width:3px;") )
if( interactive() ) print(x)
Create interactive hexagonal heatmaps
Description
The geometry is based on ggplot2::geom_hex()
.
See the documentation for those functions for more details.
Usage
geom_hex_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive hexagonal heatmaps to a ggplot -------
library(ggplot2)
library(ggiraph)
p <- ggplot(diamonds, aes(carat, price)) +
geom_hex_interactive(aes(tooltip = after_stat(count)), bins = 10)
x <- girafe(ggobj = p)
if( interactive() ) print(x)
Create interactive jittered points
Description
The geometry is based on ggplot2::geom_jitter()
.
See the documentation for those functions for more details.
Usage
geom_jitter_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive paths to a ggplot -------
library(ggplot2)
library(ggiraph)
gg_jitter <- ggplot(mpg, aes(cyl, hwy,
tooltip = paste(manufacturer, model, year, trans, sep = "\n")))+
geom_jitter_interactive()
x <- girafe(ggobj = gg_jitter)
if( interactive() ) print(x)
Create interactive textual annotations
Description
The geometries are based on ggplot2::geom_text()
and ggplot2::geom_label()
.
See the documentation for those functions for more details.
Usage
geom_label_interactive(...)
geom_text_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive labels to a ggplot -------
library(ggplot2)
library(ggiraph)
p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) +
geom_label_interactive(aes(tooltip = paste(rownames(mtcars), mpg, sep = "\n")))
x <- girafe(ggobj = p)
if( interactive() ) print(x)
p <- ggplot(mtcars, aes(wt, mpg, label = rownames(mtcars))) +
geom_label_interactive(aes(fill = factor(cyl),
tooltip = paste(rownames(mtcars), mpg, sep = "\n")),
colour = "white",
fontface = "bold")
x <- girafe(ggobj = p)
if( interactive() ) print(x)
# add interactive texts to a ggplot -------
library(ggplot2)
library(ggiraph)
## the data
dataset = mtcars
dataset$label = row.names(mtcars)
dataset$tooltip = paste0( "cyl: ", dataset$cyl, "<br/>",
"gear: ", dataset$gear, "<br/>",
"carb: ", dataset$carb)
## the plot
gg_text = ggplot(dataset,
aes(x = mpg, y = wt, label = label,
color = qsec,
tooltip = tooltip, data_id = label)) +
geom_text_interactive(check_overlap = TRUE) +
coord_cartesian(xlim = c(0,50))
## display the plot
x <- girafe(ggobj = gg_text)
x <- girafe_options(x = x,
opts_hover(css = "fill:#FF4C3B;font-style:italic;") )
if( interactive() ) print(x)
Create interactive polygons from a reference map
Description
The geometry is based on ggplot2::geom_map()
.
See the documentation for those functions for more details.
Usage
geom_map_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive maps to a ggplot -------
library(ggplot2)
library(ggiraph)
crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests)
# create tooltips and onclick events
states_ <- sprintf("<p>%s</p>",
as.character(crimes$state) )
table_ <- paste0(
"<table><tr><td>UrbanPop</td>",
sprintf("<td>%.0f</td>", crimes$UrbanPop),
"</tr><tr>",
"<td>Assault</td>",
sprintf("<td>%.0f</td>", crimes$Assault),
"</tr></table>"
)
onclick <- sprintf(
"window.open(\"%s%s\")",
"http://en.wikipedia.org/wiki/",
as.character(crimes$state)
)
crimes$labs <- paste0(states_, table_)
crimes$onclick = onclick
if (require("maps") ) {
states_map <- map_data("state")
gg_map <- ggplot(crimes, aes(map_id = state))
gg_map <- gg_map + geom_map_interactive(aes(
fill = Murder,
tooltip = labs,
data_id = state,
onclick = onclick
),
map = states_map) +
expand_limits(x = states_map$long, y = states_map$lat)
x <- girafe(ggobj = gg_map)
if( interactive() ) print(x)
}
Create interactive observations connections
Description
These geometries are based on ggplot2::geom_path()
,
ggplot2::geom_line()
and ggplot2::geom_step()
.
See the documentation for those functions for more details.
Usage
geom_path_interactive(...)
geom_line_interactive(...)
geom_step_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive paths to a ggplot -------
library(ggplot2)
library(ggiraph)
# geom_line_interactive example -----
if( requireNamespace("dplyr", quietly = TRUE)){
gg <- ggplot(economics_long,
aes(date, value01, colour = variable, tooltip = variable, data_id = variable,
hover_css = "fill:none;")) +
geom_line_interactive(size = .75)
x <- girafe(ggobj = gg)
x <- girafe_options(x = x,
opts_hover(css = "stroke:red;fill:orange") )
if( interactive() ) print(x)
}
# geom_step_interactive example -----
if( requireNamespace("dplyr", quietly = TRUE)){
recent <- economics[economics$date > as.Date("2013-01-01"), ]
gg = ggplot(recent, aes(date, unemploy)) +
geom_step_interactive(aes(tooltip = "Unemployement stairstep line", data_id = 1))
x <- girafe(ggobj = gg)
x <- girafe_options(x = x,
opts_hover(css = "stroke:red;") )
if( interactive() ) print(x)
}
# create datasets -----
id = paste0("id", 1:10)
data = expand.grid(list(
variable = c("2000", "2005", "2010", "2015"),
id = id
)
)
groups = sample(LETTERS[1:3], size = length(id), replace = TRUE)
data$group = groups[match(data$id, id)]
data$value = runif(n = nrow(data))
data$tooltip = paste0('line ', data$id )
data$onclick = paste0("alert(\"", data$id, "\")" )
cols = c("orange", "orange1", "orange2", "navajowhite4", "navy")
dataset2 <- data.frame(x = rep(1:20, 5),
y = rnorm(100, 5, .2) + rep(1:5, each=20),
z = rep(1:20, 5),
grp = factor(rep(1:5, each=20)),
color = factor(rep(1:5, each=20)),
label = rep(paste0( "id ", 1:5 ), each=20),
onclick = paste0(
"alert(\"",
sample(letters, 100, replace = TRUE),
"\")" )
)
# plots ---
gg_path_1 = ggplot(data, aes(variable, value, group = id,
colour = group, tooltip = tooltip, onclick = onclick, data_id = id)) +
geom_path_interactive(alpha = 0.5)
gg_path_2 = ggplot(data, aes(variable, value, group = id, data_id = id,
tooltip = tooltip)) +
geom_path_interactive(alpha = 0.5) +
facet_wrap( ~ group )
gg_path_3 = ggplot(dataset2) +
geom_path_interactive(aes(x, y, group=grp, data_id = label,
color = color, tooltip = label, onclick = onclick), size = 1 )
# ggiraph widgets ---
x <- girafe(ggobj = gg_path_1)
x <- girafe_options(x = x,
opts_hover(css = "stroke-width:3px;") )
if( interactive() ) print(x)
x <- girafe(ggobj = gg_path_2)
x <- girafe_options(x = x,
opts_hover(css = "stroke:orange;stroke-width:3px;") )
if( interactive() ) print(x)
x <- girafe(ggobj = gg_path_3)
x <- girafe_options(x = x,
opts_hover(css = "stroke-width:10px;") )
if( interactive() ) print(x)
m <- ggplot(economics, aes(unemploy/pop, psavert))
p <- m + geom_path_interactive(aes(colour = as.numeric(date), tooltip=date))
x <- girafe(ggobj = p)
if( interactive() ) print(x)
Create interactive points
Description
The geometry is based on ggplot2::geom_point()
.
See the documentation for those functions for more details.
Usage
geom_point_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
Note
The following shapes id 3, 4 and 7 to 14 are composite symbols and should not be used.
See Also
Examples
# add interactive points to a ggplot -------
library(ggplot2)
library(ggiraph)
dataset <- structure(list(qsec = c(16.46, 17.02, 18.61, 19.44, 17.02, 20.22
), disp = c(160, 160, 108, 258, 360, 225), carname = c("Mazda RX4",
"Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "Hornet Sportabout",
"Valiant"), wt = c(2.62, 2.875, 2.32, 3.215, 3.44, 3.46)), row.names = c("Mazda RX4",
"Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "Hornet Sportabout",
"Valiant"), class = "data.frame")
dataset
# plots
gg_point = ggplot(data = dataset) +
geom_point_interactive(aes(x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname)) + theme_minimal()
x <- girafe(ggobj = gg_point)
if( interactive() ) print(x)
Create interactive polygons
Description
The geometry is based on ggplot2::geom_polygon()
.
See the documentation for those functions for more details.
Usage
geom_polygon_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive polygons to a ggplot -------
library(ggplot2)
library(ggiraph)
# create data
ids <- factor(c("1.1", "2.1", "1.2", "2.2", "1.3", "2.3"))
values <- data.frame(
id = ids,
value = c(3, 3.1, 3.1, 3.2, 3.15, 3.5) )
positions <- data.frame(
id = rep(ids, each = 4),
x = c(2, 1, 1.1, 2.2, 1, 0, 0.3, 1.1, 2.2, 1.1, 1.2, 2.5, 1.1, 0.3,
0.5, 1.2, 2.5, 1.2, 1.3, 2.7, 1.2, 0.5, 0.6, 1.3),
y = c(-0.5, 0, 1, 0.5, 0, 0.5, 1.5, 1, 0.5, 1, 2.1, 1.7, 1, 1.5,
2.2, 2.1, 1.7, 2.1, 3.2, 2.8, 2.1, 2.2, 3.3, 3.2) )
datapoly <- merge(values, positions, by=c("id"))
datapoly$oc = "alert(this.getAttribute(\"data-id\"))"
# create a ggplot -----
gg_poly_1 <- ggplot(datapoly, aes( x = x, y = y ) ) +
geom_polygon_interactive(aes(fill = value, group = id,
tooltip = value, data_id = value, onclick = oc))
# display ------
x <- girafe(ggobj = gg_poly_1)
if( interactive() ) print(x)
if (packageVersion("grid") >= "3.6") {
# As of R version 3.6 geom_polygon() supports polygons with holes
# Use the subgroup aesthetic to differentiate holes from the main polygon
holes <- do.call(rbind, lapply(split(datapoly, datapoly$id), function(df) {
df$x <- df$x + 0.5 * (mean(df$x) - df$x)
df$y <- df$y + 0.5 * (mean(df$y) - df$y)
df
}))
datapoly$subid <- 1L
holes$subid <- 2L
datapoly <- rbind(datapoly, holes)
p <- ggplot(datapoly, aes(x = x, y = y)) +
geom_polygon_interactive(aes(fill = value, group = id, subgroup = subid,
tooltip = value, data_id = value, onclick = oc))
x <- girafe(ggobj = p)
if( interactive() ) print(x)
}
Create interactive quantile regression
Description
The geometry is based on ggplot2::geom_quantile()
.
