Title: | Ordinary Functional Kriging Using Fourier Smoothing and Gaussian Quadrature |
Version: | 0.1.0 |
Maintainer: | Gilberto Sassi <sassi.pereira.gilberto@gmail.com> |
Description: | Implementation of the ordinary functional kriging method proposed by Giraldo (2011) <doi:10.1007/s10651-010-0143-y>. This implements an alternative method to estimate the trace-variogram using Fourier Smoothing and Gaussian Quadrature. |
License: | MIT + file LICENSE |
Depends: | R (≥ 3.5.0) |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.1.2 |
LinkingTo: | Rcpp, RcppArmadillo |
Imports: | Rcpp, stats, magrittr, orthopolynom |
NeedsCompilation: | yes |
Packaged: | 2021-10-26 21:19:43 UTC; gilberto |
Author: | Gilberto Sassi [aut, cre] |
Repository: | CRAN |
Date/Publication: | 2021-10-27 14:10:08 UTC |
Time series from 35 weather stations of Canada.
Description
A dataset containing time series from 15 weather stations (The Pas station
and more 34 stations to estimate the temperature curve at the Pas station).
This dataset is present in the fda
package.
Usage
data(canada)
Format
A list with four matrices:
- m_data
A matrix with 14 columns where each column is a wheather station
- m_coord
A matrix with 14 rows where each row is a weather station
- ThePas_coord
Coordinate of the The Pas station
- ThePas_ts
Observed time series of the station The Pas
Source
References
J. O. Ramsay, Spencer Graves and Giles Hooker (2020). fda
:
Functional Data Analysis. R package version 5.1.9.
https://CRAN.R-project.org/package=fda
This function computes minimum square estimates for Fourier coefficients.
Description
This function computes minimum square estimates for Fourier coefficients.
Usage
coef_fourier(f, m)
Arguments
f |
A time series to be smoothed. |
m |
Order of the Fourier polynomial. Default value is computed using the Sturge's rule. |
Value
A vector with the fourier coefficients.
Examples
data(canada)
coef_fourier(canada$ThePas_ts)
This function the smoothed curve
Description
This function the smoothed curve
Usage
fourier_b(coef, x)
Arguments
coef |
Fourier coefficients. |
x |
a time series to evaluate the smoothed curve. |
Value
a time series with the smoothed curve.
Examples
data(canada)
coefs <- coef_fourier(canada$ThePas_ts)
y_hat <- fourier_b(coefs)
Geostatistical estimates for function-valued data.
Description
geo_fda
finds the ordinary kriging estimate for sptial functional
data using the model proposed by Giraldo(2011).
Usage
geo_fda(
m_data,
m_coord,
new_coord,
m,
n_quad = 20,
t = seq(from = -pi, to = pi, length.out = 1000)
)
Arguments
m_data |
a matrix where each column is a time series in a location |
m_coord |
a matrix with coordinates (first column is latitude and second column longitude) |
new_coord |
a vector with a new coordinate (first column is latitude and second longitude) |
m |
order of the Fourier polynomial |
n_quad |
a scalar with number of quadrature points. Default value
|
t |
a vector with points to evaluate from |
Details
geo_fda
is similar to model proposed by
giraldo2011ordinary. The mais difference is we have used
gauss-legendre quadrature to estimate the trace-variogram. Using
gauss-legendre qudrature gives estimates with smaller mean square error
than the trace-variogram estimates from Giraldo(2011).
For now, we have used Fourier's series to smooth the time series.
Value
a list with three components
curve
estimate curve at
t
pointslambda
weights in the linear combination in the functional kriging
x
points where the curve was evaluated
References
Giraldo, R., Delicado, P., & Mateu, J. (2011). Ordinary kriging for function-valued spatial data. Environmental and Ecological Statistics, 18(3), 411-426.
Giraldo, R., Mateu, J., & Delicado, P. (2012). geofd: an R
package
for function-valued geostatistical prediction.
Revista Colombiana de EstadÃstica, 35(3), 385-407.
See Also
Examples
data(canada)
y_hat <- geo_fda(canada$m_data, canada$m_coord, canada$ThePas_coord,
n_quad = 2)
EStimates the parameters of the exponential model.
Description
geo_model
finds the maximum likelihood estimate for the parameters
in the geostatistical exponential model.
Usage
geo_model(v_data, m_coord)
Arguments
v_data |
a numeric vector with the data |
m_coord |
a matrix with two column. The first column must be the latitude and the second column must be the longitude. |
Value
a list with components
mean
mean of the process
phi
range of exponential model
sigmasq
total sill of exponential model
convergence
convergence as specified in the function
nlminb
Examples
data(canada)
v_data <- canada$m_data[1, ]
geo_model(v_data, canada$m_coord)
Log-likehood function multiplied by -1.
Description
This function computes the likelihood function
used at geo_model
.
Arguments
mDist |
distance matris; |
s2 |
variance from the covariance model; |
phi |
variance from the covariance model; |
vDiff |
column vector of data (subtracted the mean vector) |
Value
log-likelihood value multiplied by -1.