See the documentation for those functions for more details.
Usage
geom_quantile_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive quantiles to a ggplot -------
library(ggplot2)
library(ggiraph)
if (requireNamespace("quantreg", quietly = TRUE)) {
m <- ggplot(mpg, aes(displ, 1 / hwy)) + geom_point()
p <- m + geom_quantile_interactive(
aes(
tooltip = after_stat(quantile),
data_id = after_stat(quantile),
colour = after_stat(quantile)
),
formula = y ~ x,
size = 2,
alpha = 0.5
)
x <- girafe(ggobj = p)
x <- girafe_options(x = x,
opts_hover(css = "stroke:red;stroke-width:10px;") )
if (interactive()) print(x)
}
Create interactive raster rectangles
Description
The geometry is based on ggplot2::geom_raster()
.
See the documentation for those functions for more details.
Usage
geom_raster_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive raster to a ggplot -------
library(ggplot2)
library(ggiraph)
df <- expand.grid(x = 0:5, y = 0:5)
df$z <- runif(nrow(df))
gg <- ggplot(df, aes(x, y, fill = z, tooltip = "tooltip")) +
geom_raster_interactive() +
scale_fill_gradient_interactive(
data_id = "coco", onclick = "cici", tooltip = "cucu"
)
x <- girafe(ggobj = gg)
if( interactive() ) print(x)
Create interactive rectangles
Description
These geometries are based on ggplot2::geom_rect()
and ggplot2::geom_tile()
.
See the documentation for those functions for more details.
Usage
geom_rect_interactive(...)
geom_tile_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
Note
Converting a raster to svg elements could inflate dramatically the size of the
svg and make it unreadable in a browser.
Function geom_tile_interactive
should be used with caution, total number of
rectangles should be small.
See Also
Examples
# add interactive polygons to a ggplot -------
library(ggplot2)
library(ggiraph)
dataset = data.frame( x1 = c(1, 3, 1, 5, 4),
x2 = c(2, 4, 3, 6, 6),
y1 = c( 1, 1, 4, 1, 3),
y2 = c( 2, 2, 5, 3, 5),
t = c( 'a', 'a', 'a', 'b', 'b'),
r = c( 1, 2, 3, 4, 5),
tooltip = c("ID 1", "ID 2", "ID 3", "ID 4", "ID 5"),
uid = c("ID 1", "ID 2", "ID 3", "ID 4", "ID 5"),
oc = rep("alert(this.getAttribute(\"data-id\"))", 5)
)
gg_rect = ggplot() +
scale_x_continuous(name="x") +
scale_y_continuous(name="y") +
geom_rect_interactive(data=dataset,
mapping = aes(xmin = x1, xmax = x2,
ymin = y1, ymax = y2, fill = t,
tooltip = tooltip, onclick = oc, data_id = uid ),
color="black", alpha=0.5, linejoin = "bevel", lineend = "round") +
geom_text(data=dataset,
aes(x = x1 + ( x2 - x1 ) / 2, y = y1 + ( y2 - y1 ) / 2,
label = r ),
size = 4 )
x <- girafe(ggobj = gg_rect)
if( interactive() ) print(x)
# add interactive tiles to a ggplot -------
library(ggplot2)
library(ggiraph)
df <- data.frame(
id = rep(c("a", "b", "c", "d", "e"), 2),
x = rep(c(2, 5, 7, 9, 12), 2),
y = rep(c(1, 2), each = 5),
z = factor(rep(1:5, each = 2)),
w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2)
)
p <- ggplot(df, aes(x, y, tooltip = id)) + geom_tile_interactive(aes(fill = z))
x <- girafe(ggobj = p)
if( interactive() ) print(x)
# correlation dataset ----
cor_mat <- cor(mtcars)
diag( cor_mat ) <- NA
var1 <- rep( row.names(cor_mat), ncol(cor_mat) )
var2 <- rep( colnames(cor_mat), each = nrow(cor_mat) )
cor <- as.numeric(cor_mat)
cor_mat <- data.frame( var1 = var1, var2 = var2,
cor = cor, stringsAsFactors = FALSE )
cor_mat[["tooltip"]] <-
sprintf("<i>`%s`</i> vs <i>`%s`</i>:</br><code>%.03f</code>",
var1, var2, cor)
p <- ggplot(data = cor_mat, aes(x = var1, y = var2) ) +
geom_tile_interactive(aes(fill = cor, tooltip = tooltip), colour = "white") +
scale_fill_gradient2_interactive(low = "#BC120A", mid = "white", high = "#BC120A",
limits = c(-1, 1), data_id = "cormat", tooltip = "cormat") +
coord_equal()
x <- girafe(ggobj = p)
if( interactive() ) print(x)
Create interactive ribbons and area plots
Description
The geometries are based on ggplot2::geom_ribbon()
and ggplot2::geom_area()
.
See the documentation for those functions for more details.
Usage
geom_ribbon_interactive(...)
geom_area_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive bar -------
library(ggplot2)
library(ggiraph)
# Generate data
huron <- data.frame(year = 1875:1972, level = as.vector(LakeHuron))
h <- ggplot(huron, aes(year))
g <- h +
geom_ribbon_interactive(aes(ymin = level - 1, ymax = level + 1),
fill = "grey70", tooltip = "ribbon1", data_id="ribbon1",
outline.type = "both",
hover_css = "stroke:red;stroke-width:inherit;") +
geom_line_interactive(aes(y = level), tooltip = "level", data_id="line1",
hover_css = "stroke:orange;fill:none;")
x <- girafe(ggobj = g)
x <- girafe_options(x = x,
opts_hover(css = girafe_css(
css = "stroke:orange;stroke-width:3px;",
area = "fill:blue;"
)))
if( interactive() ) print(x)
g <- h + geom_area_interactive(aes(y = level), tooltip = "area1")
x <- girafe(ggobj = g)
if( interactive() ) print(x)
Create interactive sf objects
Description
These geometries are based on ggplot2::geom_sf()
, ggplot2::geom_sf_label()
and ggplot2::geom_sf_text()
. See the documentation for those functions for
more details.
Usage
geom_sf_interactive(...)
geom_sf_label_interactive(...)
geom_sf_text_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive sf objects to a ggplot -------
library(ggplot2)
library(ggiraph)
## original code: see section examples of ggplot2::geom_sf help file
if (requireNamespace("sf",
quietly = TRUE,
versionCheck = c(op = ">=", version = "0.7-3"))) {
nc <- sf::st_read(system.file("shape/nc.shp", package = "sf"), quiet = TRUE)
gg <- ggplot(nc) +
geom_sf_interactive(aes(fill = AREA, tooltip = NAME, data_id = NAME))
x <- girafe(ggobj = gg)
if( interactive() ) print(x)
nc_3857 <- sf::st_transform(nc, "+init=epsg:3857")
# Unfortunately if you plot other types of feature you'll need to use
# show.legend to tell ggplot2 what type of legend to use
nc_3857$mid <- sf::st_centroid(nc_3857$geometry)
gg <- ggplot(nc_3857) +
geom_sf(colour = "white") +
geom_sf_interactive(aes(geometry = mid,
size = AREA, tooltip = NAME, data_id = NAME),
show.legend = "point")
x <- girafe( ggobj = gg)
if( interactive() ) print(x)
# Example with texts.
gg <- ggplot(nc_3857[1:3, ]) +
geom_sf(aes(fill = AREA)) +
geom_sf_text_interactive(aes(label = NAME, tooltip = NAME), color="white")
x <- girafe( ggobj = gg)
if( interactive() ) print(x)
# Example with labels.
gg <- ggplot(nc_3857[1:3, ]) +
geom_sf(aes(fill = AREA)) +
geom_sf_label_interactive(aes(label = NAME, tooltip = NAME))
x <- girafe( ggobj = gg)
if( interactive() ) print(x)
}
Create interactive smoothed conditional means
Description
The geometry is based on ggplot2::geom_smooth()
.
See the documentation for those functions for more details.
Usage
geom_smooth_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive bar -------
library(ggplot2)
library(ggiraph)
p <- ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth_interactive(aes(tooltip="smoothed line", data_id="smooth"))
x <- girafe(ggobj = p)
x <- girafe_options(x = x,
opts_hover(css = "stroke:orange;stroke-width:3px;") )
if( interactive() ) print(x)
p <- ggplot(mpg, aes(displ, hwy)) +
geom_point() +
geom_smooth_interactive(method = lm, se = FALSE, tooltip="smooth", data_id="smooth")
x <- girafe(ggobj = p)
if( interactive() ) print(x)
p <- ggplot(mpg, aes(displ, hwy, colour = class, tooltip = class, data_id = class)) +
geom_point_interactive() +
geom_smooth_interactive(se = FALSE, method = lm)
x <- girafe(ggobj = p)
x <- girafe_options(x = x,
opts_hover(css = "stroke:red;stroke-width:3px;") )
if( interactive() ) print(x)
Create interactive line segments parameterised by location, direction and distance
Description
The geometry is based on ggplot2::geom_spoke()
.
See the documentation for those functions for more details.
Usage
geom_spoke_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive line segments parameterised by location,
# direction and distance to a ggplot -------
library(ggplot2)
library(ggiraph)
df <- expand.grid(x = 1:10, y=1:10)
df$angle <- runif(100, 0, 2*pi)
df$speed <- runif(100, 0, sqrt(0.1 * df$x))
p <- ggplot(df, aes(x, y)) +
geom_point() +
geom_spoke_interactive(aes(angle = angle, tooltip=round(angle, 2)), radius = 0.5)
x <- girafe(ggobj = p)
if( interactive() ) print(x)
p2 <- ggplot(df, aes(x, y)) +
geom_point() +
geom_spoke_interactive(aes(angle = angle, radius = speed,
tooltip=paste(round(angle, 2), round(speed, 2), sep="\n")))
x2 <- girafe(ggobj = p2)
if( interactive() ) print(x2)
Create interactive repulsive textual annotations
Description
The geometries are based on ggrepel::geom_text_repel()
and ggrepel::geom_label_repel()
.
See the documentation for those functions for more details.
Usage
geom_text_repel_interactive(...)
geom_label_repel_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
Note
The ggrepel
package is required for these geometries
See Also
Examples
# add interactive repulsive texts to a ggplot -------
library(ggplot2)
library(ggiraph)
# geom_text_repel_interactive
if (requireNamespace("ggrepel", quietly = TRUE)) {
dataset = mtcars
dataset$label = row.names(mtcars)
dataset$tooltip = paste0(dataset$label, "<br/>", "cyl: ", dataset$cyl, "<br/>",
"gear: ", dataset$gear, "<br/>",
"carb: ", dataset$carb)
p <- ggplot(dataset, aes(wt, mpg, color = qsec ) ) +
geom_point_interactive(aes(tooltip = tooltip, data_id = label))
gg_text = p +
geom_text_repel_interactive(
aes(label = label, tooltip = tooltip, data_id = label),
size = 3
)
x <- girafe(ggobj = gg_text)
x <- girafe_options(x = x,
opts_hover(css = "fill:#FF4C3B;") )
if (interactive()) print(x)
}
# geom_label_repel_interactive
if (requireNamespace("ggrepel", quietly = TRUE)) {
gg_label = p +
geom_label_repel_interactive(
aes(label = label, tooltip = tooltip, data_id = label),
size = 3,
max.overlaps = 12
)
x2 <- girafe(ggobj = gg_label)
x2 <- girafe_options(x = x2,
opts_hover(css = ggiraph::girafe_css(
css = ";",
area = "fill:#FF4C3B;"
)) )
if (interactive()) print(x2)
}
Create interactive violin plot
Description
The geometry is based on ggplot2::geom_violin()
.
See the documentation for those functions for more details.
Usage
geom_violin_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
See Also
Examples
# add interactive violin plot -------
library(ggplot2)
library(ggiraph)
p <- ggplot(mtcars, aes(factor(cyl), mpg)) +
geom_violin_interactive(aes(fill = cyl, tooltip = cyl))
x <- girafe(ggobj = p)
if( interactive() ) print(x)
# Show quartiles
p2 <- ggplot(mtcars, aes(factor(cyl), mpg)) +
geom_violin_interactive(aes(tooltip=after_stat(density)),
draw_quantiles = c(0.25, 0.5, 0.75))
x2 <- girafe(ggobj = p2)
if( interactive() ) print(x2)
Create a ggiraph object (defunct)
Description
Create an interactive graphic to be used in a web browser.
This function is now defunct, users should
now use function girafe()
.
Usage
ggiraph(...)
Arguments
... |
unused |
Create a ggiraph output element
Description
Render a ggiraph within an application page.
This function is now defunct, users should
now use function girafeOutput()
.
Usage
ggiraphOutput(...)
Arguments
... |
unused |
Create a girafe object
Description
Create an interactive graphic with a ggplot object
to be used in a web browser. The function should replace function
ggiraph
.
Usage
girafe(
code,
ggobj = NULL,
pointsize = 12,
width_svg = NULL,
height_svg = NULL,
options = list(),
dependencies = NULL,
...
)
Arguments
code |
Plotting code to execute |
ggobj |
ggplot object to print. Argument |
pointsize |
the default pointsize of plotted text in pixels, default to 12. |
width_svg , height_svg |
The width and height of the graphics region in inches. The default values are 6 and 5 inches. This will define the aspect ratio of the graphic as it will be used to define viewbox attribute of the SVG result. If you use |
options |
a list of options for girafe rendering, see
|
dependencies |
Additional widget HTML dependencies, see |
... |
arguments passed on to |
Details
Use geom_zzz_interactive
to create interactive graphical elements.
Difference from original functions is that some extra aesthetics are understood: the interactive_parameters.
Tooltips can be displayed when mouse is over graphical elements.
If id are associated with points, they get animated when mouse is over and can be selected when used in shiny apps.
On click actions can be set with javascript instructions. This option should not be used simultaneously with selections in Shiny applications as both features are "on click" features.
When a zoom effect is set, "zoom activate", "zoom desactivate" and "zoom init" buttons are available in a toolbar.
When selection type is set to 'multiple' (in Shiny applications), lasso selection and lasso anti-selections buttons are available in a toolbar.
Widget options
girafe animations can be customized with function girafe_options()
.
Options are available to customize tooltips, hover effects, zoom effects
selection effects and toolbar.
Widget sizing
girafe graphics are responsive, which mean, they will be resized
according to their container. There are two responsive behavior
implementations: one for Shiny applications and flexdashboard documents
and one for other documents (i.e. R markdown and saveWidget
).
Graphics are created by an R graphic device (i.e pdf, png, svg here) and
need arguments width and height to define a graphic region.
Arguments width_svg
and height_svg
are used as corresponding
values. They are defining the aspect ratio of the graphic. This proportion is
always respected when the graph is displayed.
When a girafe graphic is in a Shiny application,
graphic will be resized according to the arguments width
and
height
of the function girafeOutput
. Default
values are '100\
outer bounding box of the graphic (the HTML element that will
contain the graphic with an aspect ratio).
When a girafe graphic is in an R markdown document (producing an HTML
document), the graphic will be resized according to the argument width
of the
function girafe
. Its value is beeing used to define a relative
width of the graphic within its HTML container. Its height is automatically
adjusted regarding to the argument width
and the aspect ratio.
See Also
girafe_options()
, validated_fonts()
, dsvg()
Examples
library(ggplot2)
dataset <- mtcars
dataset$carname <- row.names(mtcars)
gg_point <- ggplot(
data = dataset,
mapping = aes(
x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname
)
) +
geom_point_interactive() +
theme_minimal()
x <- girafe(ggobj = gg_point)
if (interactive()) {
print(x)
}
Create a girafe output element
Description
Render a girafe within an application page.
Usage
girafeOutput(outputId, width = "100%", height = NULL)
Arguments
outputId |
output variable to read the girafe from. Do not use special JavaScript
characters such as a period |
width |
widget width, its default value is set so that the graphic can cover the entire available horizontal space. |
height |
widget height, its default value is NULL so that width adaptation is not restricted. The height will then be defined according to the width used and the aspect ratio. Only use a value for the height if you have a specific reason and want to strictly control the size. |
Size control
If you want to control a fixed size, use
opts_sizing(rescale = FALSE)
and set the chart size
with girafe(width_svg=..., height_svg=...)
.
If you want
the graphic to fit the available width,
use opts_sizing(rescale = TRUE)
and set the size of the
graphic with girafe(width_svg=..., height_svg=...)
, this
size will define the aspect ratio.
CSS creation helper
Description
It allows specifying individual styles for various SVG elements.
Usage
girafe_css(
css,
text = NULL,
point = NULL,
line = NULL,
area = NULL,
image = NULL
)
Arguments
css |
The generic css style |
text |
Override style for text elements (svg:text) |
point |
Override style for point elements (svg:circle) |
line |
Override style for line elements (svg:line, svg:polyline) |
area |
Override style for area elements (svg:rect, svg:polygon, svg:path) |
image |
Override style for image elements (svg:image) |
Value
css as scalar character
See Also
girafe_css_bicolor()
, girafe()
Examples
library(ggiraph)
girafe_css(
css = "fill:orange;stroke:gray;",
text = "stroke:none; font-size: larger",
line = "fill:none",
area = "stroke-width:3px",
point = "stroke-width:3px",
image = "outline:2px red"
)
Helper for a 'girafe' css string
Description
It allows the creation of a css set of individual styles for animation of 'girafe' elements. The used model is based on a simple pattern that works most of the time for girafe hover effects and selection effects.
It sets properties based on a primary and a secondary color.
Usage
girafe_css_bicolor(primary = "orange", secondary = "gray")
Arguments
primary , secondary |
colors used to define animations of fill and stroke properties with text, lines, areas, points and images in 'girafe' outputs. |
See Also
Examples
library(ggplot2)
library(ggiraph)
dat <- mtcars
dat$id <- "id"
dat$label <- "a line"
dat <- dat[order(dat$wt), ]
p <- ggplot(
data = dat,
mapping = aes(
x = wt, y = mpg, data_id = id, tooltip = label)) +
geom_line_interactive(color = "white", size = .75,
hover_nearest = TRUE) +
theme_dark() +
theme(plot.background = element_rect(fill="black"),
panel.background = element_rect(fill="black"),
text = element_text(colour = "white"),
axis.text = element_text(colour = "white")
)
x <- girafe(
ggobj = p,
options = list(
opts_hover(
css = girafe_css_bicolor(
primary = "yellow", secondary = "black"))
))
if (interactive()) print(x)
Get girafe defaults formatting properties
Description
The current formatting properties are automatically applied to every girafe you produce. These default values are returned by this function.
Usage
girafe_defaults(name = NULL)
Arguments
name |
optional, option's name to return, one of 'fonts', 'opts_sizing', 'opts_tooltip', 'opts_hover', 'opts_hover_key', 'opts_hover_inv', 'opts_hover_theme', 'opts_selection', 'opts_selection_inv', 'opts_selection_key', 'opts_selection_theme', 'opts_zoom', 'opts_toolbar'. |
Value
a list containing default values or an
element selected with argument name
.
See Also
Other girafe animation options:
girafe_options()
,
init_girafe_defaults()
,
opts_hover()
,
opts_selection()
,
opts_sizing()
,
opts_toolbar()
,
opts_tooltip()
,
opts_zoom()
,
set_girafe_defaults()
Examples
girafe_defaults()
Set girafe options
Description
Defines the animation options related to
a girafe()
object.
Usage
girafe_options(x, ...)
Arguments
x |
girafe object. |
... |
set of options defined by calls to |
See Also
girafe()
, girafe_css()
, girafe_css_bicolor()
Other girafe animation options:
girafe_defaults()
,
init_girafe_defaults()
,
opts_hover()
,
opts_selection()
,
opts_sizing()
,
opts_toolbar()
,
opts_tooltip()
,
opts_zoom()
,
set_girafe_defaults()
Examples
library(ggplot2)
library(htmlwidgets)
dataset <- mtcars
dataset$carname = row.names(mtcars)
gg_point = ggplot( data = dataset,
mapping = aes(x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname) ) +
geom_point_interactive() + theme_minimal()
x <- girafe(ggobj = gg_point)
x <- girafe_options(x = x,
opts_tooltip(opacity = .7),
opts_zoom(min = .5, max = 4),
sizingPolicy(defaultWidth = "100%", defaultHeight = "300px"),
opts_hover(css = "fill:red;stroke:orange;r:5pt;") )
if(interactive()){
print(x)
}
Create interactive bins guide
Description
The guide is based on ggplot2::guide_bins()
.
See the documentation for that function for more details.
Usage
guide_bins_interactive(...)
Arguments
... |
arguments passed to base function. |
Value
An interactive guide object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
interactive_parameters, girafe()
Examples
# add interactive bins guide to a ggplot -------
library(ggplot2)
library(ggiraph)
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000), ]
p <- ggplot(dsmall, aes(x, y)) +
stat_density_2d(
aes(
fill = after_stat(nlevel),
tooltip = paste("nlevel:", after_stat(nlevel))
),
geom = "interactive_polygon"
) +
facet_grid(. ~ cut)
# add interactive binned scale and guide
p1 <- p + scale_fill_viridis_b_interactive(
data_id = "nlevel",
tooltip = "nlevel",
guide = "bins"
)
x <- girafe(ggobj = p1)
if (interactive()) print(x)
# set the keys separately
p2 <- p + scale_fill_viridis_b_interactive(
data_id = function(breaks) {
sapply(seq_along(breaks), function(i) {
if (i < length(breaks)) {
paste(
min(breaks[i], breaks[i + 1], na.rm = TRUE),
max(breaks[i], breaks[i + 1], na.rm = TRUE),
sep = "-"
)
} else {
NA_character_
}
})
},
tooltip = function(breaks) {
sapply(seq_along(breaks), function(i) {
if (i < length(breaks)) {
paste(
min(breaks[i], breaks[i + 1], na.rm = TRUE),
max(breaks[i], breaks[i + 1], na.rm = TRUE),
sep = "-"
)
} else {
NA_character_
}
})
},
guide = "bins"
)
x <- girafe(ggobj = p2)
if (interactive()) print(x)
# make the title and labels interactive
p3 <- p + scale_fill_viridis_c_interactive(
data_id = function(breaks) {
sapply(seq_along(breaks), function(i) {
if (i < length(breaks)) {
paste(
min(breaks[i], breaks[i + 1], na.rm = TRUE),
max(breaks[i], breaks[i + 1], na.rm = TRUE),
sep = "-"
)
} else {
NA_character_
}
})
},
tooltip = function(breaks) {
sapply(seq_along(breaks), function(i) {
if (i < length(breaks)) {
paste(
min(breaks[i], breaks[i + 1], na.rm = TRUE),
max(breaks[i], breaks[i + 1], na.rm = TRUE),
sep = "-"
)
} else {
NA_character_
}
})
},
guide = "bins",
name = label_interactive("nlevel",
data_id = "nlevel",
tooltip = "nlevel"
),
labels = function(breaks) {
label_interactive(
as.character(breaks),
data_id = as.character(breaks),
onclick = paste0("alert(\"", as.character(breaks), "\")"),
tooltip = as.character(breaks)
)
}
)
x <- girafe(ggobj = p3)
x <- girafe_options(
x,
opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))
)
if (interactive()) print(x)
Create interactive continuous colour bar guide
Description
The guide is based on ggplot2::guide_colourbar()
.
See the documentation for that function for more details.
Usage
guide_colourbar_interactive(...)
guide_colorbar_interactive(...)
Arguments
... |
arguments passed to base function. |
Value
An interactive guide object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
interactive_parameters, girafe()
Examples
# add interactive colourbar guide to a ggplot -------
library(ggplot2)
library(ggiraph)
df <- expand.grid(x = 0:5, y = 0:5)
df$z <- runif(nrow(df))
p <- ggplot(df, aes(x, y, fill = z, tooltip = "tooltip")) +
geom_raster_interactive()
# add an interactive scale (guide is colourbar)
p1 <- p + scale_fill_gradient_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
)
x <- girafe(ggobj = p1)
if (interactive()) print(x)
# make the legend title interactive
p2 <- p + scale_fill_gradient_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar",
name = label_interactive(
"z",
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
)
)
x <- girafe(ggobj = p2)
x <- girafe_options(
x,
opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))
)
if (interactive()) print(x)
# make the legend labels interactive
p3 <- p + scale_fill_gradient_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar",
name = label_interactive(
"z",
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
),
labels = function(breaks) {
lapply(breaks, function(abreak) label_interactive(
as.character(abreak),
data_id = paste0("colourbar", abreak),
onclick = "alert(\"colourbar\")",
tooltip = paste0("colourbar", abreak)
))
}
)
x <- girafe(ggobj = p3)
x <- girafe_options(
x,
opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))
)
if (interactive()) print(x)
# also via the guide
p4 <- p + scale_fill_gradient_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar",
guide = guide_colourbar_interactive(
title.theme = element_text_interactive(
size = 8,
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
),
label.theme = element_text_interactive(
size = 8,
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
)
)
)
x <- girafe(ggobj = p4)
x <- girafe_options(
x,
opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))
)
if (interactive()) print(x)
# make the legend background interactive
p5 <- p4 + theme(
legend.background = element_rect_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
)
)
x <- girafe(ggobj = p5)
x <- girafe_options(
x,
opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))
)
if (interactive()) print(x)
Create interactive colorsteps guide
Description
The guide is based on ggplot2::guide_coloursteps()
.
See the documentation for that function for more details.
Usage
guide_coloursteps_interactive(...)
guide_colorsteps_interactive(...)
Arguments
... |
arguments passed to base function. |
Value
An interactive guide object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
interactive_parameters, girafe()
Examples
# add interactive coloursteps guide to a ggplot -------
library(ggplot2)
library(ggiraph)
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
p <- ggplot(dsmall, aes(x, y)) +
stat_density_2d(aes(
fill = after_stat(nlevel),
tooltip = paste("nlevel:", after_stat(nlevel))
),
geom = "interactive_polygon") +
facet_grid(. ~ cut)
# add interactive binned scale, by default the guide is colorsteps
p1 <- p + scale_fill_viridis_b_interactive(data_id = "nlevel",
tooltip = "nlevel")
x <- girafe(ggobj = p1)
if (interactive()) print(x)
# make the title and labels interactive
p2 <- p + scale_fill_viridis_b_interactive(
data_id = "nlevel",
tooltip = "nlevel",
name = label_interactive("nlevel", data_id = "nlevel",
tooltip = "nlevel"),
labels = function(breaks) {
l <- lapply(breaks, function(br) {
label_interactive(
as.character(br),
data_id = as.character(br),
onclick = paste0("alert(\"", as.character(br), "\")"),
tooltip = as.character(br)
)
})
l
}
)
x <- girafe(ggobj = p2)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
Create interactive legend guide
Description
The guide is based on ggplot2::guide_legend()
.
See the documentation for that function for more details.
Usage
guide_legend_interactive(...)
Arguments
... |
arguments passed to base function. |
Value
An interactive guide object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
interactive_parameters, girafe()
Examples
# add interactive discrete legend guide to a ggplot -------
library(ggplot2)
library(ggiraph)
dat <- data.frame(
name = c( "Guy", "Ginette", "David", "Cedric", "Frederic" ),
gender = c( "Male", "Female", "Male", "Male", "Male" ),
height = c(169, 160, 171, 172, 171 ) )
p <- ggplot(dat, aes( x = name, y = height, fill = gender,
data_id = name ) ) +
geom_bar_interactive(stat = "identity")
# add interactive scale (guide is legend)
p1 <- p +
scale_fill_manual_interactive(
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = c(Female = "Female", Male = "Male"),
tooltip = c(Male = "Male", Female = "Female")
)
x <- girafe(ggobj = p1)
if (interactive()) print(x)
# make the title interactive too
p2 <- p +
scale_fill_manual_interactive(
name = label_interactive("gender", tooltip="Gender levels", data_id="legend.title"),
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = c(Female = "Female", Male = "Male"),
tooltip = c(Male = "Male", Female = "Female")
)
x <- girafe(ggobj = p2)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
# the interactive params can be functions too
p3 <- p +
scale_fill_manual_interactive(
name = label_interactive("gender", tooltip="Gender levels", data_id="legend.title"),
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = function(breaks) { as.character(breaks)},
tooltip = function(breaks) { as.character(breaks)},
onclick = function(breaks) { paste0("alert(\"", as.character(breaks), "\")") }
)
x <- girafe(ggobj = p3)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
# also via the guide
p4 <- p + scale_fill_manual_interactive(
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = function(breaks) { as.character(breaks)},
tooltip = function(breaks) { as.character(breaks)},
onclick = function(breaks) { paste0("alert(\"", as.character(breaks), "\")") },
guide = guide_legend_interactive(
title.theme = element_text_interactive(
size = 8,
data_id = "legend.title",
onclick = "alert(\"Gender levels\")",
tooltip = "Gender levels"
),
label.theme = element_text_interactive(
size = 8
)
)
)
x <- girafe(ggobj = p4)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
# make the legend labels interactive
p5 <- p +
scale_fill_manual_interactive(
name = label_interactive("gender", tooltip="Gender levels", data_id="legend.title"),
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = function(breaks) { as.character(breaks)},
tooltip = function(breaks) { as.character(breaks)},
onclick = function(breaks) { paste0("alert(\"", as.character(breaks), "\")") },
labels = function(breaks) {
lapply(breaks, function(br) {
label_interactive(
as.character(br),
data_id = as.character(br),
onclick = paste0("alert(\"", as.character(br), "\")"),
tooltip = as.character(br)
)
})
}
)
x <- girafe(ggobj = p5)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
# add interactive continuous legend guide to a ggplot -------
library(ggplot2)
library(ggiraph)
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
p <- ggplot(dsmall, aes(x, y)) +
stat_density_2d(aes(
fill = after_stat(nlevel),
tooltip = paste("nlevel:", after_stat(nlevel))
),
geom = "interactive_polygon") +
facet_grid(. ~ cut)
# add interactive scale, by default the guide is a colourbar
p1 <- p + scale_fill_viridis_c_interactive(data_id = "nlevel",
tooltip = "nlevel")
x <- girafe(ggobj = p1)
if (interactive()) print(x)
# make it legend
p2 <- p + scale_fill_viridis_c_interactive(data_id = "nlevel",
tooltip = "nlevel",
guide = "legend")
x <- girafe(ggobj = p2)
if (interactive()) print(x)
# set the keys separately
p3 <- p + scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
},
tooltip = function(breaks) {
as.character(breaks)
},
guide = "legend"
)
x <- girafe(ggobj = p3)
if (interactive()) print(x)
# make the title and labels interactive
p4 <- p + scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
},
tooltip = function(breaks) {
as.character(breaks)
},
guide = "legend",
name = label_interactive("nlevel", data_id = "nlevel",
tooltip = "nlevel"),
labels = function(breaks) {
label_interactive(
as.character(breaks),
data_id = as.character(breaks),
onclick = paste0("alert(\"", as.character(breaks), "\")"),
tooltip = as.character(breaks)
)
}
)
x <- girafe(ggobj = p4)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
Re-init animation defaults options
Description
Re-init all defaults options with the package defaults.
Usage
init_girafe_defaults()
See Also
Other girafe animation options:
girafe_defaults()
,
girafe_options()
,
opts_hover()
,
opts_selection()
,
opts_sizing()
,
opts_toolbar()
,
opts_tooltip()
,
opts_zoom()
,
set_girafe_defaults()
Create interactive circles grob
Description
The grob is based on circleGrob()
.
See the documentation for that function for more details.
Usage
interactive_circle_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Create interactive curve grob
Description
The grob is based on curveGrob()
.
See the documentation for that function for more details.
Usage
interactive_curve_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Interactive parameters
Description
Throughout ggiraph there are functions that add interactivity to ggplot plot elements. The user can control the various aspects of interactivity by supplying a special set of parameters to these functions.
Arguments
tooltip |
Tooltip text to associate with one or more elements. If this is supplied a tooltip is shown when the element is hovered. Plain text or html is supported. To use html markup it is advised to use |
onclick |
Javascript code to associate with one or more elements. This code will be executed when the element is clicked. |
hover_css |
Individual css style associate with one or more elements.
This css style is applied when the element is hovered and overrides the default style,
set via |
selected_css |
Individual css style associate with one or more elements.
This css style is applied when the element is selected and overrides the default style,
set via |
data_id |
Identifier to associate with one or more elements. This is mandatory parameter if hover and selection interactivity is desired. Identifiers are available as reactive input values in Shiny applications. |
tooltip_fill |
Color to use for tooltip background when |
hover_nearest |
Set to TRUE to apply the hover effect on the nearest element
while moving the mouse. In this case it is mandatory to also set the |
Details for interactive geom functions
The interactive parameters can be supplied with two ways:
As aesthetics with the mapping argument (via
ggplot2::aes()
). In this way they can be mapped to data columns and apply to a set of geometries.As plain arguments into the geom_*_interactive function. In this way they can be set to a scalar value.
Details for annotate_*_interactive functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
Details for element_*_interactive functions
The interactive parameters can be supplied as arguments in the relevant function and they should be scalar values.
For theme text elements (element_text_interactive()
), the interactive parameters
can also be supplied while setting a label value, via the ggplot2::labs()
family
of functions or when setting a scale/guide title or key label.
Instead of setting a character value for the element, function
label_interactive()
can be used to define interactive parameters
to go along with the label.
When the parameters are supplied that way, they override the default values
that are set at the theme via element_text_interactive()
or via the guide
's
theme parameters.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
Custom interactive parameters
The argument extra_interactive_params
can be passed to any of the *_interactive functions
(geoms, grobs, scales, labeller, labels and theme elements),
It should be a character vector of additional names to be treated as interactive parameters
when evaluating the aesthetics.
The values will eventually end up as attributes in the SVG elements of the output.
Intended only for expert use.
See Also
Create interactive path grob
Description
The grob is based on pathGrob()
.
See the documentation for that function for more details.
Usage
interactive_path_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Create interactive points grob
Description
The grob is based on pointsGrob()
.
See the documentation for that function for more details.
Usage
interactive_points_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Create interactive polygon grob
Description
The grob is based on polygonGrob()
.
See the documentation for that function for more details.
Usage
interactive_polygon_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Create interactive polyline grob
Description
These grobs are based on polylineGrob()
and linesGrob()
.
See the documentation for those functions for more details.
Usage
interactive_polyline_grob(...)
interactive_lines_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Create interactive raster grob
Description
The grob is based on rasterGrob()
.
See the documentation for that function for more details.
Usage
interactive_raster_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
interactive_parameters, girafe()
Create interactive rectangle grob
Description
The grob is based on rectGrob()
.
See the documentation for that function for more details.
Usage
interactive_rect_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Create interactive rectangle grob
Description
The grob is based on roundrectGrob()
.
See the documentation for that function for more details.
Usage
interactive_roundrect_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Create interactive segments grob
Description
The grob is based on segmentsGrob. See the documentation for that function for more details.
Usage
interactive_segments_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Create interactive text grob
Description
The grob is based on textGrob. See the documentation for that function for more details.
Usage
interactive_text_grob(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive grob object.
Details for interactive_*_grob functions
The interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors depending on params on base function.
See Also
Create an interactive label
Description
This function returns an object that can be used as a label
via the ggplot2::labs()
family of functions or
when setting a scale
/guide
name/title or key label.
It passes the interactive parameters to a theme element created via
element_text_interactive()
or via an interactive guide.
Usage
label_interactive(label, ...)
Arguments
label |
The text for the label (scalar character) |
... |
any of the interactive_parameters. |
Value
an interactive label object
See Also
interactive_parameters, labeller_interactive()
Examples
library(ggplot2)
library(ggiraph)
gg_jitter <- ggplot(
mpg, aes(cyl, hwy, group = cyl)) +
geom_boxplot() +
labs(title =
label_interactive(
"title",
data_id = "id_title",
onclick = "alert(\"title\")",
tooltip = "title" )
) +
theme(plot.title = element_text_interactive())
x <- girafe(ggobj = gg_jitter)
if( interactive() ) print(x)
Construct interactive labelling specification for facet strips
Description
This function is a wrapper around ggplot2::labeller()
that allows the user to turn
facet strip labels into interactive labels via label_interactive()
.
It requires that the ggplot2::theme()
's strip.text
elements are defined as interactive
theme elements via element_text_interactive()
, see details.
Usage
labeller_interactive(.mapping = NULL, ...)
Arguments
.mapping |
set of aesthetic mappings created by |
... |
arguments passed to base function |
Details
The aesthetics set provided via .mapping
is evaluated against the data provided
by the ggplot2 facet. This means that the variables for each facet are available
for using inside the aesthetic mappings. In addition the .label
variable provides
access to the produced label. See the examples.
The plot's theme is required to have the strip texts as interactive text elements.
This involves strip.text
or individually strip.text.x
and strip.text.y
:
theme(strip.text.x = element_text_interactive())
theme(strip.text.y = element_text_interactive())
See Also
ggplot2::labeller()
, label_interactive()
, ggplot2::labellers
Examples
# use interactive labeller
library(ggplot2)
library(ggiraph)
p1 <- ggplot(mtcars, aes(x = mpg, y = wt)) +
geom_point_interactive(aes(tooltip = row.names(mtcars)))
# Always remember to set the theme's strip texts as interactive
# no need to set any interactive parameters, they'll be assigned from the labels
p1 <- p1 +
theme(
strip.text.x = element_text_interactive(),
strip.text.y = element_text_interactive()
)
# simple facet
p <- p1 + facet_wrap_interactive(
vars(gear),
labeller = labeller_interactive(aes(tooltip = paste("Gear:", gear)))
)
x <- girafe(ggobj = p)
if (interactive()) print(x)
# With two vars. When the .multi_line labeller argument is TRUE (default),
# supply a different labeller for each var
p <- p1 + facet_wrap_interactive(
vars(gear, vs),
labeller = labeller_interactive(
gear = labeller_interactive(aes(tooltip = paste("Gear:", gear))),
vs = labeller_interactive(aes(tooltip = paste("VS:", vs)))
)
)
x <- girafe(ggobj = p)
if (interactive()) print(x)
# When the .multi_line argument is FALSE, the labels are joined and
# the same happens with the data, so we can refer to both variables in the aesthetics!
p <- p1 + facet_wrap_interactive(
vars(gear, vs),
labeller = labeller_interactive(
aes(tooltip = paste0("Gear: ", gear, "\nVS: ", vs)),
.multi_line = FALSE
)
)
x <- girafe(ggobj = p)
if (interactive()) print(x)
# Example with facet_grid:
p <- p1 + facet_grid_interactive(
vs + am ~ gear,
labeller = labeller(
gear = labeller_interactive(aes(
tooltip = paste("gear:", gear), data_id = paste0("gear_", gear)
)),
vs = labeller_interactive(aes(
tooltip = paste("VS:", vs), data_id = paste0("vs_", vs)
)),
am = labeller_interactive(aes(
tooltip = paste("AM:", am), data_id = paste0("am_", am)
))
)
)
x <- girafe(ggobj = p)
if (interactive()) print(x)
# Same with .rows and .cols and .multi_line = FALSE
p <- p1 + facet_grid_interactive(
vs + am ~ gear,
labeller = labeller(
.cols = labeller_interactive(
.mapping = aes(tooltip = paste("gear:", gear))
),
.rows = labeller_interactive(
aes(tooltip = paste0("VS: ", vs, "\nAM: ", am)),
.multi_line = FALSE
)
)
)
x <- girafe(ggobj = p)
if (interactive()) print(x)
# a more complex example
p2 <- ggplot(msleep, aes(x = sleep_total, y = awake)) +
geom_point_interactive(aes(tooltip = name)) +
theme(
strip.text.x = element_text_interactive(),
strip.text.y = element_text_interactive()
)
# character vector as lookup table
conservation_status <- c(
cd = "Conservation Dependent",
en = "Endangered",
lc = "Least concern",
nt = "Near Threatened",
vu = "Vulnerable",
domesticated = "Domesticated"
)
# function to capitalize a string
capitalize <- function(x) {
substr(x, 1, 1) <- toupper(substr(x, 1, 1))
x
}
# function to cut a string and append an ellipsis
cut_str <- function(x, width = 10) {
ind <- !is.na(x) & nchar(x) > width
x[ind] <- paste0(substr(x[ind], 1, width), "...")
x
}
replace_nas <- function(x) {
ifelse(is.na(x), "Not available", x)
}
# in this example we use the '.label' variable to access the produced label
# and we set the 'label' aesthetic to modify the label
p <- p2 + facet_grid_interactive(
vore ~ conservation,
labeller = labeller(
vore = labeller_interactive(
aes(tooltip = paste("Vore:", replace_nas(.label))),
.default = capitalize
),
conservation = labeller_interactive(
aes(
tooltip = paste("Conservation:\n", replace_nas(.label)),
label = cut_str(.label, 3)
),
.default = conservation_status
)
)
)
x <- girafe(ggobj = p)
if (interactive()) print(x)
Find best family match with systemfonts
Description
match_family()
returns the best font family match.
Usage
match_family(font = "sans", bold = TRUE, italic = TRUE, debug = NULL)
Arguments
font |
family or face to match. |
bold |
Wheter to match a font featuring a |
italic |
Wheter to match a font featuring an |
debug |
deprecated |
See Also
Other functions for font management:
font_family_exists()
,
validated_fonts()
Examples
match_family("sans")
match_family("serif")
Hover effect settings
Description
Allows customization of the rendering
of graphic elements when the user hovers over them with the cursor (mouse pointer).
Use opts_hover
for interactive geometries in panels,
opts_hover_key
for interactive scales/guides and
opts_hover_theme
for interactive theme elements.
Use opts_hover_inv
for the effect on the rest of the geometries,
while one is hovered (inverted operation).
Usage
opts_hover(css = NULL, reactive = FALSE, nearest_distance = NULL)
opts_hover_inv(css = NULL)
opts_hover_key(css = NULL, reactive = FALSE)
opts_hover_theme(css = NULL, reactive = FALSE)
Arguments
css |
css to associate with elements when they are hovered.
It must be a scalar character. It can also be constructed with
|
reactive |
if TRUE, in Shiny context, hovering will set Shiny input values. |
nearest_distance |
a scalar positive number defining the maximum distance to use
when using the |
Note
IMPORTANT: When applying a fill
style with the css
argument,
be aware that the browser's CSS engine will apply it also to line elements,
if there are any that use the hovering feature. This will cause an undesired effect.
To overcome this, supply the argument css
using girafe_css()
,
in order to set the fill
style only for the desired elements.
See Also
girafe_css()
, girafe_css_bicolor()
Other girafe animation options:
girafe_defaults()
,
girafe_options()
,
init_girafe_defaults()
,
opts_selection()
,
opts_sizing()
,
opts_toolbar()
,
opts_tooltip()
,
opts_zoom()
,
set_girafe_defaults()
Examples
library(ggplot2)
dataset <- mtcars
dataset$carname = row.names(mtcars)
gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname) ) +
geom_point_interactive() + theme_minimal()
x <- girafe(ggobj = gg)
x <- girafe_options(x,
opts_hover(css = "fill:wheat;stroke:orange;r:5pt;") )
if( interactive() ) print(x)
Selection effect settings
Description
Allows customization of the rendering of
selected graphic elements.
Use opts_selection
for interactive geometries in panels,
opts_selection_key
for interactive scales/guides and
opts_selection_theme
for interactive theme elements.
Use opts_selection_inv
for the effect on the rest of the geometries,
while some are selected (inverted operation).
Usage
opts_selection(
css = NULL,
type = c("multiple", "single", "none"),
only_shiny = TRUE,
selected = character(0)
)
opts_selection_inv(css = NULL)
opts_selection_key(
css = NULL,
type = c("single", "multiple", "none"),
only_shiny = TRUE,
selected = character(0)
)
opts_selection_theme(
css = NULL,
type = c("single", "multiple", "none"),
only_shiny = TRUE,
selected = character(0)
)
Arguments
css |
css to associate with elements when they are selected.
It must be a scalar character. It can also be constructed with
|
type |
selection mode ("single", "multiple", "none") when widget is in a Shiny application. |
only_shiny |
disable selections if not in a shiny context. |
selected |
character vector, id to be selected when the graph will be initialized. |
Note
IMPORTANT: When applying a fill
style with the css
argument,
be aware that the browser's CSS engine will apply it also to line elements,
if there are any that use the selection feature. This will cause an undesired effect.
To overcome this, supply the argument css
using girafe_css()
,
in order to set the fill
style only for the desired elements.
See Also
girafe_css()
, girafe_css_bicolor()
Other girafe animation options:
girafe_defaults()
,
girafe_options()
,
init_girafe_defaults()
,
opts_hover()
,
opts_sizing()
,
opts_toolbar()
,
opts_tooltip()
,
opts_zoom()
,
set_girafe_defaults()
Examples
library(ggplot2)
dataset <- mtcars
dataset$carname = row.names(mtcars)
gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname) ) +
geom_point_interactive() + theme_minimal()
x <- girafe(ggobj = gg)
x <- girafe_options(x,
opts_selection(type = "multiple", only_shiny = FALSE,
css = "fill:red;stroke:gray;r:5pt;") )
if( interactive() ) print(x)
Girafe sizing settings
Description
Allows customization of the svg style sizing
Usage
opts_sizing(rescale = TRUE, width = 1)
Arguments
rescale |
If FALSE, graphic will not be resized and the dimensions are exactly those of the svg. If TRUE the graphic will be resize to fit its container |
width |
widget width ratio (0 < width <= 1). |
See Also
Other girafe animation options:
girafe_defaults()
,
girafe_options()
,
init_girafe_defaults()
,
opts_hover()
,
opts_selection()
,
opts_toolbar()
,
opts_tooltip()
,
opts_zoom()
,
set_girafe_defaults()
Examples
library(ggplot2)
dataset <- mtcars
dataset$carname = row.names(mtcars)
gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname) ) +
geom_point_interactive() + theme_minimal()
x <- girafe(ggobj = gg)
x <- girafe_options(x,
opts_sizing(rescale = FALSE) )
if( interactive() ) print(x)
Toolbar settings
Description
Allows customization of the toolbar
Usage
opts_toolbar(
position = c("topright", "top", "bottom", "topleft", "bottomleft", "bottomright"),
saveaspng = TRUE,
pngname = "diagram",
tooltips = NULL,
hidden = NULL,
fixed = FALSE,
delay_mouseover = 200,
delay_mouseout = 500
)
Arguments
position |
Position of the toolbar relative to the plot. One of 'top', 'bottom', 'topleft', 'topright', 'bottomleft', 'bottomright' |
saveaspng |
Show (TRUE) or hide (FALSE) the 'download png' button. |
pngname |
The default basename (without .png extension) to use for the png file. |
tooltips |
A named list with tooltip labels for the buttons, for adapting to other language. Passing NULL will use the default tooltips: list( lasso_select = 'lasso selection', lasso_deselect = 'lasso deselection', zoom_on = 'activate pan/zoom', zoom_off = 'deactivate pan/zoom', zoom_rect = 'zoom with rectangle', zoom_reset = 'reset pan/zoom', saveaspng = 'download png' ) |
A character vector with the names of the buttons or button groups to be hidden from the toolbar. Valid button groups: selection, zoom, misc Valid button names: lasso_select, lasso_deselect, zoom_onoff, zoom_rect, zoom_reset, saveaspng | |
fixed |
if FALSE (default), the toolbar will float above the graphic, if TRUE, the toolbar will be fixed and always visible. |
delay_mouseover |
The duration in milliseconds of the transition associated with toolbar display. |
delay_mouseout |
The duration in milliseconds of the transition associated with toolbar end of display. |
Note
saveaspng
relies on JavaScript promises, so any browsers that don't natively
support the standard Promise object will need to have a polyfill (e.g.
Internet Explorer with version less than 11 will need it).
See Also
Other girafe animation options:
girafe_defaults()
,
girafe_options()
,
init_girafe_defaults()
,
opts_hover()
,
opts_selection()
,
opts_sizing()
,
opts_tooltip()
,
opts_zoom()
,
set_girafe_defaults()
Examples
library(ggplot2)
dataset <- mtcars
dataset$carname = row.names(mtcars)
gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname) ) +
geom_point_interactive() + theme_minimal()
x <- girafe(ggobj = gg)
x <- girafe_options(x,
opts_toolbar(position = "top") )
if( interactive() ) print(x)
Tooltip settings
Description
Settings to be used with girafe()
for tooltip customisation.
Usage
opts_tooltip(
css = NULL,
offx = 10,
offy = 0,
use_cursor_pos = TRUE,
opacity = 0.9,
use_fill = FALSE,
use_stroke = FALSE,
delay_mouseover = 200,
delay_mouseout = 500,
placement = c("auto", "doc", "container"),
zindex = 999
)
Arguments
css |
extra css (added to |
offx , offy |
tooltip x and y offset |
use_cursor_pos |
should the cursor position be used to position tooltip (in addition to offx and offy). Setting to TRUE will have no effect in the RStudio browser windows. |
opacity |
tooltip background opacity |
use_fill , use_stroke |
logical, use fill and stroke properties to color tooltip. |
delay_mouseover |
The duration in milliseconds of the transition associated with tooltip display. |
delay_mouseout |
The duration in milliseconds of the transition associated with tooltip end of display. |
placement |
Defines the container used for the tooltip element. It can be one of "auto" (default), "doc" or "container".
|
zindex |
tooltip css z-index, default to 999. |
See Also
Other girafe animation options:
girafe_defaults()
,
girafe_options()
,
init_girafe_defaults()
,
opts_hover()
,
opts_selection()
,
opts_sizing()
,
opts_toolbar()
,
opts_zoom()
,
set_girafe_defaults()
Examples
library(ggplot2)
dataset <- mtcars
dataset$carname = row.names(mtcars)
gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname) ) +
geom_point_interactive() + theme_minimal()
x <- girafe(ggobj = gg)
x <- girafe_options(x,
opts_tooltip(opacity = .7,
offx = 20, offy = -10,
use_fill = TRUE, use_stroke = TRUE,
delay_mouseout = 1000) )
if( interactive() ) print(x)
Zoom settings
Description
Allows customization of the zoom.
Usage
opts_zoom(min = 1, max = 1, duration = 300)
Arguments
min |
minimum zoom factor |
max |
maximum zoom factor |
duration |
duration of the zoom transitions, in milliseconds |
See Also
Other girafe animation options:
girafe_defaults()
,
girafe_options()
,
init_girafe_defaults()
,
opts_hover()
,
opts_selection()
,
opts_sizing()
,
opts_toolbar()
,
opts_tooltip()
,
set_girafe_defaults()
Examples
library(ggplot2)
dataset <- mtcars
dataset$carname = row.names(mtcars)
gg <- ggplot(
data = dataset,
mapping = aes(x = wt, y = qsec, color = disp,
tooltip = carname, data_id = carname) ) +
geom_point_interactive() + theme_minimal()
x <- girafe(ggobj = gg)
x <- girafe_options(x,
opts_zoom(min = .7, max = 2) )
if( interactive() ) print(x)
Reactive version of girafe
Description
Makes a reactive version of girafe object for use in Shiny.
Usage
renderGirafe(expr, env = parent.frame(), quoted = FALSE, outputArgs = list())
Arguments
expr |
An expression that returns a |
env |
The environment in which to evaluate expr. |
quoted |
Is |
outputArgs |
A list of arguments to be passed through to the implicit call to |
Reactive version of ggiraph object
Description
Makes a reactive version of a ggiraph object for use in Shiny.
This function is now defunct, users should
now use function renderGirafe()
.
Usage
renderggiraph(...)
Arguments
... |
unused |
Run shiny examples and see corresponding code
Description
Run shiny examples and see corresponding code
Usage
run_girafe_example(name = "crimes")
Arguments
name |
an application name, one of cars, click_scale, crimes, DT, dynamic_ui, iris, maps and modal. |
Create interactive scales for alpha transparency
Description
These scales are based on
ggplot2::scale_alpha()
,
ggplot2::scale_alpha_continuous()
,
ggplot2::scale_alpha_discrete()
,
ggplot2::scale_alpha_binned()
,
ggplot2::scale_alpha_ordinal()
,
ggplot2::scale_alpha_date()
,
ggplot2::scale_alpha_datetime()
.
See the documentation for those functions for more details.
Usage
scale_alpha_interactive(...)
scale_alpha_continuous_interactive(...)
scale_alpha_discrete_interactive(...)
scale_alpha_binned_interactive(...)
scale_alpha_ordinal_interactive(...)
scale_alpha_date_interactive(...)
scale_alpha_datetime_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_colour_brewer_interactive()
,
scale_colour_interactive
,
scale_colour_steps_interactive()
,
scale_gradient_interactive
,
scale_linetype_interactive()
,
scale_manual_interactive
,
scale_shape_interactive()
,
scale_size_interactive()
,
scale_viridis_interactive
Create interactive colorbrewer scales
Description
These scales are based on
ggplot2::scale_colour_brewer()
,
ggplot2::scale_fill_brewer()
,
ggplot2::scale_colour_distiller()
,
ggplot2::scale_fill_distiller()
,
ggplot2::scale_colour_fermenter()
,
ggplot2::scale_fill_fermenter()
.
See the documentation for those functions for more details.
Usage
scale_colour_brewer_interactive(...)
scale_color_brewer_interactive(...)
scale_fill_brewer_interactive(...)
scale_colour_distiller_interactive(...)
scale_color_distiller_interactive(...)
scale_fill_distiller_interactive(...)
scale_colour_fermenter_interactive(...)
scale_color_fermenter_interactive(...)
scale_fill_fermenter_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_alpha_interactive()
,
scale_colour_interactive
,
scale_colour_steps_interactive()
,
scale_gradient_interactive
,
scale_linetype_interactive()
,
scale_manual_interactive
,
scale_shape_interactive()
,
scale_size_interactive()
,
scale_viridis_interactive
Create interactive colour scales
Description
These scales are based on
ggplot2::scale_colour_continuous()
,
ggplot2::scale_fill_continuous()
,
ggplot2::scale_colour_grey()
,
ggplot2::scale_fill_grey()
,
ggplot2::scale_colour_hue()
,
ggplot2::scale_fill_hue()
,
ggplot2::scale_colour_binned()
,
ggplot2::scale_fill_binned()
,
ggplot2::scale_colour_discrete()
,
ggplot2::scale_fill_discrete()
,
ggplot2::scale_colour_date()
,
ggplot2::scale_fill_date()
,
ggplot2::scale_colour_datetime()
and
ggplot2::scale_fill_datetime()
.
See the documentation for those functions for more details.
Usage
scale_colour_continuous_interactive(...)
scale_color_continuous_interactive(...)
scale_fill_continuous_interactive(...)
scale_colour_grey_interactive(...)
scale_color_grey_interactive(...)
scale_fill_grey_interactive(...)
scale_colour_hue_interactive(...)
scale_color_hue_interactive(...)
scale_fill_hue_interactive(...)
scale_colour_binned_interactive(...)
scale_color_binned_interactive(...)
scale_fill_binned_interactive(...)
scale_colour_discrete_interactive(...)
scale_color_discrete_interactive(...)
scale_fill_discrete_interactive(...)
scale_colour_date_interactive(...)
scale_color_date_interactive(...)
scale_fill_date_interactive(...)
scale_colour_datetime_interactive(...)
scale_color_datetime_interactive(...)
scale_fill_datetime_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_alpha_interactive()
,
scale_colour_brewer_interactive()
,
scale_colour_steps_interactive()
,
scale_gradient_interactive
,
scale_linetype_interactive()
,
scale_manual_interactive
,
scale_shape_interactive()
,
scale_size_interactive()
,
scale_viridis_interactive
Create interactive binned gradient colour scales
Description
These scales are based on
ggplot2::scale_colour_steps()
,
ggplot2::scale_fill_steps()
,
ggplot2::scale_colour_steps2()
,
ggplot2::scale_fill_steps2()
,
ggplot2::scale_colour_stepsn()
and
ggplot2::scale_fill_stepsn()
.
See the documentation for those functions for more details.
Usage
scale_colour_steps_interactive(...)
scale_color_steps_interactive(...)
scale_fill_steps_interactive(...)
scale_colour_steps2_interactive(...)
scale_color_steps2_interactive(...)
scale_fill_steps2_interactive(...)
scale_colour_stepsn_interactive(...)
scale_color_stepsn_interactive(...)
scale_fill_stepsn_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_alpha_interactive()
,
scale_colour_brewer_interactive()
,
scale_colour_interactive
,
scale_gradient_interactive
,
scale_linetype_interactive()
,
scale_manual_interactive
,
scale_shape_interactive()
,
scale_size_interactive()
,
scale_viridis_interactive
Create interactive gradient colour scales
Description
These scales are based on
ggplot2::scale_colour_gradient()
,
ggplot2::scale_fill_gradient()
,
ggplot2::scale_colour_gradient2()
,
ggplot2::scale_fill_gradient2()
,
ggplot2::scale_colour_gradientn()
and
ggplot2::scale_fill_gradientn()
.
See the documentation for those functions for more details.
Usage
scale_colour_gradient_interactive(...)
scale_color_gradient_interactive(...)
scale_fill_gradient_interactive(...)
scale_colour_gradient2_interactive(...)
scale_color_gradient2_interactive(...)
scale_fill_gradient2_interactive(...)
scale_colour_gradientn_interactive(...)
scale_color_gradientn_interactive(...)
scale_fill_gradientn_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_alpha_interactive()
,
scale_colour_brewer_interactive()
,
scale_colour_interactive
,
scale_colour_steps_interactive()
,
scale_linetype_interactive()
,
scale_manual_interactive
,
scale_shape_interactive()
,
scale_size_interactive()
,
scale_viridis_interactive
Examples
# add interactive gradient colour scale to a ggplot -------
library(ggplot2)
library(ggiraph)
df <- expand.grid(x = 0:5, y = 0:5)
df$z <- runif(nrow(df))
p <- ggplot(df, aes(x, y, fill = z, tooltip = "tooltip")) +
geom_raster_interactive()
# add an interactive scale (guide is colourbar)
p1 <- p + scale_fill_gradient_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
)
x <- girafe(ggobj = p1)
if (interactive()) print(x)
# make the legend title interactive
p2 <- p + scale_fill_gradient_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar",
name = label_interactive(
"z",
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
)
)
x <- girafe(ggobj = p2)
x <- girafe_options(
x,
opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))
)
if (interactive()) print(x)
# make the legend labels interactive
p3 <- p + scale_fill_gradient_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar",
name = label_interactive(
"z",
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
),
labels = function(breaks) {
lapply(breaks, function(abreak) label_interactive(
as.character(abreak),
data_id = paste0("colourbar", abreak),
onclick = "alert(\"colourbar\")",
tooltip = paste0("colourbar", abreak)
))
}
)
x <- girafe(ggobj = p3)
x <- girafe_options(
x,
opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))
)
if (interactive()) print(x)
# also via the guide
p4 <- p + scale_fill_gradient_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar",
guide = guide_colourbar_interactive(
title.theme = element_text_interactive(
size = 8,
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
),
label.theme = element_text_interactive(
size = 8,
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
)
)
)
x <- girafe(ggobj = p4)
x <- girafe_options(
x,
opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))
)
if (interactive()) print(x)
# make the legend background interactive
p5 <- p4 + theme(
legend.background = element_rect_interactive(
data_id = "colourbar",
onclick = "alert(\"colourbar\")",
tooltip = "colourbar"
)
)
x <- girafe(ggobj = p5)
x <- girafe_options(
x,
opts_hover_key(girafe_css("stroke:red", text = "stroke:none;fill:red"))
)
if (interactive()) print(x)
Create interactive scales for line patterns
Description
These scales are based on
ggplot2::scale_linetype()
,
ggplot2::scale_linetype_continuous()
,
ggplot2::scale_linetype_discrete()
and
ggplot2::scale_linetype_binned()
.
See the documentation for those functions for more details.
Usage
scale_linetype_interactive(...)
scale_linetype_continuous_interactive(...)
scale_linetype_discrete_interactive(...)
scale_linetype_binned_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_alpha_interactive()
,
scale_colour_brewer_interactive()
,
scale_colour_interactive
,
scale_colour_steps_interactive()
,
scale_gradient_interactive
,
scale_manual_interactive
,
scale_shape_interactive()
,
scale_size_interactive()
,
scale_viridis_interactive
Create your own interactive discrete scale
Description
These scales are based on
ggplot2::scale_colour_manual()
,
ggplot2::scale_fill_manual()
,
ggplot2::scale_size_manual()
,
ggplot2::scale_shape_manual()
,
ggplot2::scale_linetype_manual()
,
ggplot2::scale_alpha_manual()
and
ggplot2::scale_discrete_manual()
.
See the documentation for those functions for more details.
Usage
scale_colour_manual_interactive(...)
scale_color_manual_interactive(...)
scale_fill_manual_interactive(...)
scale_size_manual_interactive(...)
scale_shape_manual_interactive(...)
scale_linetype_manual_interactive(...)
scale_alpha_manual_interactive(...)
scale_discrete_manual_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_alpha_interactive()
,
scale_colour_brewer_interactive()
,
scale_colour_interactive
,
scale_colour_steps_interactive()
,
scale_gradient_interactive
,
scale_linetype_interactive()
,
scale_shape_interactive()
,
scale_size_interactive()
,
scale_viridis_interactive
Examples
# add interactive manual fill scale to a ggplot -------
library(ggplot2)
library(ggiraph)
dat <- data.frame(
name = c( "Guy", "Ginette", "David", "Cedric", "Frederic" ),
gender = c( "Male", "Female", "Male", "Male", "Male" ),
height = c(169, 160, 171, 172, 171 ) )
p <- ggplot(dat, aes( x = name, y = height, fill = gender,
data_id = name ) ) +
geom_bar_interactive(stat = "identity")
# add interactive scale (guide is legend)
p1 <- p +
scale_fill_manual_interactive(
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = c(Female = "Female", Male = "Male"),
tooltip = c(Male = "Male", Female = "Female")
)
x <- girafe(ggobj = p1)
if (interactive()) print(x)
# make the title interactive too
p2 <- p +
scale_fill_manual_interactive(
name = label_interactive("gender", tooltip="Gender levels", data_id="legend.title"),
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = c(Female = "Female", Male = "Male"),
tooltip = c(Male = "Male", Female = "Female")
)
x <- girafe(ggobj = p2)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
# the interactive params can be functions too
p3 <- p +
scale_fill_manual_interactive(
name = label_interactive("gender", tooltip="Gender levels", data_id="legend.title"),
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = function(breaks) { as.character(breaks)},
tooltip = function(breaks) { as.character(breaks)},
onclick = function(breaks) { paste0("alert(\"", as.character(breaks), "\")") }
)
x <- girafe(ggobj = p3)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
# also via the guide
p4 <- p + scale_fill_manual_interactive(
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = function(breaks) { as.character(breaks)},
tooltip = function(breaks) { as.character(breaks)},
onclick = function(breaks) { paste0("alert(\"", as.character(breaks), "\")") },
guide = guide_legend_interactive(
title.theme = element_text_interactive(
size = 8,
data_id = "legend.title",
onclick = "alert(\"Gender levels\")",
tooltip = "Gender levels"
),
label.theme = element_text_interactive(
size = 8
)
)
)
x <- girafe(ggobj = p4)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
# make the legend labels interactive
p5 <- p +
scale_fill_manual_interactive(
name = label_interactive("gender", tooltip="Gender levels", data_id="legend.title"),
values = c(Male = "#0072B2", Female = "#009E73"),
data_id = function(breaks) { as.character(breaks)},
tooltip = function(breaks) { as.character(breaks)},
onclick = function(breaks) { paste0("alert(\"", as.character(breaks), "\")") },
labels = function(breaks) {
lapply(breaks, function(br) {
label_interactive(
as.character(br),
data_id = as.character(br),
onclick = paste0("alert(\"", as.character(br), "\")"),
tooltip = as.character(br)
)
})
}
)
x <- girafe(ggobj = p5)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
Create interactive scales for shapes
Description
These scales are based on
ggplot2::scale_shape()
,
ggplot2::scale_shape_continuous()
,
ggplot2::scale_shape_discrete()
,
ggplot2::scale_shape_binned()
and
ggplot2::scale_shape_ordinal()
.
See the documentation for those functions for more details.
Usage
scale_shape_interactive(...)
scale_shape_continuous_interactive(...)
scale_shape_discrete_interactive(...)
scale_shape_binned_interactive(...)
scale_shape_ordinal_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_alpha_interactive()
,
scale_colour_brewer_interactive()
,
scale_colour_interactive
,
scale_colour_steps_interactive()
,
scale_gradient_interactive
,
scale_linetype_interactive()
,
scale_manual_interactive
,
scale_size_interactive()
,
scale_viridis_interactive
Create interactive scales for area or radius
Description
These scales are based on
ggplot2::scale_size()
,
ggplot2::scale_size_area()
,
ggplot2::scale_size_continuous()
,
ggplot2::scale_size_discrete()
,
ggplot2::scale_size_binned()
,
ggplot2::scale_size_binned_area()
,
ggplot2::scale_size_date()
,
ggplot2::scale_size_datetime()
,
ggplot2::scale_size_ordinal()
and
ggplot2::scale_radius()
.
See the documentation for those functions for more details.
Usage
scale_size_interactive(...)
scale_size_area_interactive(...)
scale_size_continuous_interactive(...)
scale_size_discrete_interactive(...)
scale_size_binned_interactive(...)
scale_size_binned_area_interactive(...)
scale_size_date_interactive(...)
scale_size_datetime_interactive(...)
scale_size_ordinal_interactive(...)
scale_radius_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_alpha_interactive()
,
scale_colour_brewer_interactive()
,
scale_colour_interactive
,
scale_colour_steps_interactive()
,
scale_gradient_interactive
,
scale_linetype_interactive()
,
scale_manual_interactive
,
scale_shape_interactive()
,
scale_viridis_interactive
Create interactive viridis colour scales
Description
These scales are based on
ggplot2::scale_colour_viridis_d()
,
ggplot2::scale_fill_viridis_d()
,
ggplot2::scale_colour_viridis_c()
,
ggplot2::scale_fill_viridis_c()
,
ggplot2::scale_colour_viridis_b()
,
ggplot2::scale_fill_viridis_b()
,
ggplot2::scale_colour_ordinal()
,
ggplot2::scale_fill_ordinal()
.
See the documentation for those functions for more details.
Usage
scale_colour_viridis_d_interactive(...)
scale_color_viridis_d_interactive(...)
scale_fill_viridis_d_interactive(...)
scale_colour_viridis_c_interactive(...)
scale_color_viridis_c_interactive(...)
scale_fill_viridis_c_interactive(...)
scale_colour_viridis_b_interactive(...)
scale_color_viridis_b_interactive(...)
scale_fill_viridis_b_interactive(...)
scale_colour_ordinal_interactive(...)
scale_color_ordinal_interactive(...)
scale_fill_ordinal_interactive(...)
Arguments
... |
arguments passed to base function, plus any of the interactive_parameters. |
Value
An interactive scale object.
Details for interactive scale and interactive guide functions
For scales, the interactive parameters can be supplied as arguments in the relevant function and they can be scalar values or vectors, depending on the number of breaks (levels) and the type of the guide used. The guides do not accept any interactive parameter directly, they receive them from the scales.
When guide of type legend
, bins
, colourbar
or coloursteps
is used,
it will be converted to a guide_legend_interactive()
, guide_bins_interactive()
,
guide_colourbar_interactive()
or guide_coloursteps_interactive()
respectively,
if it's not already.
The length of each scale interactive parameter vector should match the length of the breaks. It can also be a named vector, where each name should correspond to the same break name. It can also be defined as function that takes the breaks as input and returns a named or unnamed vector of values as output.
For binned guides like bins
and coloursteps
the breaks include the label breaks and the limits.
The number of bins will be one less than the number of breaks and the interactive parameters can be
constructed for each bin separately (look at the examples).
For colourbar
guide in raster mode, the breaks vector, is scalar 1 always, meaning the interactive
parameters should be scalar too. For colourbar
guide in non-raster mode, the bar is drawn using
rectangles, and the breaks are the midpoints of each rectangle.
The interactive parameters here, give interactivity only to the key elements of the guide.
To provide interactivity to the rest of the elements of a guide, (title, labels, background, etc),
the relevant theme elements or relevant guide arguments can be used.
The guide
arguments title.theme
and label.theme
can be defined as
element_text_interactive
(in fact, they will be converted to that if they are not
already), either directly or via the theme.
See the element_*_interactive section for more details.
See Also
Other interactive scale:
scale_alpha_interactive()
,
scale_colour_brewer_interactive()
,
scale_colour_interactive
,
scale_colour_steps_interactive()
,
scale_gradient_interactive
,
scale_linetype_interactive()
,
scale_manual_interactive
,
scale_shape_interactive()
,
scale_size_interactive()
Examples
# add interactive viridis scale to a ggplot -------
library(ggplot2)
library(ggiraph)
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
p <- ggplot(dsmall, aes(x, y)) +
stat_density_2d(aes(
fill = after_stat(nlevel),
tooltip = paste("nlevel:", after_stat(nlevel))
),
geom = "interactive_polygon") +
facet_grid(. ~ cut)
# add interactive scale, by default the guide is a colourbar
p1 <- p + scale_fill_viridis_c_interactive(data_id = "nlevel",
tooltip = "nlevel")
x <- girafe(ggobj = p1)
if (interactive()) print(x)
# make it legend
p2 <- p + scale_fill_viridis_c_interactive(data_id = "nlevel",
tooltip = "nlevel",
guide = "legend")
x <- girafe(ggobj = p2)
if (interactive()) print(x)
# set the keys separately
p3 <- p + scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
},
tooltip = function(breaks) {
as.character(breaks)
},
guide = "legend"
)
x <- girafe(ggobj = p3)
if (interactive()) print(x)
# make the title and labels interactive
p4 <- p + scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
},
tooltip = function(breaks) {
as.character(breaks)
},
guide = "legend",
name = label_interactive("nlevel", data_id = "nlevel",
tooltip = "nlevel"),
labels = function(breaks) {
label_interactive(
as.character(breaks),
data_id = as.character(breaks),
onclick = paste0("alert(\"", as.character(breaks), "\")"),
tooltip = as.character(breaks)
)
}
)
x <- girafe(ggobj = p4)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
Modify defaults girafe animation options
Description
girafe animation options (see girafe_defaults()
)
are automatically applied to every girafe you produce.
Use set_girafe_defaults()
to override them. Use init_girafe_defaults()
to re-init all values with the package defaults.
Usage
set_girafe_defaults(
fonts = NULL,
opts_sizing = NULL,
opts_tooltip = NULL,
opts_hover = NULL,
opts_hover_key = NULL,
opts_hover_inv = NULL,
opts_hover_theme = NULL,
opts_selection = NULL,
opts_selection_inv = NULL,
opts_selection_key = NULL,
opts_selection_theme = NULL,
opts_zoom = NULL,
opts_toolbar = NULL
)
Arguments
fonts |
default values for |
opts_sizing |
default values for |
opts_tooltip |
default values for |
opts_hover |
default values for |
opts_hover_key |
default values for |
opts_hover_inv |
default values for |
opts_hover_theme |
default values for |
opts_selection |
default values for |
opts_selection_inv |
default values for |
opts_selection_key |
default values for |
opts_selection_theme |
default values for |
opts_zoom |
default values for |
opts_toolbar |
default values for |
See Also
Other girafe animation options:
girafe_defaults()
,
girafe_options()
,
init_girafe_defaults()
,
opts_hover()
,
opts_selection()
,
opts_sizing()
,
opts_toolbar()
,
opts_tooltip()
,
opts_zoom()
Examples
library(ggplot2)
set_girafe_defaults(
opts_hover = opts_hover(css = "r:10px;"),
opts_hover_inv = opts_hover_inv(),
opts_sizing = opts_sizing(rescale = FALSE, width = .8),
opts_tooltip = opts_tooltip(opacity = .7,
offx = 20, offy = -10,
use_fill = TRUE, use_stroke = TRUE,
delay_mouseout = 1000),
opts_toolbar = opts_toolbar(position = "top", saveaspng = FALSE),
opts_zoom = opts_zoom(min = .8, max = 7)
)
init_girafe_defaults()
List of validated default fonts
Description
Validates and possibly modifies the fonts to be used as default value in a graphic according to the fonts available on the machine. It process elements named "sans", "serif", "mono" and "symbol".
Usage
validated_fonts(fonts = list())
Arguments
fonts |
Named list of font names to be aliased with
fonts installed on your system. If unspecified, the R default
families "sans", "serif", "mono" and "symbol"
are aliased to the family returned by If fonts are available, the default mapping will use these values:
|
Value
a named list of validated font family names
See Also
Other functions for font management:
font_family_exists()
,
match_family()
Examples
validated_fonts()